2021-2022学年江苏省镇江市中考数学模拟试题含解析
展开
这是一份2021-2022学年江苏省镇江市中考数学模拟试题含解析,共21页。
2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B,C).若线段AD长为正整数,则点D的个数共有( )
A.5个 B.4个 C.3个 D.2个
2.已知在四边形ABCD中,AD//BC,对角线AC、BD交于点O,且AC=BD,下列四个命题中真命题是( )
A.若AB=CD,则四边形ABCD一定是等腰梯形;
B.若∠DBC=∠ACB,则四边形ABCD一定是等腰梯形;
C.若,则四边形ABCD一定是矩形;
D.若AC⊥BD且AO=OD,则四边形ABCD一定是正方形.
3.剪纸是水族的非物质文化遗产之一,下列剪纸作品是中心对称图形的是( )
A. B.
C. D.
4.下列图形中,可以看作中心对称图形的是( )
A. B. C. D.
5.如图,AB为⊙O的直径,C、D为⊙O上的点,若AC=CD=DB,则cos∠CAD =( )
A. B. C. D.
6.如果两圆只有两条公切线,那么这两圆的位置关系是( )
A.内切 B.外切 C.相交 D.外离
7.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )
A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b
8.如图,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,点F是AC的中点,AD与FE,CE分别交于点G、H,∠BCE=∠CAD,有下列结论:①图中存在两个等腰直角三角形;②△AHE≌△CBE;③BC•AD=AE2;④S△ABC=4S△ADF.其中正确的个数有( )
A.1 B.2 C.3 D.4
9.在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中 5 个黑球, 从袋中随机摸出一球,记下其颜色,这称为依次摸球试验,之后把它放回袋 中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:
摸球试验次数
100
1000
5000
10000
50000
100000
摸出黑球次数
46
487
2506
5008
24996
50007
根据列表,可以估计出 m 的值是( )
A.5 B.10 C.15 D.20
10.如图,AB为⊙O直径,已知为∠DCB=20°,则∠DBA为( )
A.50° B.20° C.60° D.70°
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在菱形ABCD中,AB=,∠B=120°,点E是AD边上的一个动点(不与A,D重合),EF∥AB交BC于点F,点G在CD上,DG=DE.若△EFG是等腰三角形,则DE的长为_____.
12.比较大小:4 (填入“>”或“<”号)
13.如图是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是_______.
14.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E的坐标是______.
15.如图,将直线y=x向下平移b个单位长度后得到直线l,l与反比例函数y=(x>0)的图象相交于点A,与x轴相交于点B,则OA2﹣OB2的值为_____.
16.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是
17.用半径为6cm,圆心角为120°的扇形围成一个圆锥,则圆锥的底面圆半径为_______cm.
三、解答题(共7小题,满分69分)
18.(10分)我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?
19.(5分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.求证:△AEC≌△BED;若∠1=40°,求∠BDE的度数.
20.(8分)如图①,一次函数y=x﹣2的图象交x轴于点A,交y轴于点B,二次函数y=x2+bx+c的图象经过A、B两点,与x轴交于另一点C.
(1)求二次函数的关系式及点C的坐标;
(2)如图②,若点P是直线AB上方的抛物线上一点,过点P作PD∥x轴交AB于点D,PE∥y轴交AB于点E,求PD+PE的最大值;
(3)如图③,若点M在抛物线的对称轴上,且∠AMB=∠ACB,求出所有满足条件的点M的坐标.
21.(10分)已知,如图1,直线y=x+3与x轴、y轴分别交于A、C两点,点B在x轴上,点B的横坐标为,抛物线经过A、B、C三点.点D是直线AC上方抛物线上任意一点.
(1)求抛物线的函数关系式;
(2)若P为线段AC上一点,且S△PCD=2S△PAD,求点P的坐标;
(3)如图2,连接OD,过点A、C分别作AM⊥OD,CN⊥OD,垂足分别为M、N.当AM+CN的值最大时,求点D的坐标.
22.(10分)某车间的甲、乙两名工人分别同时生产只同一型号的零件,他们生产的零件(只)与生产时间(分)的函数关系的图象如图所示.根据图象提供的信息解答下列问题:
(1)甲每分钟生产零件_______只;乙在提高生产速度之前已生产了零件_______只;
(2)若乙提高速度后,乙的生产速度是甲的倍,请分别求出甲、乙两人生产全过程中,生产的零件(只)与生产时间(分)的函数关系式;
(3)当两人生产零件的只数相等时,求生产的时间;并求出此时甲工人还有多少只零件没有生产.
23.(12分)解分式方程:.
24.(14分)中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:
成绩x/分
频数
频率
50≤x<60
10
0.05
60≤x<70
30
0.15
70≤x<80
40
n
80≤x<90
m
0.35
90≤x≤100
50
0.25
请根据所给信息,解答下列问题:m= ,n= ;请补全频数分布直方图;若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
试题分析:过A作AE⊥BC于E,∵AB=AC=5,BC=8,∴BE=EC=4,∴AE=3,∵D是线段BC上的动点(不含端点B,C),∴AE≤AD<AB,即3≤AD<5,∵AD为正整数,∴AD=3或AD=4,当AD=4时,E的左右两边各有一个点D满足条件,∴点D的个数共有3个.故选C.
考点:等腰三角形的性质;勾股定理.
2、C
【解析】
A、因为满足本选项条件的四边形ABCD有可能是矩形,因此A中命题不一定成立;
B、因为满足本选项条件的四边形ABCD有可能是矩形,因此B中命题不一定成立;
C、因为由结合AO+CO=AC=BD=BO+OD可证得AO=CO,BO=DO,由此即可证得此时四边形ABCD是矩形,因此C中命题一定成立;
D、因为满足本选项条件的四边形ABCD有可能是等腰梯形,由此D中命题不一定成立.
故选C.
3、D
【解析】
根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.
【详解】
解:A、不是中心对称图形,故此选项错误;
B、不是中心对称图形,故此选项错误;
C、不是中心对称图形,故此选项错误;
D、是中心对称图形,故此选项正确;
故选:D.
【点睛】
此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.
4、B
【解析】
根据中心对称图形的概念求解.
【详解】
解:A、不是中心对称图形,故此选项错误;
B、是中心对称图形,故此选项正确;
C、不是中心对称图形,故此选项错误;
D、不是中心对称图形,故此选项错误.
故选:B.
【点睛】
此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
5、D
【解析】
根据圆心角,弧,弦的关系定理可以得出===,根据圆心角和圆周角的关键即可求出的度数,进而求出它的余弦值.
【详解】
解:
===,
故选D.
【点睛】
本题考查圆心角,弧,弦,圆周角的关系,熟记特殊角的三角函数值是解题的关键.
6、C
【解析】
两圆内含时,无公切线;两圆内切时,只有一条公切线;两圆外离时,有4条公切线;两圆外切时,有3条公切线;两圆相交时,有2条公切线.
【详解】
根据两圆相交时才有2条公切线.
故选C.
【点睛】
本题考查了圆与圆的位置关系.熟悉两圆的不同位置关系中的外公切线和内公切线的条数.
7、D
【解析】
试题分析:A.如图所示:﹣3<a<﹣2,故此选项错误;
B.如图所示:﹣3<a<﹣2,故此选项错误;
C.如图所示:1<b<2,则﹣2<﹣b<﹣1,又﹣3<a<﹣2,故a<﹣b,故此选项错误;
D.由选项C可得,此选项正确.
故选D.
考点:实数与数轴
8、C
【解析】
①图中有3个等腰直角三角形,故结论错误;
②根据ASA证明即可,结论正确;
③利用面积法证明即可,结论正确;
④利用三角形的中线的性质即可证明,结论正确.
【详解】
∵CE⊥AB,∠ACE=45°,
∴△ACE是等腰直角三角形,
∵AF=CF,
∴EF=AF=CF,
∴△AEF,△EFC都是等腰直角三角形,
∴图中共有3个等腰直角三角形,故①错误,
∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC,
∴∠EAH=∠BCE,
∵AE=EC,∠AEH=∠CEB=90°,
∴△AHE≌△CBE,故②正确,
∵S△ABC=BC•AD=AB•CE,AB=AC=AE,AE=CE,
∴BC•AD=CE2,故③正确,
∵AB=AC,AD⊥BC,
∴BD=DC,
∴S△ABC=2S△ADC,
∵AF=FC,
∴S△ADC=2S△ADF,
∴S△ABC=4S△ADF.
故选C.
【点睛】
本题考查相似三角形的判定和性质、等腰直角三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.
9、B
【解析】
由概率公式可知摸出黑球的概率为,分析表格数据可知的值总是在0.5左右,据此可求解m值.
【详解】
解:分析表格数据可知的值总是在0.5左右,则由题意可得,解得m=10,
故选择B.
【点睛】
本题考查了概率公式的应用.
10、D
【解析】
题解析:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.故选D.
【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
二、填空题(共7小题,每小题3分,满分21分)
11、1或
【解析】
由四边形ABCD是菱形,得到BC∥AD,由于EF∥AB,得到四边形ABFE是平行四边形,根据平行四边形的性质得到EF∥AB,于是得到EF=AB=,当△EFG为等腰三角形时,①EF=GE=时,于是得到DE=DG=AD÷=1,②GE=GF时,根据勾股定理得到DE=.
【详解】
解:∵四边形ABCD是菱形,∠B=120°,
∴∠D=∠B=120°,∠A=180°-120°=60°,BC∥AD,
∵EF∥AB,
∴四边形ABFE是平行四边形,
∴EF∥AB,
∴EF=AB=,∠DEF=∠A=60°,∠EFC=∠B=120°,
∵DE=DG,
∴∠DEG=∠DGE=30°,
∴∠FEG=30°,
当△EFG为等腰三角形时,
当EF=EG时,EG=,
如图1,
过点D作DH⊥EG于H,
∴EH=EG=,
在Rt△DEH中,DE==1,
GE=GF时,如图2,
过点G作GQ⊥EF,
∴EQ=EF=,在Rt△EQG中,∠QEG=30°,
∴EG=1,
过点D作DP⊥EG于P,
∴PE=EG=,
同①的方法得,DE=,
当EF=FG时,由∠EFG=180°-2×30°=120°=∠CFE,此时,点C和点G重合,点F和点B重合,不符合题意,
故答案为1或.
【点睛】
本题考查了菱形的性质,平行四边形的性质,等腰三角形的性质以及勾股定理,熟练掌握各性质是解题的关键.
12、>
【解析】
试题解析:∵<
∴4<.
考点:实数的大小比较.
【详解】
请在此输入详解!
13、
【解析】
试题分析:上方的正六边形涂红色的概率是,故答案为.
考点:概率公式.
14、(,)
【解析】
由题意可得OA:OD=2:3,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.
【详解】
解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为2:3,
∴OA:OD=2:3,
∵点A的坐标为(1,0),
即OA=1,
∴OD=,
∵四边形ODEF是正方形,
∴DE=OD=.
∴E点的坐标为:(,).
故答案为:(,).
【点睛】
此题考查了位似变换的性质与正方形的性质,注意理解位似变换与相似比的定义是解此题的关键.
15、1.
【解析】
解:∵平移后解析式是y=x﹣b,
代入y=得:x﹣b=,
即x2﹣bx=5,
y=x﹣b与x轴交点B的坐标是(b,0),
设A的坐标是(x,y),
∴OA2﹣OB2
=x2+y2﹣b2
=x2+(x﹣b)2﹣b2
=2x2﹣2xb
=2(x2﹣xb)
=2×5=1,
故答案为1.
点睛:本题是反比例函数综合题,用到的知识点有:一次函数的平移规律,一次函数与反比例函数的交点坐标,利用了转化及方程的思想,其中利用平移的规律表示出y=x平移后的解析式是解答本题的关键.
16、.
【解析】
分别求出从1到6的数中3的倍数的个数,再根据概率公式解答即可.
【详解】
有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,共有6种结果,其中卡片上的数是3的倍数的有3和6两种情况,所以从中任意抽出一张卡片,卡片上的数是3的倍数的概率是.
故答案为
【点睛】
考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.
17、1.
【解析】
解:设圆锥的底面圆半径为r,
根据题意得1πr=,
解得r=1,
即圆锥的底面圆半径为1cm.
故答案为:1.
【点睛】
本题考查圆锥的计算,掌握公式正确计算是解题关键.
三、解答题(共7小题,满分69分)
18、1.
【解析】
分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.
详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=1,
所以二进制中的数101011等于十进制中的1.
点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.
19、(1)见解析;(1)70°.
【解析】
(1)根据全等三角形的判定即可判断△AEC≌△BED;
(1)由(1)可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C的度数,从而可求出∠BDE的度数.
【详解】
证明:(1)∵AE和BD相交于点O,∴∠AOD=∠BOE.
在△AOD和△BOE中,
∠A=∠B,∴∠BEO=∠1.
又∵∠1=∠1,∴∠1=∠BEO,∴∠AEC=∠BED.
在△AEC和△BED中,
∴△AEC≌△BED(ASA).
(1)∵△AEC≌△BED,
∴EC=ED,∠C=∠BDE.
在△EDC中,∵EC=ED,∠1=40°,∴∠C=∠EDC=70°,
∴∠BDE=∠C=70°.
【点睛】
本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.
20、(1)二次函数的关系式为y=;C(1,0);(2)当m=2时,PD+PE有最大值3;(3)点M的坐标为(,)或(,).
【解析】
(1)先求出A、B的坐标,然后把A、B的坐标分别代入二次函数的解析式,解方程组即可得到结论;
(2)先证明△PDE∽△OAB,得到PD=2PE.设P(m,),则E(m,),PD+PE=3PE,然后配方即可得到结论.
(3)分两种情况讨论:①当点M在在直线AB上方时,则点M在△ABC的外接圆上,如图1.求出圆心O1的坐标和半径,利用MO1=半径即可得到结论.
②当点M在在直线AB下方时,作O1关于AB的对称点O2,如图2.求出点O2的坐标,算出DM的长,即可得到结论.
【详解】
解:(1)令y==0,得:x=4,∴A(4,0).
令x=0,得:y=-2,∴B(0,-2).
∵二次函数y=的图像经过A、B两点,
∴,解得:,
∴二次函数的关系式为y=.
令y==0,解得:x=1或x=4,∴C(1,0).
(2)∵PD∥x轴,PE∥y轴,
∴∠PDE=∠OAB,∠PED=∠OBA,
∴△PDE∽△OAB.∴===2,
∴PD=2PE.设P(m,),
则E(m,).
∴PD+PE=3PE=3×[()-()]==.
∵0<m<4,∴当m=2时,PD+PE有最大值3.
(3)①当点M在在直线AB上方时,则点M在△ABC的外接圆上,如图1.
∵△ABC的外接圆O1的圆心在对称轴上,设圆心O1的坐标为(,-t).
∴=,解得:t=2,
∴圆心O1的坐标为(,-2),∴半径为.
设M(,y).∵MO1=,∴,
解得:y=,∴点M的坐标为().
②当点M在在直线AB下方时,作O1关于AB的对称点O2,如图2.
∵AO1=O1B=,∴∠O1AB=∠O1BA.∵O1B∥x轴,∴∠O1BA=∠OAB,
∴∠O1AB=∠OAB,O2在x轴上,∴点O2的坐标为 (,0),∴O2D=1,
∴DM==,∴点M的坐标为(,).
综上所述:点M的坐标为(,)或(,).
点睛:本题是二次函数的综合题.考查了求二次函数的解析式,求二次函数的最值,圆的有关性质.难度比较大,解答第(3)问的关键是求出△ABC外接圆的圆心坐标.
21、(1)y=﹣x2﹣x+3;(2)点P的坐标为(﹣,1);(3)当AM+CN的值最大时,点D的坐标为(,).
【解析】
(1)利用一次函数图象上点的坐标特征可求出点A、C的坐标,由点B所在的位置结合点B的横坐标可得出点B的坐标,根据点A、B、C的坐标,利用待定系数法即可求出抛物线的函数关系式;
(2)过点P作PE⊥x轴,垂足为点E,则△APE∽△ACO,由△PCD、△PAD有相同的高且S△PCD=2S△PAD,可得出CP=2AP,利用相似三角形的性质即可求出AE、PE的长度,进而可得出点P的坐标;
(3)连接AC交OD于点F,由点到直线垂线段最短可找出当AC⊥OD时AM+CN取最大值,过点D作DQ⊥x轴,垂足为点Q,则△DQO∽△AOC,根据相似三角形的性质可设点D的坐标为(﹣3t,4t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其负值即可得出t值,再将其代入点D的坐标即可得出结论.
【详解】
(1)∵直线y=x+3与x轴、y轴分别交于A、C两点,
∴点A的坐标为(﹣4,0),点C的坐标为(0,3).
∵点B在x轴上,点B的横坐标为,
∴点B的坐标为(,0),
设抛物线的函数关系式为y=ax2+bx+c(a≠0),
将A(﹣4,0)、B(,0)、C(0,3)代入y=ax2+bx+c,得:
,解得: ,
∴抛物线的函数关系式为y=﹣x2﹣x+3;
(2)如图1,过点P作PE⊥x轴,垂足为点E,
∵△PCD、△PAD有相同的高,且S△PCD=2S△PAD,
∴CP=2AP,
∵PE⊥x轴,CO⊥x轴,
∴△APE∽△ACO,
∴,
∴AE=AO=,PE=CO=1,
∴OE=OA﹣AE=,
∴点P的坐标为(﹣,1);
(3)如图2,连接AC交OD于点F,
∵AM⊥OD,CN⊥OD,
∴AF≥AM,CF≥CN,
∴当点M、N、F重合时,AM+CN取最大值,
过点D作DQ⊥x轴,垂足为点Q,则△DQO∽△AOC,
∴,
∴设点D的坐标为(﹣3t,4t).
∵点D在抛物线y=﹣x2﹣x+3上,
∴4t=﹣3t2+t+3,
解得:t1=﹣(不合题意,舍去),t2=,
∴点D的坐标为(,),
故当AM+CN的值最大时,点D的坐标为(,).
【点睛】
本题考查了待定系数法求二次函数解析式、一次(二次)函数图象上点的坐标特征、三角形的面积以及相似三角形的性质,解题的关键是:(1)根据点A、B、C的坐标,利用待定系数法求出抛物线的函数关系式;(2)利用相似三角形的性质找出AE、PE的长;(3)利用相似三角形的性质设点D的坐标为(﹣3t,4t).
22、(1)25,150;(2)y甲=25x(0≤x≤20),;(3)x=14,150
【解析】
解:(1)甲每分钟生产=25只;
提高生产速度之前乙的生产速度==15只/分,
故乙在提高生产速度之前已生产了零件:15×10=150只;
(2)结合后图象可得:
甲:y甲=25x(0≤x≤20);
乙提速后的速度为50只/分,故乙生产完500只零件还需7分钟,
乙:y乙=15x(0≤x≤10),
当10<x≤17时,设y乙=kx+b,把(10,150)、(17,500),代入可得:
10k+b=150,17k+b=500,
解得:k=50,b=−350,
故y乙=50x−350(10≤x≤17).
综上可得:y甲=25x(0≤x≤20);
;
(3)令y甲=y乙,得25x=50x−350,
解得:x=14,
此时y甲=y乙=350只,故甲工人还有150只未生产.
23、.
【解析】
试题分析:方程最简公分母为,方程两边同乘将分式方程转化为整式方程求解,要注意检验.
试题解析:方程两边同乘,得:,整理解得:,经检验:是原方程的解.
考点:解分式方程.
24、(1)70,0.2(2)70(3)750
【解析】
(1)根据题意和统计表中的数据可以求得m、n的值;
(2)根据(1)中求得的m的值,从而可以将条形统计图补充完整;
(3)根据统计表中的数据可以估计该校参加这次比赛的3000名学生中成绩“优”等约有多少人.
【详解】
解:(1)由题意可得,
m=200×0.35=70,n=40÷200=0.2,
故答案为70,0.2;
(2)由(1)知,m=70,
补全的频数分布直方图,如下图所示;
(3)由题意可得,
该校参加这次比赛的3000名学生中成绩“优”等约有:3000×0.25=750(人),
答:该校参加这次比赛的3000名学生中成绩“优”等约有750人.
【点睛】
本题考查频数分布直方图、频数分布表、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
相关试卷
这是一份2023年江苏省镇江市丹阳市中考数学模拟试卷(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年江苏省镇江市八校中考数学模拟试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年江苏省镇江市中考数学模拟试题及答案,共34页。