终身会员
搜索
    上传资料 赚现金

    2021-2022学年辽宁省本溪市名校中考数学押题试卷含解析

    立即下载
    加入资料篮
    2021-2022学年辽宁省本溪市名校中考数学押题试卷含解析第1页
    2021-2022学年辽宁省本溪市名校中考数学押题试卷含解析第2页
    2021-2022学年辽宁省本溪市名校中考数学押题试卷含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年辽宁省本溪市名校中考数学押题试卷含解析

    展开

    这是一份2021-2022学年辽宁省本溪市名校中考数学押题试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,方程的根是,一组数据,一、单选题等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图是用八块相同的小正方体搭建的几何体,它的左视图是( )

    A. B.
    C. D.
    2.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过的集中药物喷洒,再封闭宿舍,然后打开门窗进行通风,室内每立方米空气中含药量与药物在空气中的持续时间之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )

    A.经过集中喷洒药物,室内空气中的含药量最高达到
    B.室内空气中的含药量不低于的持续时间达到了
    C.当室内空气中的含药量不低于且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效
    D.当室内空气中的含药量低于时,对人体才是安全的,所以从室内空气中的含药量达到开始,需经过后,学生才能进入室内
    3.一元二次方程x2﹣3x+1=0的根的情况(  )
    A.有两个相等的实数根 B.有两个不相等的实数根
    C.没有实数根 D.以上答案都不对
    4.方程的根是( )
    A.x=2 B.x=0 C.x1=0,x2=-2 D. x1=0,x2=2
    5.下列图案中,是轴对称图形但不是中心对称图形的是(  )
    A. B. C. D.
    6.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A,B在围成的正方体中的距离是(  )

    A.0 B.1 C. D.
    7.如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC的距离为( )

    A.1或2 B.2或3 C.3或4 D.4或5
    8.已知抛物线y=x2+bx+c的对称轴为x=2,若关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围内有两个相等的实数根,则c的取值范围是(   )
    A.c=4 B.﹣5<c≤4 C.﹣5<c<3或c=4 D.﹣5<c≤3或c=4
    9.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是  
    A.平均数 B.中位数 C.众数 D.方差
    10.一、单选题
    如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=(  )

    A.75° B.80° C.85° D.90°
    11.若点都是反比例函数的图象上的点,并且,则下列各式中正确的是(( )
    A. B. C. D.
    12.下列博物院的标识中不是轴对称图形的是( )
    A. B.
    C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在每个小正方形的边长为1的网格中,点A,B,C,D均在格点上,AB与CD相交于点E.
    (1)AB的长等于_____;
    (2)点F是线段DE的中点,在线段BF上有一点P,满足,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)_____.

    14.如图,甲和乙同时从学校放学,两人以各自送度匀速步行回家,甲的家在学校的正西方向,乙的家在学校的正东方向,乙家离学校的距离比甲家离学校的距离远3900米,甲准备一回家就开始做什业,打开书包时发现错拿了乙的练习册.于是立即步去追乙,终于在途中追上了乙并交还了练习册,然后再以先前的速度步行回家,(甲在家中耽搁和交还作业的时间忽略不计)结果甲比乙晚回到家中,如图是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图,则甲的家和乙的家相距_____米.

    15.用半径为6cm,圆心角为120°的扇形围成一个圆锥,则圆锥的底面圆半径为_______cm.
    16.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线与扇形OAB的边界总有两个公共点,则实数k的取值范围是
        .

    17.从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是__________.
    18.如图,用黑白两种颜色的纸片,按黑色纸片数逐渐增加1的规律拼成如图图案,则第4个图案中有__________白色纸片,第n个图案中有__________张白色纸片.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索长和竿长.
    20.(6分)近几年“雾霾”成为全社会关注的话题某校环保志愿者小组对该市2018年空气质量进行调查,从全年365天中随机抽查了50天的空气质量指数(AQI),得到以下数据:43、62、80、78、46、78、23、59、32、78、86、125、98、116、86、69、28、43、58、87、75、116、178、146、57、26、43、59、77、103、126、159、201、289、315、253、196、102、93、72、56、43、39、44、47、34、31、29、43、1.
    (1)请你完成如下的统计表;
    AQI
    0~50
    51~100
    101~150
    151~200
    201~250
    300以上
    质量等级
    A(优)
    B(良)
    C(轻度污染)
    D(中度污染)
    E(重度污染)
    F(严重污染)
    天数






    (2)请你根据题中所给信息绘制该市2018年空气质量等级条形统计图;
    (3)请你估计该市全年空气质量等级为“重度污染”和“严重污染”的天数.
    21.(6分)新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.
    若购买者一次性付清所有房款,开发商有两种优惠方案:降价8%,另外每套房赠送a元装修基金;降价10%,没有其他赠送.请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数表达式;老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.
    22.(8分) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).

    请根据以上信息回答:
    (1)本次参加抽样调查的居民有多少人?
    (2)将两幅不完整的图补充完整;
    (3)求扇形统计图中C所对圆心角的度数;
    (4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.
    23.(8分)如图,点,在上,直线是的切线,.连接交于.

    (1)求证:
    (2)若,的半径为,求的长.
    24.(10分)近日,深圳市人民政府发布了《深圳市可持续发展规划》,提出了要做可持续发展的全球创新城市的目标,某初中学校了解学生的创新意识,组织了全校学生参加创新能力大赛,从中抽取了部分学生成绩,分为5组:A组50~60;B组60~70;C组70~80;D组80~90;E组90~100,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图.抽取学生的总人数是   人,扇形C的圆心角是   °;补全频数直方图;该校共有2200名学生,若成绩在70分以下(不含70分)的学生创新意识不强,有待进一步培养,则该校创新意识不强的学生约有多少人?

    25.(10分)计算:.化简:.
    26.(12分)解不等式组并写出它的整数解.
    27.(12分)如图,AD是△ABC的中线,过点C作直线CF∥AD.
    (问题)如图①,过点D作直线DG∥AB交直线CF于点E,连结AE,求证:AB=DE.
    (探究)如图②,在线段AD上任取一点P,过点P作直线PG∥AB交直线CF于点E,连结AE、BP,探究四边形ABPE是哪类特殊四边形并加以证明.
    (应用)在探究的条件下,设PE交AC于点M.若点P是AD的中点,且△APM的面积为1,直接写出四边形ABPE的面积.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    根据几何体的左视图是从物体的左面看得到的视图,对各个选项中的图形进行分析,即可得出答案.
    【详解】
    左视图是从左往右看,左侧一列有2层,右侧一列有1层1,选项B中的图形符合题意,
    故选B.
    【点睛】
    本题考查了简单组合体的三视图,理解掌握三视图的概念是解答本题的关键.主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图.
    2、C
    【解析】
    利用图中信息一一判断即可.
    【详解】
    解: A、正确.不符合题意.
    B、由题意x=4时,y=8,∴室内空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;
    C、y=5时,x=2.5或24,24-2.5=21.5<35,故本选项错误,符合题意;
    D、正确.不符合题意,
    故选C.
    【点睛】
    本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型.
    3、B
    【解析】
    首先确定a=1,b=-3,c=1,然后求出△=b2-4ac的值,进而作出判断.
    【详解】
    ∵a=1,b=-3,c=1,
    ∴△=(-3)2-4×1×1=5>0,
    ∴一元二次方程x2-3x+1=0两个不相等的实数根;
    故选B.
    【点睛】
    此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数;(3)△<0⇔方程没有实数根.
    4、C
    【解析】
    试题解析:x(x+1)=0,
    ⇒x=0或x+1=0,
    解得x1=0,x1=-1.
    故选C.
    5、D
    【解析】
    分析:根据轴对称图形与中心对称图形的概念分别分析得出答案.
    详解:A.是轴对称图形,也是中心对称图形,故此选项错误;
    B.不是轴对称图形,也不是中心对称图形,故此选项错误;
    C.不是轴对称图形,是中心对称图形,故此选项错误;
    D.是轴对称图形,不是中心对称图形,故此选项正确.
    故选D.
    点睛:本题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;
    中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.
    6、C
    【解析】
    试题分析: 本题考查了勾股定理、展开图折叠成几何体、正方形的性质;熟练掌握正方形的性质和勾股定理,并能进行推理计算是解决问题的关键.由正方形的性质和勾股定理求出AB的长,即可得出结果.
    解:连接AB,如图所示:
    根据题意得:∠ACB=90°,
    由勾股定理得:AB==;
    故选C.

    考点:1.勾股定理;2.展开图折叠成几何体.
    7、A
    【解析】
    连接B′D,过点B′作B′M⊥AD于M.设DM=B′M=x,则AM=7-x,根据等腰直角三角形的性质和折叠的性质得到:(7-x)2=25-x2,通过解方程求得x的值,易得点B′到BC的距离.
    【详解】
    解:如图,连接B′D,过点B′作B′M⊥AD于M,
    ∵点B的对应点B′落在∠ADC的角平分线上,
    ∴设DM=B′M=x,则AM=7﹣x,
    又由折叠的性质知AB=AB′=5,
    ∴在直角△AMB′中,由勾股定理得到:,
    即,
    解得x=3或x=4,
    则点B′到BC的距离为2或1.
    故选A.

    【点睛】
    本题考查的是翻折变换的性质,掌握翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.
    8、D
    【解析】
    解:由对称轴x=2可知:b=﹣4,
    ∴抛物线y=x2﹣4x+c,
    令x=﹣1时,y=c+5,
    x=3时,y=c﹣3,
    关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围有实数根,
    当△=0时,
    即c=4,
    此时x=2,满足题意.
    当△>0时,
    (c+5)(c﹣3)≤0,
    ∴﹣5≤c≤3,
    当c=﹣5时,
    此时方程为:﹣x2+4x+5=0,
    解得:x=﹣1或x=5不满足题意,
    当c=3时,
    此时方程为:﹣x2+4x﹣3=0,
    解得:x=1或x=3此时满足题意,
    故﹣5<c≤3或c=4,
    故选D.
    点睛:本题主要考查二次函数与一元二次方程的关系.理解二次函数与一元二次方程之间的关系是解题的关键.
    9、D
    【解析】
    解:A.原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;
    B.原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;
    C.原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;
    D.原来数据的方差==,
    添加数字2后的方差==,
    故方差发生了变化.
    故选D.
    10、A
    【解析】
    分析:依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.
    详解:∵AD是BC边上的高,∠ABC=60°,
    ∴∠BAD=30°,
    ∵∠BAC=50°,AE平分∠BAC,
    ∴∠BAE=25°,
    ∴∠DAE=30°﹣25°=5°,
    ∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,
    ∴∠EAD+∠ACD=5°+70°=75°,
    故选A.
    点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.
    11、B
    【解析】
    解:根据题意可得:
    ∴反比例函数处于二、四象限,则在每个象限内为增函数,
    且当x<0时y>0,当x>0时,y<0,
    ∴<<.
    12、A
    【解析】
    如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,对题中选项进行分析即可.
    【详解】
    A、不是轴对称图形,符合题意;
    B、是轴对称图形,不合题意;
    C、是轴对称图形,不合题意;
    D、是轴对称图形,不合题意;
    故选:A.
    【点睛】
    此题考查轴对称图形的概念,解题的关键在于利用轴对称图形的概念判断选项正误

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、 见图形
    【解析】
    分析:(Ⅰ)利用勾股定理计算即可;
    (Ⅱ)连接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格点G、H,连接GH交DE于F,因为DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格点I、J,连接IJ交BD于K,因为BI∥DJ,所以BK:DK=BI:DJ=5:2,连接EK交BF于P,可证BP:PF=5:3;
    详解:(Ⅰ)AB的长==;
    (Ⅱ)由题意:连接AC、BD.易知:AC∥BD,
    可得:EC:ED=AC:BD=3:1.
    取格点G、H,连接GH交DE于F.
    ∵DG∥CH,∴FD:FC=DG:CH=5:8,可得DF=EF.
    取格点I、J,连接IJ交BD于K.
    ∵BI∥DJ,∴BK:DK=BI:DJ=5:2.
    连接EK交BF于P,可证BP:PF=5:3.

    故答案为(Ⅰ);
    (Ⅱ)由题意:连接AC、BD.
    易知:AC∥BD,可得:EC:ED=AC:BD=3:1,
    取格点G、H,连接GH交DE于F.
    因为DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.
    取格点I、J,连接IJ交BD于K.
    因为BI∥DJ,所以BK:DK=BI:DJ=5:2,
    连接EK交BF于P,可证BP:PF=5:3.
    点睛:本题考查了作图﹣应用与设计,平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型.
    14、5200
    【解析】
    设甲到学校的距离为x米,则乙到学校的距离为(3900+x),甲的速度为4y(米/分钟),则乙的速度为3y(米/分钟),依题意得:

    解得
    所以甲到学校距离为2400米,乙到学校距离为6300米,
    所以甲的家和乙的家相距8700米.
    故答案是:8700.
    【点睛】本题考查一次函数的应用,二元一次方程组的应用等知识,解题的关键是读懂图象信息.
    15、1.
    【解析】
    解:设圆锥的底面圆半径为r,
    根据题意得1πr=,
    解得r=1,
    即圆锥的底面圆半径为1cm.
    故答案为:1.
    【点睛】
    本题考查圆锥的计算,掌握公式正确计算是解题关键.
    16、-2<k<。
    【解析】
    由图可知,∠AOB=45°,∴直线OA的解析式为y=x,
    联立,消掉y得,,
    由解得,.
    ∴当时,抛物线与OA有一个交点,此交点的横坐标为1.
    ∵点B的坐标为(2,0),∴OA=2,∴点A的坐标为().
    ∴交点在线段AO上.
    当抛物线经过点B(2,0)时,,解得k=-2.
    ∴要使抛物线与扇形OAB的边界总有两个公共点,实数k的取值范围是-2<k<.
    【详解】
    请在此输入详解!
    17、
    【解析】
    根据概率的公式进行计算即可.
    【详解】
    从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是.
    故答案为:.
    【点睛】
    考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.
    18、13 3n+1
    【解析】
    分析:观察图形发现:白色纸片在4的基础上,依次多3个;根据其中的规律得出第n个图案中有白色纸片即可.
    详解:∵第1个图案中有白色纸片3×1+1=4张
    第2个图案中有白色纸片3×2+1=7张,
    第3图案中有白色纸片3×3+1=10张,
    ∴第4个图案中有白色纸片3×4+1=13张
    第n个图案中有白色纸片3n+1张,
    故答案为:13、3n+1.
    点睛:考查学生的探究能力,解题时必须仔细观察规律,通过归纳得出结论.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、绳索长为20尺,竿长为15尺.
    【解析】
    设索长为x尺,竿子长为y尺,根据“索比竿子长一托,对折索子来量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组,解之即可得出结论.
    【详解】
    设绳索长、竿长分别为尺,尺,
    依题意得:
    解得:,.
    答:绳索长为20尺,竿长为15尺.
    【点睛】
    本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
    20、(1)补全统计表见解析;(2)该市2018年空气质量等级条形统计图见解析;(3)29天.
    【解析】
    (1)由已知数据即可得;
    (2)根据统计表作图即可得;
    (3)全年365天乘以样本中“重度污染”和“严重污染”的天数和所占比例.
    【详解】
    (1)补全统计表如下:
    AQI
    0~50
    51~100
    101~150
    151~200
    201~250
    300以上
    质量等级
    A(优)
    B(良)
    C(轻度污染)
    D(中度污染)
    E(重度污染)
    F(严重污染)
    天数
    16
    20
    7
    3
    3
    1
    (2)该市2018年空气质量等级条形统计图如下:

    (3)估计该市全年空气质量等级为“重度污染”和“严重污染”的天数为365×≈29天.
    【点睛】
    本题考查了条形统计图的应用与用样本估计总体.读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.
    21、(1) ;(2)当每套房赠送的装修基金多于10 560元时,选择方案一合算;当每套房赠送的装修基金等于10 560元时,两种方案一样;当每套房赠送的装修基金少于10 560元时,选择方案二合算.
    【解析】
    解:(1)当1≤x≤8时,每平方米的售价应为:
    y=4000﹣(8﹣x)×30="30x+3760" (元/平方米)
    当9≤x≤23时,每平方米的售价应为:
    y=4000+(x﹣8)×50=50x+3600(元/平方米).

    (2)第十六层楼房的每平方米的价格为:50×16+3600=4400(元/平方米),
    按照方案一所交房款为:W1=4400×120×(1﹣8%)﹣a=485760﹣a(元),
    按照方案二所交房款为:W2=4400×120×(1﹣10%)=475200(元),
    当W1>W2时,即485760﹣a>475200,
    解得:0<a<10560,
    当W1<W2时,即485760﹣a<475200,
    解得:a>10560,
    ∴当0<a<10560时,方案二合算;当a>10560时,方案一合算.
    【点睛】
    本题考查的是用一次函数解决实际问题,读懂题目信息,找出数量关系表示出各楼层的单价以及是交房款的关系式是解题的关键.
    22、(1)本次参加抽样调查的居民有600人;(2)补图见解析;(3)72°;(4).
    【解析】
    试题分析:(1)用B的频数除以B所占的百分比即可求得结论;
    (2)分别求得C的频数及其所占的百分比即可补全统计图;
    (3)算出A的所占的百分比,再进一步算出C所占的百分比,再扇形统计图中C所对圆心角的度数;
    (4)列出树形图即可求得结论.
    试题解析:(1)60÷10%=600(人).
    答:本次参加抽样调查的居民有600人.
    (2)如图;

    (3),360°×(1-10%-30%-40%)=72°.
    (4)如图;

    (列表方法略,参照给分).
    P(C粽)=.
    答:他第二个吃到的恰好是C粽的概率是.
    考点:1.条形统计图;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法.
    23、(1)证明见解析;(2)1.
    【解析】
    (1)连结OA,由AC为圆的切线,利用切线的性质得到∠OAC为直角,再由,得到∠BOC为直角,由OA=OB得到,再利用对顶角相等及等角的余角相等得到,利用等角对等边即可得证;
    (2)在中,利用勾股定理即可求出OC,由OC=OD+DC,DC=AC,即可求得OD的长.
    【详解】
    (1)如图,连接,
    ∵切于,
    ∴,

    又∵,
    ∴在中:
    ∵,
    ∴,
    ∴,
    又∵,
    ∴,
    ∴;

    (2)∵在中:, ,
    由勾股定理得:,
    由(1)得:,
    ∴.
    【点睛】
    此题考查了切线的性质、勾股定理、等腰三角形的判定与性质,熟练掌握切线的性质是解本题的关键.
    24、(1)300、144;(2)补全频数分布直方图见解析;(3)该校创新意识不强的学生约有528人.
    【解析】
    (1)由D组频数及其所占比例可得总人数,用360°乘以C组人数所占比例可得;
    (2)用总人数分别乘以A、B组的百分比求得其人数,再用总人数减去A、B、C、D的人数求得E组的人数可得;
    (3)用总人数乘以样本中A、B组的百分比之和可得.
    【详解】
    解:(1)抽取学生的总人数为78÷26%=300人,扇形C的圆心角是360°×=144°,
    故答案为300、144;
    (2)A组人数为300×7%=21人,B组人数为300×17%=51人,
    则E组人数为300﹣(21+51+120+78)=30人,
    补全频数分布直方图如下:

    (3)该校创新意识不强的学生约有2200×(7%+17%)=528人.
    【点睛】
    考查了频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.
    25、(1)5;(2)-3x+4
    【解析】
    (1)第一项计算算术平方根,第二项计算零指数幂,第三项计算特殊角的三角函数值,最后计算有理数运算.
    (2)利用完全平方公式和去括号法则进行计算,再进行合并同类项运算.
    【详解】
    (1)解:原式
    (2)解:原式
    【点睛】
    本题考查实数的混合运算和整式运算,解题关键是熟练运用完全平方公式和熟记特殊角的三角函数值.
    26、不等式组的解集是5<x≤1,整数解是6,1
    【解析】
    先分别求出两个不等式的解,求出解集,再根据整数的定义得到答案.
    【详解】

    ∵解①得:x>5,
    解不等式②得:x≤1,
    ∴不等式组的解集是5<x≤1,
    ∴不等式组的整数解是6,1.
    【点睛】
    本题考查求一元一次不等式组,解题的关键是掌握求一元一次不等式组的方法
    27、【问题】:详见解析;【探究】:四边形ABPE是平行四边形,理由详见解析;【应用】:8.
    【解析】
    (1)先根据平行线的性质和等量代换得出∠1=∠3,再利用中线性质得到BD=DC,证明△ABD≌△EDC,从而证明AB=DE(2)方法一:过点D作DN∥PE交直线CF于点N,由平行线性质得出四边形PDNE是平行四边形,从而得到四边形ABPE是平行四边形.方法二: 延长BP交直线CF于点N,根据平行线的性质结合等量代换证明△ABP≌△EPN,
    从而证明四边形ABPE是平行四边形(3)延长BP交CF于H,根据平行四边形的性质结合三角形的面积公式求解即可.
    【详解】
    证明:如图①


    是的中线,



    (或证明四边形ABDE是平行四边形,从而得到)
    【探究】
    四边形ABPE是平行四边形.
    方法一:如图②,
    证明:过点D作交直线于点,


    ∴四边形是平行四边形,

    ∵由问题结论可得

    ∴四边形是平行四边形.
    方法二:如图③,

    证明:延长BP交直线CF于点N,





    ∵是的中线,



    ∴四边形是平行四边形.
    【应用】
    如图④,延长BP交CF于H.

    由上面可知,四边形是平行四边形,


    ∴四边形APHE是平行四边形,











    【点睛】
    此题重点考查学生对平行线性质,平行四边形性质的综合应用能力,熟练掌握平行线的性质是解题的关键.

    相关试卷

    辽宁省抚顺县达标名校2021-2022学年中考押题数学预测卷含解析:

    这是一份辽宁省抚顺县达标名校2021-2022学年中考押题数学预测卷含解析,共26页。试卷主要包含了已知∠BAC=45,在平面直角坐标系中,点P,下列图形不是正方体展开图的是,若分式有意义,则a的取值范围为等内容,欢迎下载使用。

    黄金卷市级名校2021-2022学年中考数学押题试卷含解析:

    这是一份黄金卷市级名校2021-2022学年中考数学押题试卷含解析,共17页。试卷主要包含了答题时请按要求用笔,计算36÷,下列各式等内容,欢迎下载使用。

    2021-2022学年重庆十一中市级名校中考数学押题试卷含解析:

    这是一份2021-2022学年重庆十一中市级名校中考数学押题试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,计算3÷2的结果是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map