2021-2022学年江苏省盐城市东台市三仓片区重点名校中考联考数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,点A、B、C在圆O上,若∠OBC=40°,则∠A的度数为( )
A.40° B.45° C.50° D.55°
2.在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中 5 个黑球, 从袋中随机摸出一球,记下其颜色,这称为依次摸球试验,之后把它放回袋 中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:
摸球试验次数
100
1000
5000
10000
50000
100000
摸出黑球次数
46
487
2506
5008
24996
50007
根据列表,可以估计出 m 的值是( )
A.5 B.10 C.15 D.20
3.二次函数y=ax2+bx﹣2(a≠0)的图象的顶点在第三象限,且过点(1,0),设t=a﹣b﹣2,则t值的变化范围是( )
A.﹣2<t<0 B.﹣3<t<0 C.﹣4<t<﹣2 D.﹣4<t<0
4.如图,直线与y轴交于点(0,3)、与x轴交于点(a,0),当a满足时,k的取值范围是( )
A. B. C. D.
5.若关于x的一元二次方程ax2+2x﹣5=0的两根中有且仅有一根在0和1之间(不含0和1),则a的取值范围是( )
A.a<3 B.a>3 C.a<﹣3 D.a>﹣3
6.四根长度分别为3,4,6,(为正整数)的木棒,从中任取三根.首尾顺次相接都能组成一个三角形,则( ).
A.组成的三角形中周长最小为9 B.组成的三角形中周长最小为10
C.组成的三角形中周长最大为19 D.组成的三角形中周长最大为16
7.如图是某零件的示意图,它的俯视图是( )
A. B. C. D.
8.下列运算正确的是( )
A.﹣(a﹣1)=﹣a﹣1 B.(2a3)2=4a6 C.(a﹣b)2=a2﹣b2 D.a3+a2=2a5
9.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是( )
A.110 B.158 C.168 D.178
10.将某不等式组的解集表示在数轴上,下列表示正确的是( )
A. B.
C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.化简:÷=_____.
12.若一个正多边形的内角和是其外角和的3倍,则这个多边形的边数是______.
13.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是_______.
14.如图,为保护门源百里油菜花海,由“芬芳浴”游客中心A处修建通往百米观景长廊BC的两条栈道AB,AC.若∠B=56°,∠C=45°,则游客中心A到观景长廊BC的距离AD的长约为_____米.(sin56°≈0.8,tan56°≈1.5)
15.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.
16.二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)的图象如图所示,则a+b+2c__________0(填“>”“=”或“<”).
三、解答题(共8题,共72分)
17.(8分)我省有关部门要求各中小学要把“阳光体育”写入课表,为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据,如图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少名学生进行了抽样调查?本次抽样调查中,最喜欢足球活动的有多少人?占被调查人数的百分比是多少?若该校九年级共有400名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢篮球活动的人数约为多少?
18.(8分)解不等式组并在数轴上表示解集.
19.(8分)已知关于x的一元二次方程x2﹣(m+3)x+m+2=1.
(1)求证:无论实数m取何值,方程总有两个实数根;
(2)若方程有一个根的平方等于4,求m的值.
20.(8分)已如:⊙O与⊙O上的一点A
(1)求作:⊙O的内接正六边形ABCDEF;( 要求:尺规作图,不写作法但保留作图痕迹)
(2)连接CE,BF,判断四边形BCEF是否为矩形,并说明理由.
21.(8分)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M.
(1)求该抛物线所表示的二次函数的表达式;
(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?
(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.
22.(10分)如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.
(1)通过计算,判断AD2与AC•CD的大小关系;
(2)求∠ABD的度数.
23.(12分)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB点F,连接BE.
(1)求证:AC平分∠DAB;
(2)求证:PC=PF;
(3)若tan∠ABC=,AB=14,求线段PC的长.
24.如图,△ABC中,点D在AB上,∠ACD=∠ABC,若AD=2,AB=6,求AC的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据等腰三角形的性质和三角形内角和定理求得∠BOC=100°,再利用圆周角定理得到∠A=∠BOC.
【详解】
∵OB=OC,
∴∠OBC=∠OCB.
又∠OBC=40°,
∴∠OBC=∠OCB=40°,
∴∠BOC=180°-2×40°=100°,
∴∠A=∠BOC=50°
故选:C.
【点睛】
考查了圆周角定理.在同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半.
2、B
【解析】
由概率公式可知摸出黑球的概率为,分析表格数据可知的值总是在0.5左右,据此可求解m值.
【详解】
解:分析表格数据可知的值总是在0.5左右,则由题意可得,解得m=10,
故选择B.
【点睛】
本题考查了概率公式的应用.
3、D
【解析】
由二次函数的解析式可知,当x=1时,所对应的函数值y=a+b-2,把点(1,0)代入y=ax2+bx-2,a+b-2=0,然后根据顶点在第三象限,可以判断出a与b的符号,进而求出t=a-b-2的变化范围.
【详解】
解:∵二次函数y=ax2+bx-2的顶点在第三象限,且经过点(1,0)
∴该函数是开口向上的,a>0
∵y=ax2+bx﹣2过点(1,0),
∴a+b-2=0.
∵a>0,
∴2-b>0.
∵顶点在第三象限,
∴-<0.
∴b>0.
∴2-a>0.
∴0 ∴0 ∴t=a-b-2.
∴﹣4<t<0.
【点睛】
本题考查大小二次函数的图像,熟练掌握图像的性质是解题的关键.
4、C
【解析】
解:把点(0,2)(a,0)代入,得b=2.则a=,
∵,
∴,
解得:k≥2.
故选C.
【点睛】
本题考查一次函数与一元一次不等式,属于综合题,难度不大.
5、B
【解析】
试题分析:当x=0时,y=-5;当x=1时,y=a-1,函数与x轴在0和1之间有一个交点,则a-1>0,解得:a>1.
考点:一元二次方程与函数
6、D
【解析】
首先写出所有的组合情况,再进一步根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.
【详解】
解:其中的任意三根的组合有3、4、1;3、4、x;3、1、x;4、1、x共四种情况,
由题意:从中任取三根,首尾顺次相接都能组成一个三角形,可得3<x<7,即x=4或5或1.
①当三边为3、4、1时,其周长为3+4+1=13;
②当x=4时,周长最小为3+4+4=11,周长最大为4+1+4=14;
③当x=5时,周长最小为3+4+5=12,周长最大为4+1+5=15;
④若x=1时,周长最小为3+4+1=13,周长最大为4+1+1=11;
综上所述,三角形周长最小为11,最大为11,
故选:D.
【点睛】
本题考查的是三角形三边关系,利用了分类讨论的思想.掌握三角形任意两边之和大于第三边,任意两边之差小于第三边是解答本题的关键.
7、C
【解析】
物体的俯视图,即是从上面看物体得到的结果;根据三视图的定义,从上面看物体可以看到是一个正六边形,里面是一个没有圆心的圆,由此可以确定答案.
【详解】
从上面看是一个正六边形,里面是一个没有圆心的圆.
故答案选C.
【点睛】
本题考查了几何体的三视图,解题的关键是熟练的掌握几何体三视图的定义.
8、B
【解析】
根据去括号法则,积的乘方的性质,完全平方公式,合并同类项法则,对各选项分析判断后利用排除法求解.
【详解】
解:A、因为﹣(a﹣1)=﹣a+1,故本选项错误;
B、(﹣2a3)2=4a6,正确;
C、因为(a﹣b)2=a2﹣2ab+b2,故本选项错误;
D、因为a3与a2不是同类项,而且是加法,不能运算,故本选项错误.
故选B.
【点睛】
本题考查了合并同类项,积的乘方,完全平方公式,理清指数的变化是解题的关键.
9、B
【解析】
根据排列规律,10下面的数是12,10右面的数是14,
∵8=2×4−0,22=4×6−2,44=6×8−4,
∴m=12×14−10=158.
故选C.
10、B
【解析】
分析:本题可根据数轴的性质画出数轴:实心圆点包括该点用“≥”,“≤”表示,空心圆点不包括该点用“<”,“>”表示,大于向右小于向左.
点睛:不等式组的解集为−1⩽x<3在数轴表示−1和3以及两者之间的部分:
故选B.
点睛:本题考查在数轴上表示不等式解集:把每个不等式的解集在数轴上表示出来(>,≥向右画;< ,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、m
【解析】
解:原式=•=m.故答案为m.
12、8
【解析】
解:设边数为n,由题意得,
180(n-2)=3603
解得n=8.
所以这个多边形的边数是8.
13、小林
【解析】
观察图形可知,小林的成绩波动比较大,故小林是新手.
故答案是:小林.
14、60
【解析】
根据题意和图形可以分别表示出AD和CD的长,从而可以求得AD的长,本题得以解决.
【详解】
∵∠B=56°,∠C=45°,∠ADB=∠ADC=90°,BC=BD+CD=100米, ∴BD=,CD=,
∴+=100, 解得,AD≈60
考点:解直角三角形的应用.
15、1
【解析】
底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.
【详解】
试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.
②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=1cm.
故填1.
【点睛】
本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.
16、<
【解析】
由抛物线开口向下,则a<0,抛物线与y轴交于y轴负半轴,则c<0,对称轴在y轴左侧,则b<0,因此可判断a+b+2c与0的大小
【详解】
∵抛物线开口向下
∴a<0
∵抛物线与y轴交于y轴负半轴,
∴c<0
∵对称轴在y轴左侧
∴﹣<0
∴b<0
∴a+b+2c<0
故答案为<.
【点睛】
本题考查了二次函数图象与系数的关系,正确利用图象得出正确信息是解题关键.
三、解答题(共8题,共72分)
17、(1)该校对50名学生进行了抽样调查;(2)最喜欢足球活动的人占被调查人数的20%;(3)全校学生中最喜欢篮球活动的人数约为720人.
【解析】
(1)根据条形统计图,求个部分数量的和即可;
(2)根据部分除以总体求得百分比;
(3)根据扇形统计图中各部分占总体的百分比之和为1,求出百分比即可求解.
【详解】
(1)4+8+10+18+10=50(名)
答:该校对50名学生进行了抽样调查.
(2)最喜欢足球活动的有10人,
,
∴最喜欢足球活动的人占被调查人数的20%.
(3)全校学生人数:400÷(1﹣30%﹣24%﹣26%)
=400÷20%
=2000(人)
则全校学生中最喜欢篮球活动的人数约为2000×=720(人).
【点睛】
此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚的表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反应部分占全体的百分比的大小.
18、﹣<x≤0,不等式组的解集表示在数轴上见解析.
【解析】
先求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【详解】
解不等式2x+1>0,得:x>﹣,
解不等式,得:x≤0,
则不等式组的解集为﹣<x≤0,
将不等式组的解集表示在数轴上如下:
【点睛】
本题考查了解一元一次不等式组,解题的关键是掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”.
19、(1)证明见解析;(2)m 的值为1或﹣2.
【解析】
(1)计算根的判别式的值可得(m+1)2≥1,由此即可证得结论;(2)根据题意得到 x=±2 是原方程的根,将其代入列出关于m新方程,通过解新方程求得m的值即可.
【详解】
(1)证明:∵△=[﹣(m+3)]2﹣2(m+2)=(m+1)2≥1,
∴无论实数 m 取何值,方程总有两个实数根;
(2)解:∵方程有一个根的平方等于 2,
∴x=±2 是原方程的根,
当 x=2 时,2﹣2(m+3)+m+2=1.
解得m=1;
当 x=﹣2 时,2+2(m+3)+m+2=1,
解得m=﹣2.
综上所述,m 的值为 1 或﹣2.
【点睛】
本题考查了根的判别式及一元二次方程的解的定义,在解答(2)时要分类讨论,这是此题的易错点.
20、(1)答案见解析;(2)证明见解析.
【解析】
(1)如图,在⊙O上依次截取六段弦,使它们都等于OA,从而得到正六边形ABCDEF;
(2)连接BE,如图,利用正六边形的性质得AB=BC=CD=DE=EF=FA,,则判断BE为直径,所以∠BFE=∠BCE=90°,同理可得∠FBC=∠CEF=90°,然后判断四边形BCEF为矩形.
【详解】
解:(1)如图,正六边形ABCDEF为所作;
(2)四边形BCEF为矩形.理由如下:
连接BE,如图,
∵六边形ABCDEF为正六边形,
∴AB=BC=CD=DE=EF=FA,
∴,
∴,
∴,
∴BE为直径,
∴∠BFE=∠BCE=90°,
同理可得∠FBC=∠CEF=90°,
∴四边形BCEF为矩形.
【点睛】
本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了矩形的判定与正六边形的性质.
21、(1)y=﹣x2+x+2;(2)m=﹣1或m=3时,四边形DMQF是平行四边形;(3)点Q的坐标为(3,2)或(﹣1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.
【解析】
分析:(1)待定系数法求解可得;
(2)先利用待定系数法求出直线BD解析式为y=x-2,则Q(m,-m2+m+2)、M(m,m-2),由QM∥DF且四边形DMQF是平行四边形知QM=DF,据此列出关于m的方程,解之可得;
(3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得,再证△MBQ∽△BPQ得,即,解之即可得此时m的值;②∠BQM=90°,此时点Q与点A重合,△BOD∽△BQM′,易得点Q坐标.
详解:(1)由抛物线过点A(-1,0)、B(4,0)可设解析式为y=a(x+1)(x-4),
将点C(0,2)代入,得:-4a=2,
解得:a=-,
则抛物线解析式为y=-(x+1)(x-4)=-x2+x+2;
(2)由题意知点D坐标为(0,-2),
设直线BD解析式为y=kx+b,
将B(4,0)、D(0,-2)代入,得:
,解得:,
∴直线BD解析式为y=x-2,
∵QM⊥x轴,P(m,0),
∴Q(m,-m2+m+2)、M(m,m-2),
则QM=-m2+m+2-(m-2)=-m2+m+4,
∵F(0,)、D(0,-2),
∴DF=,
∵QM∥DF,
∴当-m2+m+4=时,四边形DMQF是平行四边形,
解得:m=-1(舍)或m=3,
即m=3时,四边形DMQF是平行四边形;
(3)如图所示:
∵QM∥DF,
∴∠ODB=∠QMB,
分以下两种情况:
①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,
则,
∵∠MBQ=90°,
∴∠MBP+∠PBQ=90°,
∵∠MPB=∠BPQ=90°,
∴∠MBP+∠BMP=90°,
∴∠BMP=∠PBQ,
∴△MBQ∽△BPQ,
∴,即,
解得:m1=3、m2=4,
当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,
∴m=3,点Q的坐标为(3,2);
②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,
此时m=-1,点Q的坐标为(-1,0);
综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.
点睛:本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、平行四边形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用.
【详解】
请在此输入详解!
22、(1)AD2=AC•CD.(2)36°.
【解析】
试题分析:(1)通过计算得到=,再计算AC·CD,比较即可得到结论;
(2)由,得到,即,从而得到△ABC∽△BDC,故有,从而得到BD=BC=AD,故∠A=∠ABD,∠ABC=∠C=∠BDC.
设∠A=∠ABD=x,则∠BDC=2x,∠ABC=∠C=∠BDC=2x,由三角形内角和等于180°,解得:x=36°,从而得到结论.
试题解析:(1)∵AD=BC=,∴==.
∵AC=1,∴CD==,∴;
(2)∵,∴,即,又∵∠C=∠C,∴△ABC∽△BDC,∴,又∵AB=AC,∴BD=BC=AD,∴∠A=∠ABD,∠ABC=∠C=∠BDC.
设∠A=∠ABD=x,则∠BDC=∠A+∠ABD=2x,∴∠ABC=∠C=∠BDC=2x,∴∠A+∠ABC+∠C=x+2x+2x=180°,解得:x=36°,∴∠ABD=36°.
考点:相似三角形的判定与性质.
23、(1)(2)证明见解析;(3)1.
【解析】
(1)由PD切⊙O于点C,AD与过点C的切线垂直,易证得OC∥AD,继而证得AC平分∠DAB;
(2)由条件可得∠CAO=∠PCB,结合条件可得∠PCF=∠PFC,即可证得PC=PF;
(3)易证△PAC∽△PCB,由相似三角形的性质可得到 ,又因为tan∠ABC= ,所以可得=,进而可得到=,设PC=4k,PB=3k,则在Rt△POC中,利用勾股定理可得PC2+OC2=OP2,进而可建立关于k的方程,解方程求出k的值即可求出PC的长.
【详解】
(1)证明:∵PD切⊙O于点C,
∴OC⊥PD,
又∵AD⊥PD,
∴OC∥AD,
∴∠ACO=∠DAC.
∵OC=OA,
∴∠ACO=∠CAO,
∴∠DAC=∠CAO,
即AC平分∠DAB;
(2)证明:∵AD⊥PD,
∴∠DAC+∠ACD=90°.
又∵AB为⊙O的直径,
∴∠ACB=90°.
∴∠PCB+∠ACD=90°,
∴∠DAC=∠PCB.
又∵∠DAC=∠CAO,
∴∠CAO=∠PCB.
∵CE平分∠ACB,
∴∠ACF=∠BCF,
∴∠CAO+∠ACF=∠PCB+∠BCF,
∴∠PFC=∠PCF,
∴PC=PF;
(3)解:∵∠PAC=∠PCB,∠P=∠P,
∴△PAC∽△PCB,
∴.
又∵tan∠ABC=,
∴,
∴,
设PC=4k,PB=3k,则在Rt△POC中,PO=3k+7,OC=7,
∵PC2+OC2=OP2,
∴(4k)2+72=(3k+7)2,
∴k=6 (k=0不合题意,舍去).
∴PC=4k=4×6=1.
【点睛】
此题考查了和圆有关的综合性题目,用到的知识点有:切线的性质、相似三角形的判定与性质、垂径定理、圆周角定理、勾股定理以及等腰三角形的判定与性质.
24、.
【解析】
试题分析:可证明△ACD∽△ABC,则,即得出AC2=AD•AB,从而得出AC的长.
试题解析:∵∠ACD=∠ABC,∠A=∠A, ∴△ACD∽△ABC. ∴,∵AD=2,AB=6,∴.∴.∴AC=.
考点:相似三角形的判定与性质.
2023-2024学年江苏省盐城市东台市三仓片区数学九上期末学业水平测试试题含答案: 这是一份2023-2024学年江苏省盐城市东台市三仓片区数学九上期末学业水平测试试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
江苏省金坛区重点名校2021-2022学年中考联考数学试卷含解析: 这是一份江苏省金坛区重点名校2021-2022学年中考联考数学试卷含解析,共19页。试卷主要包含了已知函数的图象与x轴有交点,在平面直角坐标系中,将点P等内容,欢迎下载使用。
2022年江苏省盐城市盐都区重点达标名校中考联考数学试卷含解析: 这是一份2022年江苏省盐城市盐都区重点达标名校中考联考数学试卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,一元二次方程的根的情况是等内容,欢迎下载使用。