|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年江苏省盐城市东台市第二联盟重点名校中考数学模试卷含解析
    立即下载
    加入资料篮
    2021-2022学年江苏省盐城市东台市第二联盟重点名校中考数学模试卷含解析01
    2021-2022学年江苏省盐城市东台市第二联盟重点名校中考数学模试卷含解析02
    2021-2022学年江苏省盐城市东台市第二联盟重点名校中考数学模试卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年江苏省盐城市东台市第二联盟重点名校中考数学模试卷含解析

    展开
    这是一份2021-2022学年江苏省盐城市东台市第二联盟重点名校中考数学模试卷含解析,共24页。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(共10小题,每小题3分,共30分)
    1.把直线l:y=kx+b绕着原点旋转180°,再向左平移1个单位长度后,经过点A(-2,0)和点B(0,4),则直线l的表达式是( )
    A.y=2x+2 B.y=2x-2 C.y=-2x+2 D.y=-2x-2
    2.关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值范围是(  )
    A.m<3 B.m>3 C.m≤3 D.m≥3
    3.计算(2017﹣π)0﹣(﹣)﹣1+tan30°的结果是(  )
    A.5 B.﹣2 C.2 D.﹣1
    4.如图,AB为⊙O的直径,C为⊙O上的一动点(不与A、B重合),CD⊥AB于D,∠OCD的平分线交⊙O于P,则当C在⊙O上运动时,点P的位置(  )

    A.随点C的运动而变化
    B.不变
    C.在使PA=OA的劣弧上
    D.无法确定
    5.若代数式,,则M与N的大小关系是( )
    A. B. C. D.
    6.如图,BD∥AC,BE平分∠ABD,交AC于点E,若∠A=40°,则∠1的度数为(  )

    A.80° B.70° C.60° D.40°
    7.已知二次函数的图象如图所示,则下列结论:①ac>0;②a-b+c<0; 当时,;,其中错误的结论有  
    A.②③ B.②④ C.①③ D.①④
    8.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是(  )
    A.= B.=
    C.= D.=
    9.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为( ).

    A.60 ° B.75° C.85° D.90°
    10.如图,一个几何体由5个大小相同、棱长为1的正方体搭成,则这个几何体的左视图的面积为(  )

    A.5 B.4 C.3 D.2
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,利用图形面积的不同表示方法,能够得到的代数恒等式是____________________(写出一个即可).

    12.如图,为了测量铁塔AB高度,在离铁塔底部(点B)60米的C处,测得塔顶A的仰角为30°,那么铁塔的高度AB=________米.

    13.将2.05×10﹣3用小数表示为__.
    14.如图,矩形ABCD的对角线BD经过的坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(﹣2,﹣3),则k的值为_____.

    15.计算=_____.
    16.函数,当x<0时,y随x的增大而_____.
    三、解答题(共8题,共72分)
    17.(8分)如图,在平面直角坐标系中有三点(1,2),(3,1),(-2,-1),其中有两点同时在反比例函数的图象上,将这两点分别记为A,B,另一点记为C,
    (1)求出的值;
    (2)求直线AB对应的一次函数的表达式;
    (3)设点C关于直线AB的对称点为D,P是轴上的一个动点,直接写出PC+PD的最小值(不必说明理由).

    18.(8分)反比例函数的图象经过点A(2,3).
    (1)求这个函数的解析式;
    (2)请判断点B(1,6)是否在这个反比例函数的图象上,并说明理由.
    19.(8分)如图矩形ABCD中AB=6,AD=4,点P为AB上一点,把矩形ABCD沿过P点的直线l折叠,使D点落在BC边上的D′处,直线l与CD边交于Q点.
    (1)在图(1)中利用无刻度的直尺和圆规作出直线l.(保留作图痕迹,不写作法和理由)
    (2)若PD′⊥PD,①求线段AP的长度;②求sin∠QD′D.

    20.(8分)水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做图①所示的试验,并根据试验数据绘制出图②所示的容器内盛水量W(L)与滴水时间t(h)的函数关系图象,请结合图象解答下列问题:容器内原有水多少?求W与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?

    图 ① 图②
    21.(8分)如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF.
    (1)判断直线EF与⊙O的位置关系,并说明理由;
    (2)若∠A=30°,求证:DG=DA;
    (3)若∠A=30°,且图中阴影部分的面积等于2,求⊙O的半径的长.

    22.(10分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
    操作发现如图1,固定△ABC,使△DEC绕点C旋转.当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是 ;
    ②设△BDC的面积为S1,△AEC的面积为S1.则S1与S1的数量关系是 .猜想论证
    当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想.拓展探究
    已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDC,请直接写出相应的BF的长
    23.(12分)如图,在矩形ABCD中,AB=3,AD=4,P沿射线BD运动,连接AP,将线段AP绕点P顺时针旋转90°得线段PQ.
    (1)当点Q落到AD上时,∠PAB=____°,PA=_____,长为_____;
    (2)当AP⊥BD时,记此时点P为P0,点Q为Q0,移动点P的位置,求∠QQ0D的大小;
    (3)在点P运动中,当以点Q为圆心,BP为半径的圆与直线BD相切时,求BP的长度;
    (4)点P在线段BD上,由B向D运动过程(包含B、D两点)中,求CQ的取值范围,直接写出结果.

    24.已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F. 求证:△ABF≌△CDE; 如图,若∠1=65°,求∠B的大小.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    先利用待定系数法求出直线AB的解析式,再求出将直线AB向右平移1个单位长度后得到的解析式,然后将所得解析式绕着原点旋转180°即可得到直线l.
    【详解】
    解:设直线AB的解析式为y=mx+n.
    ∵A(−2,0),B(0,1),
    ∴ ,
    解得 ,
    ∴直线AB的解析式为y=2x+1.
    将直线AB向右平移1个单位长度后得到的解析式为y=2(x−1)+1,即y=2x+2,
    再将y=2x+2绕着原点旋转180°后得到的解析式为−y=−2x+2,即y=2x−2,
    所以直线l的表达式是y=2x−2.
    故选:B.
    【点睛】
    本题考查了一次函数图象平移问题,掌握解析式“左加右减”的规律以及关于原点对称的规律是解题的关键.
    2、A
    【解析】
    分析:根据关于x的一元二次方程x2-2x+m=0有两个不相等的实数根可得△=(-2)2-4m>0,求出m的取值范围即可.
    详解:∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,
    ∴△=(-2)2-4m>0,
    ∴m<3,
    故选A.
    点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.
    3、A
    【解析】
    试题分析:原式=1-(-3)+=1+3+1=5,故选A.
    4、B
    【解析】
    因为CP是∠OCD的平分线,所以∠DCP=∠OCP,所以∠DCP=∠OPC,则CD∥OP,所以弧AP等于弧BP,所以PA=PB.从而可得出答案.
    【详解】
    解:连接OP,

    ∵CP是∠OCD的平分线,
    ∴∠DCP=∠OCP,
    又∵OC=OP,
    ∴∠OCP=∠OPC,
    ∴∠DCP=∠OPC,
    ∴CD∥OP,
    又∵CD⊥AB,
    ∴OP⊥AB,
    ∴,
    ∴PA=PB.
    ∴点P是线段AB垂直平分线和圆的交点,
    ∴当C在⊙O上运动时,点P不动.
    故选:B.
    【点睛】
    本题考查了圆心角、弦、弧之间的关系,以及平行线的判定和性质,在同圆或等圆中,等弧对等弦.
    5、C
    【解析】
    ∵,
    ∴,
    ∴.
    故选C.
    6、B
    【解析】
    根据平行线的性质得到根据BE平分∠ABD,即可求出∠1的度数.
    【详解】
    解:∵BD∥AC,


    ∵BE平分∠ABD,

    故选B.
    【点睛】
    本题考查角平分线的性质和平行线的性质,熟记它们的性质是解题的关键.
    7、C
    【解析】
    ①根据图象的开口方向,可得a的范围,根据图象与y轴的交点,可得c的范围,根据有理数的乘法,可得答案;
    ②根据自变量为-1时函数值,可得答案;
    ③根据观察函数图象的纵坐标,可得答案;
    ④根据对称轴,整理可得答案.
    【详解】
    图象开口向下,得a<0,
    图象与y轴的交点在x轴的上方,得c>0,ac<,故①错误;
    ②由图象,得x=-1时,y<0,即a-b+c<0,故②正确;
    ③由图象,得
    图象与y轴的交点在x轴的上方,即当x<0时,y有大于零的部分,故③错误;
    ④由对称轴,得x=-=1,解得b=-2a,
    2a+b=0
    故④正确;
    故选D.
    【点睛】
    考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左; 当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.
    8、B
    【解析】
    设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,根据题意可得:现在生产600台所需时间与原计划生产450台机器所需时间相同,据此列方程即可.
    【详解】
    设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,由题意得:.
    故选B.
    【点睛】
    本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.
    9、C
    【解析】
    试题分析:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.
    如图,设AD⊥BC于点F.则∠AFB=90°,

    ∴在Rt△ABF中,∠B=90°-∠BAD=25°,
    ∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,
    即∠BAC的度数为85°.故选C.
    考点: 旋转的性质.
    10、C
    【解析】
    根据左视图是从左面看到的图形求解即可.
    【详解】
    从左面看,可以看到3个正方形,面积为3,
    故选:C.
    【点睛】
    本题考查三视图的知识,解决此类图的关键是由三视图得到相应的平面图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、(a+b)2=a2+2ab+b2
    【解析】
    完全平方公式的几何背景,即乘法公式的几何验证.此类题型可从整体和部分两个方面分析问题.本题从整体来看,整个图形为一个正方形,找到边长,表示出面积,从部分来看,该图形的面积可用两个小正方形的面积加上2个矩形的面积表示,从不同角度思考,但是同一图形,所以它们面积相等,列出等式.
    【详解】
    解:

    ,




    【点睛】
    此题考查了完全平方公式的几何意义,从不同角度思考,用不同的方法表示相应的面积是解题的关键.
    12、20
    【解析】
    在Rt△ABC中,直接利用tan∠ACB=tan30°==即可.
    【详解】
    在Rt△ABC中,tan∠ACB=tan30°==,BC=60,解得AB=20.
    故答案为20.
    【点睛】
    本题考查的知识点是解三角形的实际应用,解题的关键是熟练的掌握解三角形的实际应用.
    13、0.1
    【解析】试题解析:原式=2.05×10-3=0.1.
    【点睛】本题考查了科学记数法-原数,用科学记数法表示的数还原成原数时,n>0时,n是几,小数点就向右移几位;n<0时,n是几,小数点就向左移几位.
    14、1或﹣1
    【解析】
    根据矩形的对角线将矩形分成面积相等的两个直角三角形,找到图中的所有矩形及相等的三角形,即可推出S四边形CEOF=S四边形HAGO,根据反比例函数比例系数的几何意义即可求出k2+4k+1=6,再解出k的值即可.
    【详解】
    如图:
    ∵四边形ABCD、HBEO、OECF、GOFD为矩形,
    又∵BO为四边形HBEO的对角线,OD为四边形OGDF的对角线,
    ∴S△BEO=S△BHO,S△OFD=S△OGD,S△CBD=S△ADB,
    ∴S△CBD﹣S△BEO﹣S△OFD=S△ADB﹣S△BHO﹣S△OGD,
    ∴S四边形CEOF=S四边形HAGO=2×3=6,
    ∴xy=k2+4k+1=6,
    解得k=1或k=﹣1.
    故答案为1或﹣1.

    【点睛】
    本题考查了反比例函数k的几何意义、矩形的性质、一元二次方程的解法,解题的关键是判断出S四边形CEOF=S四边形HAGO.
    15、0
    【解析】
    分析:先计算乘方、零指数幂,再计算加减可得结果.
    详解:1-1=0
    故答案为0.
    点睛:零指数幂成立的条件是底数不为0.
    16、减小
    【解析】
    先根据反比例函数的性质判断出函数的图象所在的象限,再根据反比例函数的性质进行解答即可.
    【详解】
    解:∵反比例函数中,
    ∴此函数的图象在一、三象限,在每一象限内y随x的增大而减小.
    故答案为减小.
    【点睛】
    考查反比例函数的图象与性质,反比例函数
    当时,图象在第一、三象限.在每个象限,y随着x的增大而减小,
    当时,图象在第二、四象限.在每个象限,y随着x的增大而增大.

    三、解答题(共8题,共72分)
    17、(2)2;(2)y=x+2;(3).
    【解析】
    (2)确定A、B、C的坐标即可解决问题;
    (2)理由待定系数法即可解决问题;
    (3)作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,此时PC+PD的值最小,最小值=CD′的长.
    【详解】
    解:(2)∵反比例函数y=的图象上的点横坐标与纵坐标的积相同,
    ∴A(2,2),B(-2,-2),C(3,2)
    ∴k=2.
    (2)设直线AB的解析式为y=mx+n,则有,
    解得,
    ∴直线AB的解析式为y=x+2.
    (3)∵C、D关于直线AB对称,
    ∴D(0,4)
    作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,

    此时PC+PD的值最小,最小值=CD′=.
    【点睛】
    本题考查反比例函数图象上的点的特征,一次函数的性质、反比例函数的性质、轴对称最短问题等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会利用轴对称解决最短问题.
    18、(1)y= (2)点B(1,6)在这个反比例函数的图象上
    【解析】
    (1)设反比例函数的解析式是y=,只需把已知点的坐标代入,即可求得函数解析式;
    (2)根据反比例函数图象上点的坐标特征进行判断.
    【详解】
    设反比例函数的解析式是,
    则,
    得.
    则这个函数的表达式是;
    因为,
    所以点不在函数图象上.
    【点睛】
    本题考查了待定系数法求反比例函数解析式:设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.也考查了反比例函数图象上点的坐标特征.
    19、(1)见解析;(2)
    【解析】
    (1)根据题意作出图形即可;
    (2)由(1)知,PD=PD′,根据余角的性质得到∠ADP=∠BPD′,根据全等三角形的性质得到AD=PB=4,得到AP=2;根据勾股定理得到PD==2,根据三角函数的定义即可得到结论.
    【详解】
    (1)连接PD,以P为圆心,PD为半径画弧交BC于D′,过P作DD′的垂线交CD于Q,
    则直线PQ即为所求;

    (2)由(1)知,PD=PD′,
    ∵PD′⊥PD,
    ∴∠DPD′=90°,
    ∵∠A=90°,
    ∴∠ADP+∠APD=∠APD+∠BPD′=90°,
    ∴∠ADP=∠BPD′,
    在△ADP与△BPD′中,,
    ∴△ADP≌△BPD′,
    ∴AD=PB=4,AP= BD′
    ∵PB=AB﹣AP=6﹣AP=4,
    ∴AP=2;
    ∴PD==2,BD′=2
    ∴CD′=BC- BD′=4-2=2
    ∵PD=PD′,PD⊥PD′,
    ∵DD′=PD=2,
    ∵PQ垂直平分DD′,连接Q D′
    则DQ= D′Q
    ∴∠QD′D=∠QDD′
    ∴sin∠QD′D=sin∠QDD′=.

    【点睛】
    本题考查了作图-轴对称变换,矩形的性质,折叠的性质,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.
    20、(1)0.3 L;(2)在这种滴水状态下一天的滴水量为9.6 L.
    【解析】
    (1)根据点的实际意义可得;
    (2)设与之间的函数关系式为,待定系数法求解可得,计算出时的值,再减去容器内原有的水量即可.
    【详解】
    (1)由图象可知,容器内原有水0.3 L.
    (2)由图象可知W与t之间的函数图象经过点(0,0.3),
    故设函数关系式为W=kt+0.3.
    又因为函数图象经过点(1.5,0.9),
    代入函数关系式,得1.5k+0.3=0.9,解得k=0.4.
    故W与t之间的函数关系式为W=0.4t+0.3.
    当t=24时,W=0.4×24+0.3=9.9(L),9.9-0.3=9.6(L),
    即在这种滴水状态下一天的滴水量为9.6 L.
    【点睛】
    本题考查了一次函数的应用,关键是利用待定系数法正确求出一次函数的解析式.
    21、(1)EF是⊙O的切线,理由详见解析;(1)详见解析;(3)⊙O的半径的长为1.
    【解析】
    (1)连接OE,根据等腰三角形的性质得到∠A=∠AEO,∠B=∠BEF,于是得到∠
    OEG=90°,即可得到结论;
    (1)根据含30°的直角三角形的性质证明即可;
    (3)由AD是⊙O的直径,得到∠AED=90°,根据三角形的内角和得到∠EOD=60°,求得
    ∠EGO=30°,根据三角形和扇形的面积公式即可得到结论.
    【详解】
    解:(1)连接OE,

    ∵OA=OE,
    ∴∠A=∠AEO,
    ∵BF=EF,
    ∴∠B=∠BEF,
    ∵∠ACB=90°,
    ∴∠A+∠B=90°,
    ∴∠AEO+∠BEF=90°,
    ∴∠OEG=90°,
    ∴EF是⊙O的切线;
    (1)∵∠AED=90°,∠A=30°,
    ∴ED=AD,
    ∵∠A+∠B=90°,
    ∴∠B=∠BEF=60°,
    ∵∠BEF+∠DEG=90°,
    ∴∠DEG=30°,
    ∵∠ADE+∠A=90°,
    ∴∠ADE=60°,
    ∵∠ADE=∠EGD+∠DEG,
    ∴∠DGE=30°,
    ∴∠DEG=∠DGE,
    ∴DG=DE,
    ∴DG=DA;
    (3)∵AD是⊙O的直径,
    ∴∠AED=90°,
    ∵∠A=30°,
    ∴∠EOD=60°,
    ∴∠EGO=30°,
    ∵阴影部分的面积
    解得:r1=4,即r=1,
    即⊙O的半径的长为1.
    【点睛】
    本题考查了切线的判定,等腰三角形的性质,圆周角定理,扇形的面积的计算,正确的作出辅助线是解题的关键.
    22、解:(1)①DE∥AC.②.(1)仍然成立,证明见解析;(3)3或2.
    【解析】
    (1)①由旋转可知:AC=DC,
    ∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC是等边三角形.
    ∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE∥AC.
    ②过D作DN⊥AC交AC于点N,过E作EM⊥AC交AC延长线于M,过C作CF⊥AB交AB于点F.

    由①可知:△ADC是等边三角形, DE∥AC,∴DN=CF,DN=EM.
    ∴CF=EM.
    ∵∠C=90°,∠B =30°
    ∴AB=1AC.
    又∵AD=AC
    ∴BD=AC.

    ∴.
    (1)如图,过点D作DM⊥BC于M,过点A作AN⊥CE交EC的延长线于N,
    ∵△DEC是由△ABC绕点C旋转得到,
    ∴BC=CE,AC=CD,
    ∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,
    ∴∠ACN=∠DCM,
    ∵在△ACN和△DCM中, ,
    ∴△ACN≌△DCM(AAS),
    ∴AN=DM,
    ∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),
    即S1=S1;
    (3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,
    所以BE=DF1,且BE、DF1上的高相等,
    此时S△DCF1=S△BDE;
    过点D作DF1⊥BD,
    ∵∠ABC=20°,F1D∥BE,
    ∴∠F1F1D=∠ABC=20°,
    ∵BF1=DF1,∠F1BD=∠ABC=30°,∠F1DB=90°,
    ∴∠F1DF1=∠ABC=20°,
    ∴△DF1F1是等边三角形,
    ∴DF1=DF1,过点D作DG⊥BC于G,
    ∵BD=CD,∠ABC=20°,点D是角平分线上一点,
    ∴∠DBC=∠DCB=×20°=30°,BG=BC=,
    ∴BD=3
    ∴∠CDF1=180°-∠BCD=180°-30°=150°,
    ∠CDF1=320°-150°-20°=150°,
    ∴∠CDF1=∠CDF1,
    ∵在△CDF1和△CDF1中,

    ∴△CDF1≌△CDF1(SAS),
    ∴点F1也是所求的点,
    ∵∠ABC=20°,点D是角平分线上一点,DE∥AB,
    ∴∠DBC=∠BDE=∠ABD=×20°=30°,
    又∵BD=3,
    ∴BE=×3÷cos30°=3,
    ∴BF1=3,BF1=BF1+F1F1=3+3=2,
    故BF的长为3或2.

    23、 (1)45,,π;(2)满足条件的∠QQ0D为45°或135°;(3)BP的长为或;(4)≤CQ≤7.
    【解析】
    (1)由已知,可知△APQ为等腰直角三角形,可得∠PAB,再利用三角形相似可得PA,及弧AQ的长度;
    (2)分点Q在BD上方和下方的情况讨论求解即可.
    (3)分别讨论点Q在BD上方和下方的情况,利用切线性质,在由(2)用BP0表示BP,由射影定理计算即可;
    (4)由(2)可知,点Q在过点Qo,且与BD夹角为45°的线段EF上运动,有图形可知,当点Q运动到点E时,CQ最长为7,再由垂线段最短,应用面积法求CQ最小值.
    【详解】
    解:(1)如图,过点P做PE⊥AD于点E

    由已知,AP=PQ,∠APQ=90°
    ∴△APQ为等腰直角三角形
    ∴∠PAQ=∠PAB=45°
    设PE=x,则AE=x,DE=4﹣x
    ∵PE∥AB
    ∴△DEP∽△DAB
    ∴=
    ∴=
    解得x=
    ∴PA=PE=
    ∴弧AQ的长为•2π•=π.
    故答案为45,,π.
    (2)如图,过点Q做QF⊥BD于点F

    由∠APQ=90°,
    ∴∠APP0+∠QPD=90°
    ∵∠P0AP+∠APP0=90°
    ∴∠QPD=∠P0AP
    ∵AP=PQ
    ∴△APP0≌△PQF
    ∴AP0=PF,P0P=QF
    ∵AP0=P0Q0
    ∴Q0D=P0P
    ∴QF=FQ0
    ∴∠QQ0D=45°.
    当点Q在BD的右下方时,同理可得∠PQ0Q=45°,
    此时∠QQ0D=135°,

    综上所述,满足条件的∠QQ0D为45°或135°.
    (3)如图当点Q直线BD上方,当以点Q为圆心,BP为半径的圆与直线BD相切时
    过点Q做QF⊥BD于点F,则QF=BP

    由(2)可知,PP0=BP
    ∴BP0=BP
    ∵AB=3,AD=4
    ∴BD=5
    ∵△ABP0∽△DBA
    ∴AB2=BP0•BD
    ∴9=BP×5
    ∴BP=
    同理,当点Q位于BD下方时,可求得BP=
    故BP的长为或
    (4)由(2)可知∠QQ0D=45°

    则如图,点Q在过点Q0,且与BD夹角为45°的线段EF上运动,
    当点P与点B重合时,点Q与点F重合,此时,CF=4﹣3=1
    当点P与点D重合时,点Q与点E重合,此时,CE=4+3=7
    ∴EF===5
    过点C做CH⊥EF于点H
    由面积法可知
    CH===
    ∴CQ的取值范围为:≤CQ≤7
    【点睛】
    本题是几何综合题,考查了三角形全等、勾股定理、切线性质以及三角形相似的相关知识,应用了分类讨论和数形结合的数学思想.
    24、(1)证明见解析;(2)50°.
    【解析】
    试题分析:(1)由平行四边形的性质得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠DCE,证出∠AFB=∠1,由AAS证明△ABF≌△CDE即可;(2)由(1)得∠1=∠DCE=65°,由平行四边形的性质和三角形内角和定理即可得出结果.
    试题解析:(1)∵四边形ABCD是平行四边形, ∴AB=CD,AD∥BC,∠B=∠D, ∴∠1=∠DCE,
    ∵AF∥CE, ∴∠AFB=∠ECB, ∵CE平分∠BCD, ∴∠DCE=∠ECB, ∴∠AFB=∠1,
    在△ABF和△CDE中,, ∴△ABF≌△CDE(AAS);
    (2)由(1)得:∠1=∠ECB,∠DCE=∠ECB, ∴∠1=∠DCE=65°,
    ∴∠B=∠D=180°﹣2×65°=50°.
    考点:(1)平行四边形的性质;(2)全等三角形的判定与性质.

    相关试卷

    江苏省东台市第二教育联盟重点达标名校2021-2022学年中考数学仿真试卷含解析: 这是一份江苏省东台市第二教育联盟重点达标名校2021-2022学年中考数学仿真试卷含解析,共20页。

    2022年江苏省盐城市东台市第七联盟重点达标名校中考试题猜想数学试卷含解析: 这是一份2022年江苏省盐城市东台市第七联盟重点达标名校中考试题猜想数学试卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,如图,一段抛物线,如果,那么代数式的值是,如图所示的工件,其俯视图是等内容,欢迎下载使用。

    2021-2022学年江苏省盐城市东台市三仓片区重点名校中考联考数学试卷含解析: 这是一份2021-2022学年江苏省盐城市东台市三仓片区重点名校中考联考数学试卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,如图,直线与y轴交于点,四根长度分别为3,4,6,,下列运算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map