终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2020年全国中考数学试题精选分类(6)二次函数(含解析)

    立即下载
    加入资料篮
    2020年全国中考数学试题精选分类(6)二次函数(含解析)第1页
    2020年全国中考数学试题精选分类(6)二次函数(含解析)第2页
    2020年全国中考数学试题精选分类(6)二次函数(含解析)第3页
    还剩61页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020年全国中考数学试题精选分类(6)二次函数(含解析)

    展开

    这是一份2020年全国中考数学试题精选分类(6)二次函数(含解析),共64页。试卷主要包含了其中正确的结论的个数是等内容,欢迎下载使用。
    2020年全国中考数学试题精选分类(6)二次函数
    一.选择题(共30小题)
    1.(2020•济南)已知抛物线y=x2+(2m﹣6)x+m2﹣3与y轴交于点A,与直线x=4交于点B,当x>2时,y值随x值的增大而增大.记抛物线在线段AB下方的部分为G(包含A、B两点),M为G上任意一点,设M的纵坐标为t,若t≥﹣3,则m的取值范围是(  )
    A.m≥ B.≤m≤3 C.m≥3 D.1≤m≤3
    2.(2020•日照)如图,二次函数y=ax2+bx+c(a≠0)图象的对称轴为直线x=﹣1,下列结论:
    ①abc<0;②3a<﹣c;③若m为任意实数,则有a﹣bm≤am2+b; ④若图象经过点(﹣3,﹣2),方程ax2+bx+c+2=0的两根为x1,x2(|x1|<|x2|),则2x1﹣x2=5.其中正确的结论的个数是(  )

    A.4个 B.3个 C.2个 D.1个
    3.(2020•德阳)已知不等式ax+b>0的解集为x<2,则下列结论正确的个数是(  )
    (1)2a+b=0;
    (2)当c>a时,函数y=ax2+bx+c的图象与x轴没有公共点;
    (3)当c>0时,抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方;
    (4)如果b<3且2a﹣mb﹣m=0,则m的取值范围是﹣<m<0.
    A.1 B.2 C.3 D.4
    4.(2020•眉山)已知二次函数y=x2﹣2ax+a2﹣2a﹣4(a为常数)的图象与x轴有交点,且当x>3时,y随x的增大而增大,则a的取值范围是(  )
    A.a≥﹣2 B.a<3 C.﹣2≤a<3 D.﹣2≤a≤3
    5.(2020•恩施州)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣2,0)、B(1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c=0;④a﹣b+c>0.其中正确的有(  )个.

    A.0 B.1 C.2 D.3
    6.(2020•昆明)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴交于点B(0,﹣2),点A(﹣1,m)在抛物线上,则下列结论中错误的是(  )

    A.ab<0
    B.一元二次方程ax2+bx+c=0的正实数根在2和3之间
    C.a=
    D.点P1(t,y1),P2(t+1,y2)在抛物线上,当实数t>时,y1<y2
    7.(2020•宜宾)函数y=ax2+bx+c(a≠0)的图象与x轴交于点(2,0),顶点坐标为(﹣1,n),其中n>0.以下结论正确的是(  )
    ①abc>0;
    ②函数y=ax2+bx+c(a≠0)在x=1和x=﹣2处的函数值相等;
    ③函数y=kx+1的图象与y=ax2+bx+c(a≠0)的函数图象总有两个不同交点;
    ④函数y=ax2+bx+c(a≠0)在﹣3≤x≤3内既有最大值又有最小值.
    A.①③ B.①②③ C.①④ D.②③④
    8.(2020•丹东)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,点A坐标为(﹣1,0),点C在(0,2)与(0,3)之间(不包括这两点),抛物线的顶点为D,对称轴为直线x=2.有以下结论:
    ①abc>0;
    ②若点M(﹣,y1),点N(,y2)是函数图象上的两点,则y1<y2;
    ③﹣<a<﹣;
    ④△ADB可以是等腰直角三角形.
    其中正确的有(  )

    A.1个 B.2个 C.3个 D.4个
    9.(2020•山西)竖直上抛物体离地面的高度h(m)与运动时间t(s)之间的关系可以近似地用公式h=﹣5t2+v0t+h0表示,其中h0(m)是物体抛出时离地面的高度,v0(m/s)是物体抛出时的速度.某人将一个小球从距地面1.5m的高处以20m/s的速度竖直向上抛出,小球达到的离地面的最大高度为(  )
    A.23.5m B.22.5m C.21.5m D.20.5m
    10.(2020•毕节市)已知y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=2.若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两个根,且x1<x2,﹣1<x1<0,则下列说法正确的是(  )

    A.x1+x2<0 B.4<x2<5 C.b2﹣4ac<0 D.ab>0
    11.(2020•东营)如图,已知抛物线y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,其对称轴与x轴交于点C,其中A、C两点的横坐标分别为﹣1和1,下列说法错误的是(  )

    A.abc<0
    B.4a+c=0
    C.16a+4b+c<0
    D.当x>2时,y随x的增大而减小
    12.(2020•娄底)二次函数y=(x﹣a)(x﹣b)﹣2(a<b)与x轴的两个交点的横坐标分别为m和n,且m<n,下列结论正确的是(  )
    A.m<a<n<b B.a<m<b<n C.m<a<b<n D.a<m<n<b
    13.(2020•长沙)“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下,“可食用率”P与加工煎炸时间t(单位:分钟)近似满足的函数关系为:P=at2+bt+c(a≠0,a,b,c是常数),如图记录了三次实验的数据.根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为(  )

    A.3.50分钟 B.4.05分钟 C.3.75分钟 D.4.25分钟
    14.(2020•岳阳)对于一个函数,自变量x取c时,函数值y等于0,则称c为这个函数的零点.若关于x的二次函数y=﹣x2﹣10x+m(m≠0)有两个不相等的零点x1,x2(x1<x2),关于x的方程x2+10x﹣m﹣2=0有两个不相等的非零实数根x3,x4(x3<x4),则下列关系式一定正确的是(  )
    A.0<<1 B.>1 C.0<<1 D.>1
    15.(2020•江西)在平面直角坐标系中,点O为坐标原点,抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O'A'B',且点O',A'落在抛物线的对称轴上,点B'落在抛物线上,则直线A'B'的表达式为(  )
    A.y=x B.y=x+1 C.y=x+ D.y=x+2
    16.(2020•牡丹江)如图,抛物线y=ax2+bx+c与x轴正半轴交于A,B两点,与y轴负半轴交于点C.若点B(4,0),则下列结论中,正确的个数是(  )
    ①abc>0;
    ②4a+b>0;
    ③M(x1,y1)与N(x2,y2)是抛物线上两点,若0<x1<x2,则y1>y2;
    ④若抛物线的对称轴是直线x=3,m为任意实数,则a(m﹣3)(m+3)≤b(3﹣m);⑤若AB≥3,则4b+3c>0.

    A.5 B.4 C.3 D.2
    17.(2020•广东)如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:
    ①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,
    正确的有(  )

    A.4个 B.3个 C.2个 D.1个
    18.(2020•鄂州)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)和B,与y轴交于点C.下列结论:①abc<0,②2a+b<0,③4a﹣2b+c>0,④3a+c>0,其中正确的结论个数为(  )

    A.1个 B.2个 C.3个 D.4个
    19.(2020•襄阳)二次函数y=ax2+bx+c的图象如图所示,下列结论:
    ①ac<0;②3a+c=0;③4ac﹣b2<0;④当x>﹣1时,y随x的增大而减小.
    其中正确的有(  )

    A.4个 B.3个 C.2个 D.1个
    20.(2020•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0,c>1)经过点(2,0),其对称轴是直线x=.有下列结论:
    ①abc>0;
    ②关于x的方程ax2+bx+c=a有两个不等的实数根;
    ③a<﹣.
    其中,正确结论的个数是(  )
    A.0 B.1 C.2 D.3
    21.(2020•菏泽)一次函数y=acx+b与二次函数y=ax2+bx+c在同一平面直角坐标系中的图象可能是(  )
    A. B.
    C. D.
    22.(2020•河北)如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,
    甲:若b=5,则点P的个数为0;
    乙:若b=4,则点P的个数为1;
    丙:若b=3,则点P的个数为1.
    下列判断正确的是(  )

    A.乙错,丙对 B.甲和乙都错 C.乙对,丙错 D.甲错,丙对
    23.(2020•达州)如图,直线y1=kx与抛物线y2=ax2+bx+c交于A、B两点,则y=ax2+(b﹣k)x+c的图象可能是(  )

    A. B.
    C. D.
    24.(2020•泰安)在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b的图象可能是(  )
    A.
    B.
    C.
    D.
    25.(2020•齐齐哈尔)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(4,0),其对称轴为直线x=1,结合图象给出下列结论:
    ①ac<0;
    ②4a﹣2b+c>0;
    ③当x>2时,y随x的增大而增大;
    ④关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.
    其中正确的结论有(  )

    A.1个 B.2个 C.3个 D.4个
    26.(2020•滨州)对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为(  )

    A.3 B.4 C.5 D.6
    27.(2020•南充)关于二次函数y=ax2﹣4ax﹣5(a≠0)的三个结论:①对任意实数m,都有x1=2+m与x2=2﹣m对应的函数值相等;②若3≤x≤4,对应的y的整数值有4个,则﹣<a≤﹣1或1≤a<;③若抛物线与x轴交于不同两点A,B,且AB≤6,则a<﹣或a≥1.其中正确的结论是(  )
    A.①② B.①③ C.②③ D.①②③
    28.(2020•甘孜州)如图,二次函数y=a(x+1)2+k的图象与x轴交于A(﹣3,0),B两点,下列说法错误的是(  )

    A.a<0
    B.图象的对称轴为直线x=﹣1
    C.点B的坐标为(1,0)
    D.当x<0时,y随x的增大而增大
    29.(2020•遂宁)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=﹣1,下列结论不正确的是(  )

    A.b2>4ac
    B.abc>0
    C.a﹣c<0
    D.am2+bm≥a﹣b(m为任意实数)
    30.(2020•黔西南州)如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是(  )

    A.点B坐标为(5,4) B.AB=AD
    C.a=﹣ D.OC•OD=16
    二.填空题(共8小题)
    31.(2020•广州)对某条线段的长度进行了3次测量,得到3个结果(单位:mm)9.9,10.1,10.0,若用a作为这条线段长度的近似值,当a=   mm时,(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2最小.对另一条线段的长度进行了n次测量,得到n个结果(单位:mm)x1,x2,…,xn,若用x作为这条线段长度的近似值,当x=   mm时,(x﹣x1)2+(x﹣x2)2+…+(x﹣xn)2最小.
    32.(2020•益阳)某公司新产品上市30天全部售完,图1表示产品的市场日销售量与上市时间之间的关系,图2表示单件产品的销售利润与上市时间之间的关系,则最大日销售利润是   元.

    33.(2020•荆门)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A、B,顶点为C,对称轴为直线x=1,给出下列结论:①abc<0;②若点C的坐标为(1,2),则△ABC的面积可以等于2;③M(x1,y1),N(x2,y2)是抛物线上两点(x1<x2),若x1+x2>2,则y1<y2; ④若抛物线经过点(3,﹣1),则方程ax2+bx+c+1=0的两根为﹣1,3.其中正确结论的序号为   .

    34.(2020•内江)已知抛物线y1=﹣x2+4x(如图)和直线y2=2x+b.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2.若y1≠y2,取y1和y2中较大者为M;若y1=y2,记M=y1=y2.①当x=2时,M的最大值为4;②当b=﹣3时,使M>y2的x的取值范围是﹣1<x<3;③当b=﹣5时,使M=3的x的值是x1=1,x2=3;④当b≥1时,M随x的增大而增大.上述结论正确的是   .(填写所有正确结论的序号)

    35.(2020•包头)在平面直角坐标系中,已知A(﹣1,m)和B(5,m)是抛物线y=x2+bx+1上的两点,将抛物线y=x2+bx+1的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,则n的最小值为   .
    36.(2020•烟台)二次函数y=ax2+bx+c的图象如图所示,下列结论:
    ①ab>0;②a+b﹣1=0;③a>1;④关于x的一元二次方程ax2+bx+c=0的一个根为1,另一个根为﹣.
    其中正确结论的序号是   .

    37.(2020•武汉)抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,下列四个结论:
    ①一元二次方程ax2+bx+c=0的根为x1=2,x2=﹣4;
    ②若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1<y2;
    ③对于任意实数t,总有at2+bt≤a﹣b;
    ④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.
    其中正确的结论是   (填写序号).
    38.(2020•南京)下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论:①该函数的图象与函数y=﹣x2的图象形状相同;②该函数的图象一定经过点(0,1);③当x>0时,y随x的增大而减小;④该函数的图象的顶点在函数y=x2+1的图象上.其中所有正确结论的序号是   .
    三.解答题(共12小题)
    39.(2020•日照)如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD,为美化环境,用总长为100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).
    (1)若四块矩形花圃的面积相等,求证:AE=3BE;
    (2)在(1)的条件下,设BC的长度为xm,矩形区域ABCD的面积为ym2,求y与x之间的函数关系式,并写出自变量x的取值范围.

    40.(2020•济南)如图1,抛物线y=﹣x2+bx+c过点A(﹣1,0),点B(3,0)与y轴交于点C.在x轴上有一动点E(m,0)(0<m<3),过点E作直线l⊥x轴,交抛物线于点M.
    (1)求抛物线的解析式及C点坐标;
    (2)当m=1时,D是直线l上的点且在第一象限内,若△ACD是以∠DCA为底角的等腰三角形,求点D的坐标;
    (3)如图2,连接BM并延长交y轴于点N,连接AM,OM,设△AEM的面积为S1,△MON的面积为S2,若S1=2S2,求m的值.

    41.(2020•日照)如图,函数y=﹣x2+bx+c的图象经过点A(m,0),B(0,n)两点,m,n分别是方程x2﹣2x﹣3=0的两个实数根,且m<n.
    (Ⅰ)求m,n的值以及函数的解析式;
    (Ⅱ)设抛物线y=﹣x2+bx+c与x轴的另一个交点为C,抛物线的顶点为D,连接AB,BC,BD,CD.求证:△BCD∽△OBA;
    (Ⅲ)对于(Ⅰ)中所求的函数y=﹣x2+bx+c,
    (1)当0≤x≤3时,求函数y的最大值和最小值;
    (2)设函数y在t≤x≤t+1内的最大值为p,最小值为q,若p﹣q=3,求t的值.

    42.(2020•阜新)如图,二次函数y=x2+bx+c的图象交x轴于点A(﹣3,0),B(1,0),交y轴于点 C.点P(m,0)是x轴上的一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.
    (1)求这个二次函数的表达式;
    (2)①若点P仅在线段AO上运动,如图,求线段MN的最大值;
    ②若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.

    43.(2020•盘锦)如图1,直线y=x﹣4与x轴交于点B,与y轴交于点A,抛物线y=﹣x2+bx+c经过点B和点C(0,4),△ABO沿射线AB方向以每秒个单位长度的速度平移,平移后的三角形记为△DEF(点A,B,O的对应点分别为点D,E,F),平移时间为t(0<t<4)秒,射线DF交x轴于点G,交抛物线于点M,连接ME.

    (1)求抛物线的解析式;
    (2)当tan∠EMF=时,请直接写出t的值;
    (3)如图2,点N在抛物线上,点N的横坐标是点M的横坐标的,连接OM,NF,OM与NF相交于点P,当NP=FP时,求t的值.
    44.(2020•西藏)在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.
    (1)求二次函数的解析式;
    (2)如图甲,连接AC,PA,PC,若S△PAC=,求点P的坐标;
    (3)如图乙,过A,B,P三点作⊙M,过点P作PE⊥x轴,垂足为D,交⊙M于点E.点P在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE的长.

    45.(2020•德阳)如图1,抛物线y=ax2﹣2ax﹣3a(a≠0)与x轴交于点A,B.与y轴交于点C.连接AC,BC.已知△ABC的面积为2.
    (1)求抛物线的解析式;
    (2)平行于x轴的直线与抛物线从左到右依次交于P,Q两点.过P,Q向x轴作垂线,垂足分别为G,H.若四边形PGHQ为正方形,求正方形的边长;
    (3)如图2,平行于y轴的直线交抛物线于点M,交x轴于点N (2,0).点D是抛物线上A,M之间的一动点,且点D不与A,M重合,连接DB交MN于点E.连接AD并延长交MN于点F.在点D运动过程中,3NE+NF是否为定值?若是,求出这个定值;若不是,请说明理由.

    46.(2020•锦州)在平面直角坐标系中,抛物线y=﹣x2+bx+c交x轴于A(﹣3,0),B(4,0)两点,交y轴于点C.
    (1)求抛物线的表达式;
    (2)如图,直线y=与抛物线交于A,D两点,与直线BC交于点E.若M(m,0)是线段AB上的动点,过点M作x轴的垂线,交抛物线于点F,交直线AD于点G,交直线BC于点H.
    ①当点F在直线AD上方的抛物线上,且S△EFG=S△OEG时,求m的值;
    ②在平面内是否在点P,使四边形EFHP为正方形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

    47.(2020•朝阳)如图,抛物线y=﹣+bx+c与x轴交于点A,点B,与y轴交于点C,抛物线的对称轴为直线x=﹣1,点C坐标为(0,4).

    (1)求抛物线表达式;
    (2)在抛物线上是否存在点P,使∠ABP=∠BCO,如果存在,求出点P坐标;如果不存在,请说明理由;
    (3)在(2)的条件下,若点P在x轴上方,点M是直线BP上方抛物线上的一个动点,求点M到直线BP的最大距离;
    (4)点G是线段AC上的动点,点H是线段BC上的动点,点Q是线段AB上的动点,三个动点都不与点A,B,C重合,连接GH,GQ,HQ,得到△GHQ,直接写出△GHQ周长的最小值.
    48.(2020•鞍山)在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)经过点A(﹣2,﹣4)和点C(2,0),与y轴交于点D,与x轴的另一交点为点B.

    (1)求抛物线的解析式;
    (2)如图1,连接BD,在抛物线上是否存在点P,使得∠PBC=2∠BDO?若存在,请求出点P的坐标;若不存在,请说明理由;
    (3)如图2,连接AC,交y轴于点E,点M是线段AD上的动点(不与点A,点D重合),将△CME沿ME所在直线翻折,得到△FME,当△FME与△AME重叠部分的面积是△AMC面积的时,请直接写出线段AM的长.
    49.(2020•赤峰)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(1,0),B(4,0)两点,与y轴交于点C,直线y=﹣x+2经过B,C两点.
    (1)直接写出二次函数的解析式   ;
    (2)平移直线BC,当直线BC与抛物线有唯一公共点Q时,求此时点Q的坐标;
    (3)过(2)中的点Q作QE∥y轴,交x轴于点E.若点M是抛物线上一个动点,点N是x轴上一个动点,是否存在以E,M,N三点为顶点的直角三角形(其中M为直角顶点)与△BOC相似?如果存在,请直接写出满足条件的点M的个数和其中一个符合条件的点M的坐标;如果不存在,请说明理由.

    50.(2020•葫芦岛)如图,抛物线y=ax2+x+c(a≠0)与x轴相交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),作直线BC.

    (1)求抛物线的解析式;
    (2)在直线BC上方的抛物线上存在点D,使∠DCB=2∠ABC,求点D的坐标;
    (3)在(2)的条件下,点F的坐标为(0,),点M在抛物线上,点N在直线BC上.当以D,F,M,N为顶点的四边形是平行四边形时,请直接写出点N的坐标.












    参考答案与试题解析
    一.选择题(共30小题)
    1.(2020•济南)已知抛物线y=x2+(2m﹣6)x+m2﹣3与y轴交于点A,与直线x=4交于点B,当x>2时,y值随x值的增大而增大.记抛物线在线段AB下方的部分为G(包含A、B两点),M为G上任意一点,设M的纵坐标为t,若t≥﹣3,则m的取值范围是(  )
    A.m≥ B.≤m≤3 C.m≥3 D.1≤m≤3
    【答案】A
    【解答】解:当对称轴在y轴的右侧时,,
    解得≤m<3,
    当对称轴是y轴时,m=3,符合题意,
    当对称轴在y轴的左侧时,2m﹣6>0,解得m>3,
    综上所述,满足条件的m的值为m≥.
    故选:A.
    2.(2020•日照)如图,二次函数y=ax2+bx+c(a≠0)图象的对称轴为直线x=﹣1,下列结论:
    ①abc<0;②3a<﹣c;③若m为任意实数,则有a﹣bm≤am2+b; ④若图象经过点(﹣3,﹣2),方程ax2+bx+c+2=0的两根为x1,x2(|x1|<|x2|),则2x1﹣x2=5.其中正确的结论的个数是(  )

    A.4个 B.3个 C.2个 D.1个
    【答案】C
    【解答】解:由图象可知:a<0,c>0,,
    ∴b=2a<0,
    ∴abc>0,故①abc<0错误;
    当x=1时,y=a+b+c=a+2a+c=3a+c<0,
    ∴3a<﹣c,故②3a<﹣c正确;
    ∵x=﹣1时,y有最大值,
    ∴a﹣b+c≥am2+bm+c(m为任意实数),
    即a﹣b≥am2+bm,即a﹣bm≥am2+b,故③错误;
    ∵二次函数y=ax2+bx+c(a≠0)图象经过点(﹣3,﹣2),方程ax2+bx+c+2=0的两根为x1,x2(|x1|<|x2|),
    ∴二次函数y=ax2+bx+c与直线y=﹣2的一个交点为(﹣3,﹣2),
    ∵抛物线的对称轴为直线x=﹣1,
    ∴二次函数y=ax2+bx+c与直线y=﹣2的另一个交点为(1,﹣2),
    即x1=1,x2=﹣3,
    ∴2x1﹣x2=2﹣(﹣3)=5,故④正确.
    所以正确的是②④;
    故选:C.
    3.(2020•德阳)已知不等式ax+b>0的解集为x<2,则下列结论正确的个数是(  )
    (1)2a+b=0;
    (2)当c>a时,函数y=ax2+bx+c的图象与x轴没有公共点;
    (3)当c>0时,抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方;
    (4)如果b<3且2a﹣mb﹣m=0,则m的取值范围是﹣<m<0.
    A.1 B.2 C.3 D.4
    【答案】C
    【解答】解:(1)∵不等式ax+b>0的解集为x<2,
    ∴a<0,﹣=2,即b=﹣2a,
    ∴2a+b=0,故结论正确;
    (2)函数y=ax2+bx+c中,令y=0,则ax2+bx+c=0,
    ∵即b=﹣2a,
    ∴△=b2﹣4ac=(﹣2a)2﹣4ac=4a(a﹣c),
    ∵a<0,c>a,
    ∴△=4a(a﹣c)>0,
    ∴当c>a时,函数y=ax2+bx+c的图象与x轴有两个公共点,故结论错误;
    (3)∵b=﹣2a,
    ∴﹣=1,==c﹣a,
    ∴抛物线y=ax2+bx+c的顶点为(1,c﹣a),
    当x=1时,直线y=ax+b=a+b=a﹣2a=﹣a>0
    当c>0时,c﹣a>﹣a>0,
    ∴抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方,故结论正确;
    (4)∵b=﹣2a,
    ∴由2a﹣mb﹣m=0,得到﹣b﹣mb﹣m=0,
    ∴b=﹣,
    如果b<3,则0<﹣<3,
    ∴﹣<m<0,故结论正确;
    故选:C.
    4.(2020•眉山)已知二次函数y=x2﹣2ax+a2﹣2a﹣4(a为常数)的图象与x轴有交点,且当x>3时,y随x的增大而增大,则a的取值范围是(  )
    A.a≥﹣2 B.a<3 C.﹣2≤a<3 D.﹣2≤a≤3
    【答案】D
    【解答】解:∵二次函数y=x2﹣2ax+a2﹣2a﹣4(a为常数)的图象与x轴有交点,
    ∴△=(﹣2a)2﹣4×1×(a2﹣2a﹣4)≥0
    解得:a≥﹣2;
    ∵抛物线的对称轴为直线x=﹣=a,抛物线开口向上,且当x>3时,y随x的增大而增大,
    ∴a≤3,
    ∴实数a的取值范围是﹣2≤a≤3.
    故选:D.
    5.(2020•恩施州)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣2,0)、B(1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c=0;④a﹣b+c>0.其中正确的有(  )个.

    A.0 B.1 C.2 D.3
    【答案】C
    【解答】解:对于①:二次函数开口向下,故a<0,与y轴的交点在y的正半轴,故c>0,故ac<0,因此①错误;
    对于②:二次函数的图象与x轴相交于A(﹣2,0)、B(1,0),由对称性可知,其对称轴为:,因此②错误;
    对于③:设二次函数y=ax2+bx+c的交点式为y=a(x+2)(x﹣1)=ax2+ax﹣2a,比较一般式与交点式的系数可知:b=a,c=﹣2a,故2a+c=0,因此③正确;
    对于④:当x=﹣1时对应的y=a﹣b+c,观察图象可知x=﹣1时对应的函数图象的y值在x轴上方,故a﹣b+c>0,因此④正确.
    ∴只有③④是正确的.
    故选:C.
    6.(2020•昆明)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴交于点B(0,﹣2),点A(﹣1,m)在抛物线上,则下列结论中错误的是(  )

    A.ab<0
    B.一元二次方程ax2+bx+c=0的正实数根在2和3之间
    C.a=
    D.点P1(t,y1),P2(t+1,y2)在抛物线上,当实数t>时,y1<y2
    【答案】D
    【解答】解:∵抛物线开口向上,
    ∴a>0,
    ∵抛物线的对称轴为直线x=﹣=1,
    ∴b=﹣2a<0,
    ∴ab<0,所以A选项的结论正确;
    ∵抛物线的对称轴为直线x=1,抛物线与x轴的一个交点坐标在(0,0)与(﹣1,0)之间,
    ∴抛物线与x轴的另一个交点坐标在(2,0)与(3,0)之间,
    ∴一元二次方程ax2+bx+c=0的正实数根在2和3之间,所以B选项的结论正确;
    把B(0,﹣2),A(﹣1,m)代入抛物线得c=﹣2,a﹣b+c=m,
    而b=﹣2a,
    ∴a+2a﹣2=m,
    ∴a=,所以C选项的结论正确;
    ∵点P1(t,y1),P2(t+1,y2)在抛物线上,
    ∴当点P1、P2都在直线x=1的右侧时,y1<y2,此时t≥1;
    当点P1在直线x=1的左侧,点P2在直线x=1的右侧时,y1<y2,此时0<t<1且t+1﹣1>1﹣t,即<t<1,
    ∴当<t<1或t≥1时,y1<y2,所以D选项的结论错误.
    故选:D.
    7.(2020•宜宾)函数y=ax2+bx+c(a≠0)的图象与x轴交于点(2,0),顶点坐标为(﹣1,n),其中n>0.以下结论正确的是(  )
    ①abc>0;
    ②函数y=ax2+bx+c(a≠0)在x=1和x=﹣2处的函数值相等;
    ③函数y=kx+1的图象与y=ax2+bx+c(a≠0)的函数图象总有两个不同交点;
    ④函数y=ax2+bx+c(a≠0)在﹣3≤x≤3内既有最大值又有最小值.
    A.①③ B.①②③ C.①④ D.②③④
    【答案】C
    【解答】解:依照题意,画出图形如下:

    ∵函数y=ax2+bx+c(a≠0)的图象与x轴交于点(2,0),顶点坐标为(﹣1,n),其中n>0.
    ∴a<0,c>0,对称轴为x=﹣=﹣1,
    ∴b=2a<0,
    ∴abc>0,故①正确,
    ∵对称轴为x=﹣1,
    ∴x=1与x=﹣3的函数值是相等的,故②错误;
    ∵顶点为(﹣1,n),
    ∴抛物线解析式为;y=a(x+1)2+n=ax2+2ax+a+n,
    联立方程组可得:,
    可得ax2+(2a﹣k)x+a+n﹣1=0,
    ∴△=(2a﹣k)2﹣4a(a+n﹣1)=k2﹣4ak+4a﹣4an,
    ∵无法判断△是否大于0,
    ∴无法判断函数y=kx+1的图象与y=ax2+bx+c(a≠0)的函数图象的交点个数,故③错误;
    当﹣3≤x≤3时,
    当x=﹣1时,y有最大值为n,当x=3时,y有最小值为16a+n,故④正确,
    故选:C.
    8.(2020•丹东)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,点A坐标为(﹣1,0),点C在(0,2)与(0,3)之间(不包括这两点),抛物线的顶点为D,对称轴为直线x=2.有以下结论:
    ①abc>0;
    ②若点M(﹣,y1),点N(,y2)是函数图象上的两点,则y1<y2;
    ③﹣<a<﹣;
    ④△ADB可以是等腰直角三角形.
    其中正确的有(  )

    A.1个 B.2个 C.3个 D.4个
    【答案】B
    【解答】解:∵二次函数y=ax2+bx+c(a≠0)的对称轴为:x=﹣,
    ∴﹣=2,
    ∴b=﹣4a,
    ∵点A坐标为(﹣1,0),点C在(0,2)与(0,3)之间,且都在抛物线上,
    ∴a﹣b+c=0,2<c<3,
    由二次函数图象可知,a<0,
    ∴b>0,
    又∵c>0,
    ∴abc<0,故①不正确;
    ∵点N(,y2)关于对称轴x=2的对称点为(,y2),>﹣,y随x的增大而增大,
    ∴y1<y2,故②正确;
    ∵,
    解得:﹣<a<﹣,
    故③正确;
    ∵抛物线的顶点为D,对称轴为直线x=2,
    ∴点A与点B关于直线x=2对称,点D在直线x=2上,
    ∴AB=6,DA=DB,
    ∴△ADB是等腰三角形,
    如果△ADB是等腰直角三角形,则点D到AB的距离等于AB=3,即D(2,3),
    则,
    解得:,
    ∴二次函数解析式为:y=﹣x2+x+,
    当x=0时,y=,与点C在(0,2)与(0,3)之间(不包括这两点)矛盾,
    ∴△ADB不可能是等腰直角三角形,故④不正确;
    ∴正确的有2个,
    故选:B.
    9.(2020•山西)竖直上抛物体离地面的高度h(m)与运动时间t(s)之间的关系可以近似地用公式h=﹣5t2+v0t+h0表示,其中h0(m)是物体抛出时离地面的高度,v0(m/s)是物体抛出时的速度.某人将一个小球从距地面1.5m的高处以20m/s的速度竖直向上抛出,小球达到的离地面的最大高度为(  )
    A.23.5m B.22.5m C.21.5m D.20.5m
    【答案】C
    【解答】解:由题意可得,
    h=﹣5t2+20t+1.5=﹣5(t﹣2)2+21.5,
    因为a=﹣5<0,
    故当t=2时,h取得最大值,此时h=21.5,
    故选:C.
    10.(2020•毕节市)已知y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=2.若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两个根,且x1<x2,﹣1<x1<0,则下列说法正确的是(  )

    A.x1+x2<0 B.4<x2<5 C.b2﹣4ac<0 D.ab>0
    【答案】B
    【解答】解:∵x1,x2是一元二次方程ax2+bx+c=0的两个根,
    ∴x1、x2是抛物线与x轴交点的横坐标,
    ∵抛物线的对称轴为直线x=2,
    ∴=2,即x1+x2=4>0,故选项A错误;
    ∵x1<x2,﹣1<x1<0,
    ∴﹣1<4﹣x2<0,
    解得:4<x2<5,故选项B正确;
    ∵抛物线与x轴有两个交点,
    ∴b2﹣4ac>0,故选项C错误;
    ∵抛物线开口向下,
    ∴a<0,
    ∵抛物线的对称轴为直线x=2,
    ∴﹣=2,
    ∴b=﹣4a>0,
    ∴ab<0,故选项D错误;
    故选:B.
    11.(2020•东营)如图,已知抛物线y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,其对称轴与x轴交于点C,其中A、C两点的横坐标分别为﹣1和1,下列说法错误的是(  )

    A.abc<0
    B.4a+c=0
    C.16a+4b+c<0
    D.当x>2时,y随x的增大而减小
    【答案】B
    【解答】解:抛物线开口向下,因此a<0,对称轴为x=1,即﹣=1,也就是2a+b=0,b>0,抛物线与y轴交于正半轴,于是c>0,
    ∴abc<0,因此选项A不符合题意;
    由A(﹣1,0)、C(1,0)对称轴为x=1,可得抛物线与x轴的另一个交点B(3,0),
    ∴a﹣b+c=0,
    ∴a+2a+c=0,即3a+c=0,因此选项B符合题意;
    当x=4时,y=16a+4b+c<0,因此选项C不符合题意;
    当x>1时,y随x的增大而减小,因此选项D不符合题意;
    故选:B.
    12.(2020•娄底)二次函数y=(x﹣a)(x﹣b)﹣2(a<b)与x轴的两个交点的横坐标分别为m和n,且m<n,下列结论正确的是(  )
    A.m<a<n<b B.a<m<b<n C.m<a<b<n D.a<m<n<b
    【答案】C
    【解答】解:二次函数y=(x﹣a)(x﹣b)与x轴交点的横坐标为a、b,将其图象往下平移2个单位长度可得出二次函数y=(x﹣a)(x﹣b)﹣2的图象,如图所示.
    观察图象,可知:m<a<b<n.
    故选:C.

    13.(2020•长沙)“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下,“可食用率”P与加工煎炸时间t(单位:分钟)近似满足的函数关系为:P=at2+bt+c(a≠0,a,b,c是常数),如图记录了三次实验的数据.根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为(  )

    A.3.50分钟 B.4.05分钟 C.3.75分钟 D.4.25分钟
    【答案】C
    【解答】解:将图象中的三个点(3,0.8)、(4,0.9)、(5,0.6)代入函数关系P=at2+bt+c中,

    解得,
    所以函数关系式为:P=﹣0.2t2+1.5t﹣1.9,
    由题意可知:加工煎炸臭豆腐的最佳时间为抛物线顶点的横坐标:
    t=﹣=﹣=3.75,
    则当t=3.75分钟时,可以得到最佳时间.
    故选:C.
    14.(2020•岳阳)对于一个函数,自变量x取c时,函数值y等于0,则称c为这个函数的零点.若关于x的二次函数y=﹣x2﹣10x+m(m≠0)有两个不相等的零点x1,x2(x1<x2),关于x的方程x2+10x﹣m﹣2=0有两个不相等的非零实数根x3,x4(x3<x4),则下列关系式一定正确的是(  )
    A.0<<1 B.>1 C.0<<1 D.>1
    【答案】A
    【解答】解:由题意关于x的方程x2+10x﹣m﹣2=0有两个不相等的非零实数根x3,x4(x3<x4),就是关于x的二次函数y=﹣x2﹣10x+m(m≠0)与直线y=﹣2的交点的横坐标,
    画出函数的图象草图如下:

    ∵抛物线的对称轴为直线x=﹣=﹣5,
    ∴x3<x1<﹣5,
    由图象可知:0<<1一定成立,
    故选:A.
    15.(2020•江西)在平面直角坐标系中,点O为坐标原点,抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O'A'B',且点O',A'落在抛物线的对称轴上,点B'落在抛物线上,则直线A'B'的表达式为(  )
    A.y=x B.y=x+1 C.y=x+ D.y=x+2
    【答案】B
    【解答】解:如图,∵抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,
    令y=0,解得x=﹣1或3,
    令x=0,求得y=﹣3,
    ∴B(3,0),A(0,﹣3),
    ∵抛物线y=x2﹣2x﹣3的对称轴为直线x=﹣=1,
    ∴A′的横坐标为1,
    设A′(1,n),则B′(4,n+3),
    ∵点B'落在抛物线上,
    ∴n+3=16﹣8﹣3,解得n=2,
    ∴A′(1,2),B′(4,5),
    设直线A'B'的表达式为y=kx+b,
    ∴,
    解得
    ∴直线A'B'的表达式为y=x+1,
    故选:B.

    16.(2020•牡丹江)如图,抛物线y=ax2+bx+c与x轴正半轴交于A,B两点,与y轴负半轴交于点C.若点B(4,0),则下列结论中,正确的个数是(  )
    ①abc>0;
    ②4a+b>0;
    ③M(x1,y1)与N(x2,y2)是抛物线上两点,若0<x1<x2,则y1>y2;
    ④若抛物线的对称轴是直线x=3,m为任意实数,则a(m﹣3)(m+3)≤b(3﹣m);⑤若AB≥3,则4b+3c>0.

    A.5 B.4 C.3 D.2
    【答案】B
    【解答】解:如图,抛物线开口向下,与y轴交于负半轴,对称轴在y轴右侧,
    ∴a<0,c<0,,∴b>0,
    ∴abc>0,故①正确;
    如图,∵抛物线过点B(4,0),点A在x轴正半轴,
    ∴对称轴在直线x=2右侧,即,
    ∴,又a<0,∴4a+b>0,故②正确;
    ∵M(x1,y1)与N(x2,y2)是抛物线上两点,0<x1<x2,
    可得:抛物线y=ax2+bx+c在上,y随x的增大而增大,
    在上,y随x的增大而减小,
    ∴y1>y2不一定成立,故③错误;
    若抛物线对称轴为直线x=3,则,即b=﹣6a,
    则a(m﹣3)(m+3)﹣b(3﹣m)=a(m﹣3)2≤0,
    ∴a(m﹣3)(m+3)≤b(3﹣m),故④正确;∵AB≥3,则点A的横坐标大于0或小于等于1,
    当x=1时,代入,y=a+b+c≥0,
    当x=4时,16a+4b+c=0,
    ∴a=,
    则,整理得:4b+5c≥0,则4b+3c≥﹣2c,又c<0,
    ﹣2c>0,
    ∴4b+3c>0,故⑤正确,
    故正确的有4个.
    故选:B.
    17.(2020•广东)如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:
    ①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,
    正确的有(  )

    A.4个 B.3个 C.2个 D.1个
    【答案】B
    【解答】解:由抛物线的开口向下可得:a<0,
    根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,
    根据抛物线与y轴的交点在正半轴可得:c>0,
    ∴abc<0,故①错误;
    ∵抛物线与x轴有两个交点,
    ∴b2﹣4ac>0,故②正确;
    ∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=1,可得b=﹣2a,
    由图象可知,当x=﹣2时,y<0,即4a﹣2b+c<0,
    ∴4a﹣2×(﹣2a)+c<0,
    即8a+c<0,故③正确;
    由图象可知,当x=2时,y=4a+2b+c>0;当x=﹣1时,y=a﹣b+c>0,
    两式相加得,5a+b+2c>0,故④正确;
    ∴结论正确的是②③④3个,
    故选:B.
    18.(2020•鄂州)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)和B,与y轴交于点C.下列结论:①abc<0,②2a+b<0,③4a﹣2b+c>0,④3a+c>0,其中正确的结论个数为(  )

    A.1个 B.2个 C.3个 D.4个
    【答案】B
    【解答】解:①∵由抛物线的开口向上知a>0,
    ∵对称轴位于y轴的右侧,
    ∴b<0.
    ∵抛物线与y轴交于负半轴,
    ∴c<0,
    ∴abc>0;
    故错误;

    ②对称轴为x=﹣<1,得2a>﹣b,即2a+b>0,
    故错误;

    ③如图,当x=﹣2时,y>0,4a﹣2b+c>0,
    故正确;

    ④∵当x=﹣1时,y=0,
    ∴0=a﹣b+c<a+2a+c=3a+c,即3a+c>0.
    故正确.
    综上所述,有2个结论正确.
    故选:B.
    19.(2020•襄阳)二次函数y=ax2+bx+c的图象如图所示,下列结论:
    ①ac<0;②3a+c=0;③4ac﹣b2<0;④当x>﹣1时,y随x的增大而减小.
    其中正确的有(  )

    A.4个 B.3个 C.2个 D.1个
    【答案】B
    【解答】解:①∵抛物线开口向上,且与y轴交于负半轴,
    ∴a>0,c<0,
    ∴ac<0,结论①正确;
    ②∵抛物线对称轴为直线x=1,
    ∴﹣=1,
    ∴b=﹣2a,
    ∵抛物线经过点(﹣1,0),
    ∴a﹣b+c=0,
    ∴a+2a+c=0,即3a+c=0,结论②正确;
    ③∵抛物线与x轴由两个交点,
    ∴b2﹣4ac>0,即4ac﹣b2<0,结论③正确;
    ④∵抛物线开口向上,且抛物线对称轴为直线x=1,
    ∴当x<1时,y随x的增大而减小,结论④错误;
    故选:B.
    20.(2020•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0,c>1)经过点(2,0),其对称轴是直线x=.有下列结论:
    ①abc>0;
    ②关于x的方程ax2+bx+c=a有两个不等的实数根;
    ③a<﹣.
    其中,正确结论的个数是(  )
    A.0 B.1 C.2 D.3
    【答案】C
    【解答】解:∵抛物线的对称轴为直线x=,
    而点(2,0)关于直线x=的对称点的坐标为(﹣1,0),
    ∵c>1,
    ∵抛物线开口向下,
    ∴a<0,
    ∵抛物线对称轴为直线x=,
    ∴ab<0,
    ∴abc<0,故①错误;
    ∵抛物线开口向下,与x轴有两个交点,
    ∴顶点在x轴的上方,
    ∵a<0,
    ∴抛物线与直线y=a有两个交点,
    ∴关于x的方程ax2+bx+c=a有两个不等的实数根;故②正确;
    ∵抛物线y=ax2+bx+c经过点(2,0),
    ∴4a+2b+c=0,
    ∵b=﹣a,
    ∴4a﹣2a+c=0,即2a+c=0,
    ∴﹣2a=c,
    ∵c>1,
    ∴﹣2a>1,
    ∴a<﹣,故③正确,
    故选:C.
    21.(2020•菏泽)一次函数y=acx+b与二次函数y=ax2+bx+c在同一平面直角坐标系中的图象可能是(  )
    A. B.
    C. D.
    【答案】B
    【解答】解:A、由抛物线可知,a>0,b<0,c>0,则ac>0,由直线可知,ac>0,b>0,故本选项不合题意;
    B、由抛物线可知,a>0,b>0,c>0,则ac>0,由直线可知,ac>0,b>0,故本选项符合题意;
    C、由抛物线可知,a<0,b>0,c>0,则ac<0,由直线可知,ac<0,b<0,故本选项不合题意;
    D、由抛物线可知,a<0,b<0,c>0,则ac<0,由直线可知,ac>0,b>0,故本选项不合题意.
    故选:B.
    22.(2020•河北)如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,
    甲:若b=5,则点P的个数为0;
    乙:若b=4,则点P的个数为1;
    丙:若b=3,则点P的个数为1.
    下列判断正确的是(  )

    A.乙错,丙对 B.甲和乙都错 C.乙对,丙错 D.甲错,丙对
    【答案】C
    【解答】解:y=x(4﹣x)=﹣x2+4x=﹣(x﹣2)2+4,
    ∴抛物线的顶点坐标为(2,4),
    ∴在抛物线上的点P的纵坐标最大为4,
    ∴甲、乙的说法正确;
    若b=3,则抛物线上纵坐标为3的点有2个,
    ∴丙的说法不正确;
    故选:C.
    23.(2020•达州)如图,直线y1=kx与抛物线y2=ax2+bx+c交于A、B两点,则y=ax2+(b﹣k)x+c的图象可能是(  )

    A. B.
    C. D.
    【答案】B
    【解答】解:设y=y2﹣y1,
    ∵y1=kx,y2=ax2+bx+c,
    ∴y=ax2+(b﹣k)x+c,
    由图象可知,在点A和点B之间,y>0,在点A的左侧或点B的右侧,y<0,
    故选项B符合题意,选项A、C、D不符合题意;
    故选:B.
    24.(2020•泰安)在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b的图象可能是(  )
    A.
    B.
    C.
    D.
    【答案】C
    【解答】解:A、二次函数图象开口向上,对称轴在y轴右侧,
    ∴a>0,b<0,
    ∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,
    故A错误;
    B、∵二次函数图象开口向下,对称轴在y轴左侧,
    ∴a<0,b<0,
    ∴一次函数图象应该过第二、三、四象限,且与二次函数交于y轴负半轴的同一点,
    故B错误;
    C、二次函数图象开口向上,对称轴在y轴右侧,
    ∴a>0,b<0,
    ∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,
    故C正确;
    ∵D、二次函数图象开口向上,对称轴在y轴右侧,
    ∴a>0,b<0,
    ∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,
    故D错误;
    故选:C.
    25.(2020•齐齐哈尔)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(4,0),其对称轴为直线x=1,结合图象给出下列结论:
    ①ac<0;
    ②4a﹣2b+c>0;
    ③当x>2时,y随x的增大而增大;
    ④关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.
    其中正确的结论有(  )

    A.1个 B.2个 C.3个 D.4个
    【答案】C
    【解答】解:抛物线开口向上,因此a>0,与y轴交于负半轴,因此c<0,故ac<0,所以①正确;
    抛物线对称轴为x=1,与x轴的一个交点为(4,0),则另一个交点为(﹣2,0),于是有4a﹣2b+c=0,所以②不正确;
    x>1时,y随x的增大而增大,所以③正确;
    抛物线与x轴有两个不同交点,因此关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根,所以④正确;
    综上所述,正确的结论有:①③④,
    故选:C.
    26.(2020•滨州)对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为(  )

    A.3 B.4 C.5 D.6
    【答案】A
    【解答】解:①由图象可知:a>0,c<0,
    ∵﹣=1,
    ∴b=﹣2a<0,
    ∴abc>0,故①错误;
    ②∵抛物线与x轴有两个交点,
    ∴b2﹣4ac>0,
    ∴b2>4ac,故②正确;
    ③当x=2时,y=4a+2b+c<0,故③错误;
    ④当x=﹣1时,y=a﹣b+c=a﹣(﹣2a)+c>0,
    ∴3a+c>0,故④正确;
    ⑤当x=1时,y取到值最小,此时,y=a+b+c,
    而当x=m时,y=am2+bm+c,
    所以a+b+c≤am2+bm+c,
    故a+b≤am2+bm,即a+b≤m(am+b),故⑤正确,
    ⑥当x<﹣1时,y随x的增大而减小,故⑥错误,
    故选:A.
    27.(2020•南充)关于二次函数y=ax2﹣4ax﹣5(a≠0)的三个结论:①对任意实数m,都有x1=2+m与x2=2﹣m对应的函数值相等;②若3≤x≤4,对应的y的整数值有4个,则﹣<a≤﹣1或1≤a<;③若抛物线与x轴交于不同两点A,B,且AB≤6,则a<﹣或a≥1.其中正确的结论是(  )
    A.①② B.①③ C.②③ D.①②③
    【答案】D
    【解答】解:∵二次函数y=ax2﹣4ax﹣5的对称轴为直线x=﹣,
    ∴x1=2+m与x2=2﹣m关于直线x=2对称,
    ∴对任意实数m,都有x1=2+m与x2=2﹣m对应的函数值相等;
    故①正确;
    当x=3时,y=﹣3a﹣5,当x=4时,y=﹣5,
    若a>0时,当3≤x≤4时,﹣3a﹣5≤y≤﹣5,
    ∵当3≤x≤4时,对应的y的整数值有4个,分别是﹣5,﹣6,﹣7,﹣8,
    ∴﹣9<﹣3a﹣5≤﹣8
    ∴1≤a<,
    若a<0时,当3≤x≤4时,﹣5≤y≤﹣3a﹣5,
    ∵当3≤x≤4时,对应的y的整数值有4个,分别是﹣5,﹣4,﹣3,﹣2,
    ∴﹣2≤﹣3a﹣5<﹣1
    ∴﹣<a≤﹣1,
    故②正确;
    若a>0,抛物线与x轴交于不同两点A,B,且AB≤6,
    ∴△>0,25a﹣20a﹣5≥0,
    ∴,
    ∴a≥1,
    若a<0,抛物线与x轴交于不同两点A,B,且AB≤6,
    ∴△>0,25a﹣20a﹣5≤0,
    ∴,
    ∴a<﹣,
    综上所述:当a<﹣或a≥1时,抛物线与x轴交于不同两点A,B,且AB≤6.
    故选:D.
    28.(2020•甘孜州)如图,二次函数y=a(x+1)2+k的图象与x轴交于A(﹣3,0),B两点,下列说法错误的是(  )

    A.a<0
    B.图象的对称轴为直线x=﹣1
    C.点B的坐标为(1,0)
    D.当x<0时,y随x的增大而增大
    【答案】D
    【解答】解:观察图象可知a<0,由抛物线的解析式可知对称轴x=﹣1,
    ∵A(﹣3,0),A,B关于x=﹣1对称,
    ∴B(1,0),
    故A,B,C正确,
    ∵当﹣1<x<0时,y随x的增大而减小,
    ∴选项D错误.
    故选:D.
    29.(2020•遂宁)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=﹣1,下列结论不正确的是(  )

    A.b2>4ac
    B.abc>0
    C.a﹣c<0
    D.am2+bm≥a﹣b(m为任意实数)
    【答案】C
    【解答】解:由图象可得:a>0,c>0,△=b2﹣4ac>0,﹣=﹣1,
    ∴b=2a>0,b2>4ac,故A选项不合题意,
    ∴abc>0,故B选项不合题意,
    当x=﹣1时,y<0,
    ∴a﹣b+c<0,
    ∴﹣a+c<0,即a﹣c>0,故C选项符合题意,
    当x=m时,y=am2+bm+c,
    当x=﹣1时,y有最小值为a﹣b+c,
    ∴am2+bm+c≥a﹣b+c,
    ∴am2+bm≥a﹣b,故D选项不合题意,
    故选:C.
    30.(2020•黔西南州)如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是(  )

    A.点B坐标为(5,4) B.AB=AD
    C.a=﹣ D.OC•OD=16
    【答案】D
    【解答】解:∵抛物线y=ax2+bx+4交y轴于点A,
    ∴A(0,4),
    ∵对称轴为直线x=,AB∥x轴,
    ∴B(5,4).
    故A无误;
    如图,过点B作BE⊥x轴于点E,

    则BE=4,AB=5,
    ∵AB∥x轴,
    ∴∠BAC=∠ACO,
    ∵点B关于直线AC的对称点恰好落在线段OC上,
    ∴∠ACO=∠ACB,
    ∴∠BAC=∠ACB,
    ∴BC=AB=5,
    ∴在Rt△BCE中,由勾股定理得:EC=3,
    ∴C(8,0),
    ∵对称轴为直线x=,
    ∴D(﹣3,0)
    ∵在Rt△ADO中,OA=4,OD=3,
    ∴AD=5,
    ∴AB=AD,
    故B无误;
    设y=ax2+bx+4=a(x+3)(x﹣8),
    将A(0,4)代入得:4=a(0+3)(0﹣8),
    ∴a=﹣,
    故C无误;
    ∵OC=8,OD=3,
    ∴OC•OD=24,
    故D错误.
    综上,错误的只有D.
    故选:D.
    二.填空题(共8小题)
    31.(2020•广州)对某条线段的长度进行了3次测量,得到3个结果(单位:mm)9.9,10.1,10.0,若用a作为这条线段长度的近似值,当a= 10.0 mm时,(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2最小.对另一条线段的长度进行了n次测量,得到n个结果(单位:mm)x1,x2,…,xn,若用x作为这条线段长度的近似值,当x=  mm时,(x﹣x1)2+(x﹣x2)2+…+(x﹣xn)2最小.
    【答案】10.0,.
    【解答】解:设y=(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2=3a2﹣60.0a+300.02,
    ∵a=3>0,
    ∴当x=﹣=10.0时,y有最小值,
    设w=(x﹣x1)2+(x﹣x2)2+…+(x﹣xn)2=nx2﹣2(x1+x2+…+xn)x+(x12+x22+…+xn2),
    ∵n>0,
    ∴当x=﹣=时,w有最小值.
    故答案为10.0,.
    32.(2020•益阳)某公司新产品上市30天全部售完,图1表示产品的市场日销售量与上市时间之间的关系,图2表示单件产品的销售利润与上市时间之间的关系,则最大日销售利润是 1800 元.

    【答案】1800.
    【解答】解:设日销售量y与销售天数t之间的函数关系式为y=kx,
    30k=60,得k=2,
    即日销售量y与销售天数t之间的函数关系式为y=2t,
    当0<t≤20时,设单件的利润w与t之间的函数关系式为w=at,
    20a=30,得a=1.5,
    即当0<t≤20时,单件的利润w与t之间的函数关系式为w=1.5t,
    当20<t≤30时,单件的利润w与t之间的函数关系式为w=30,
    设日销售利润为W元,
    当0<t≤20时,W=1.5t×2t=3t2,
    故当t=20时,W取得最大值,此时W=1200,
    当20<t≤30时,W=30×2t=60t,
    故当t=30时,W取得最大值,此时W=1800,
    综上所述,最大日销售利润为1800元,
    故答案为:1800.
    33.(2020•荆门)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A、B,顶点为C,对称轴为直线x=1,给出下列结论:①abc<0;②若点C的坐标为(1,2),则△ABC的面积可以等于2;③M(x1,y1),N(x2,y2)是抛物线上两点(x1<x2),若x1+x2>2,则y1<y2; ④若抛物线经过点(3,﹣1),则方程ax2+bx+c+1=0的两根为﹣1,3.其中正确结论的序号为 ①④ .

    【答案】①④.
    【解答】解:①抛物线的对称轴在y轴右侧,则ab<0,而c>0,故abc<0,正确,符合题意;
    ②△ABC的面积=AB•yC=AB×2=2,解得:AB=2,则点A(0,0),即c=0与图象不符,故②错误,不符合题意;
    ③函数的对称轴为x=1,若x1+x2>2,则(x1+x2)>1,则点N离函数对称轴远,故y1>y2,故③错误,不符合题意;
    ④抛物线经过点(3,﹣1),则y′=ax2+bx+c+1过点(3,0),
    根据函数的对称轴该抛物线也过点(﹣1,0),故方程ax2+bx+c+1=0的两根为﹣1,3,故④正确,符合题意;
    故答案为:①④.
    34.(2020•内江)已知抛物线y1=﹣x2+4x(如图)和直线y2=2x+b.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2.若y1≠y2,取y1和y2中较大者为M;若y1=y2,记M=y1=y2.①当x=2时,M的最大值为4;②当b=﹣3时,使M>y2的x的取值范围是﹣1<x<3;③当b=﹣5时,使M=3的x的值是x1=1,x2=3;④当b≥1时,M随x的增大而增大.上述结论正确的是 ②④ .(填写所有正确结论的序号)

    【答案】②④.
    【解答】解:①当x=2时,y1=4,y2=4+b,无法判断4与4+b的大小,故①错误.
    ②如图1中,b=﹣3时,

    由,解得或,
    ∴两个函数图象的交点坐标为(﹣1,﹣5)和(3,3),
    观察图象可知,使M>y2的x的取值范围是﹣1<x<3,故②正确,
    ③如图2中,b=﹣5时,图象如图所示,

    M=3时,y1=3,
    ∴﹣x2+4x=3,
    解得x=1或3,
    y2=3时,3=2x﹣5,解得x=4,也符合条件,
    故③错误,
    ④当b=1时,由,消去y得到,x2﹣2x+1=0,
    ∵△=0,
    ∴此时直线y=2x+1与抛物线只有一个交点,
    ∴b>1时,直线y=2x+b与抛物线没有交点,
    ∴M随x的增大而增大,故④正确.
    故答案为②④.
    35.(2020•包头)在平面直角坐标系中,已知A(﹣1,m)和B(5,m)是抛物线y=x2+bx+1上的两点,将抛物线y=x2+bx+1的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,则n的最小值为 4 .
    【答案】见试题解答内容
    【解答】解:∵点A(﹣1,m)和B(5,m)是抛物线y=x2+bx+1上的两点,
    ∴,
    解得,b=﹣4,
    ∴抛物线解析式为y=x2﹣4x+1=(x﹣2)2﹣3,
    ∵将抛物线y=x2+bx+1的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,
    ∴n的最小值是4,
    故答案为:4.
    36.(2020•烟台)二次函数y=ax2+bx+c的图象如图所示,下列结论:
    ①ab>0;②a+b﹣1=0;③a>1;④关于x的一元二次方程ax2+bx+c=0的一个根为1,另一个根为﹣.
    其中正确结论的序号是 ②③④ .

    【答案】见试题解答内容
    【解答】解:①由二次函数的图象开口向上可得a>0,对称轴在y轴的右侧,b<0,
    ∴ab<0,故①错误;
    ②由图象可知抛物线与x轴的交点为(1,0),与y轴的交点为(0,﹣1),
    ∴c=﹣1,
    ∴a+b﹣1=0,故②正确;
    ③∵a+b﹣1=0,
    ∴a﹣1=﹣b,
    ∵b<0,
    ∴a﹣1>0,
    ∴a>1,故③正确;
    ④∵抛物线与y轴的交点为(0,﹣1),
    ∴抛物线为y=ax2+bx﹣1,
    ∵抛物线与x轴的交点为(1,0),
    ∴ax2+bx﹣1=0的一个根为1,根据根与系数的关系,另一个根为﹣,故④正确;
    故答案为②③④.
    37.(2020•武汉)抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,下列四个结论:
    ①一元二次方程ax2+bx+c=0的根为x1=2,x2=﹣4;
    ②若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1<y2;
    ③对于任意实数t,总有at2+bt≤a﹣b;
    ④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.
    其中正确的结论是 ①③ (填写序号).
    【答案】见试题解答内容
    【解答】解:∵抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,
    ∴当y=0时,0=ax2+bx+c的两个根为x1=2,x2=﹣4,故①正确;
    该抛物线的对称轴为直线x==﹣1,函数图象开口向下,若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1>y2,故②错误;
    当x=﹣1时,函数取得最大值y=a﹣b+c,故对于任意实数t,总有at2+bt+c≤a﹣b+c,即对于任意实数t,总有at2+bt≤a﹣b,故③正确;
    对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则两个根为﹣3和1或﹣2和0或﹣1和﹣1,故p的值有三个,故④错误;
    故答案为:①③.
    38.(2020•南京)下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论:①该函数的图象与函数y=﹣x2的图象形状相同;②该函数的图象一定经过点(0,1);③当x>0时,y随x的增大而减小;④该函数的图象的顶点在函数y=x2+1的图象上.其中所有正确结论的序号是 ①②④ .
    【答案】见试题解答内容
    【解答】解:①∵二次函数y=﹣(x﹣m)2+m+1(m为常数)与函数y=﹣x2的二次项系数相同,
    ∴该函数的图象与函数y=﹣x2的图象形状相同,故结论①正确;
    ②∵在函数y=﹣(x﹣m)2+m2+1中,令x=0,则y=﹣m2+m2+1=1,
    ∴该函数的图象一定经过点(0,1),故结论②正确;
    ③∵y=﹣(x﹣m)2+m2+1,
    ∴抛物线开口向下,对称轴为直线x=m,当x>m时,y随x的增大而减小,故结论③错误;
    ④∵抛物线开口向下,当x=m时,函数y有最大值m2+1,
    ∴该函数的图象的顶点在函数y=x2+1的图象上.故结论④正确,
    故答案为①②④.
    三.解答题(共12小题)
    39.(2020•日照)如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD,为美化环境,用总长为100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).
    (1)若四块矩形花圃的面积相等,求证:AE=3BE;
    (2)在(1)的条件下,设BC的长度为xm,矩形区域ABCD的面积为ym2,求y与x之间的函数关系式,并写出自变量x的取值范围.

    【答案】见试题解答内容
    【解答】解:(1)证明:∵矩形MEFN与矩形EBCF面积相等,
    ∴ME=BE,AM=GH.
    ∵四块矩形花圃的面积相等,即S矩形AMND=2S矩形MEFN,
    ∴AM=2ME,
    ∴AE=3BE;

    (2)∵篱笆总长为100m,
    ∴2AB+GH+3BC=100,
    即,
    ∴.
    设BC的长度为xm,矩形区域ABCD的面积为ym2,
    则,
    ∵,
    ∴>0,
    解得,
    ∴().
    40.(2020•济南)如图1,抛物线y=﹣x2+bx+c过点A(﹣1,0),点B(3,0)与y轴交于点C.在x轴上有一动点E(m,0)(0<m<3),过点E作直线l⊥x轴,交抛物线于点M.
    (1)求抛物线的解析式及C点坐标;
    (2)当m=1时,D是直线l上的点且在第一象限内,若△ACD是以∠DCA为底角的等腰三角形,求点D的坐标;
    (3)如图2,连接BM并延长交y轴于点N,连接AM,OM,设△AEM的面积为S1,△MON的面积为S2,若S1=2S2,求m的值.

    【答案】(1)y=﹣x2+2x+3,点C(0,3);
    (2)(1,1)或(1,);
    (3)m=﹣2.
    【解答】解:(1)将点A、B的坐标代入抛物线表达式得,解得,
    故抛物线的表达式为y=﹣x2+2x+3,
    当x=0时,y=3,故点C(0,3);

    (2)当m=1时,点E(1,0),设点D的坐标为(1,a),
    由点A、C、D的坐标得,AC==,同理可得:AD=,CD=,
    ①当CD=AD时,即=,解得a=1;
    ②当AC=AD时,同理可得a=(舍去负值);
    故点D的坐标为(1,1)或(1,);

    (3)∵E(m,0),则设点M(m,﹣m2+2m+3),
    设直线BM的表达式为y=sx+t,则,解得,
    故直线BM的表达式为y=(﹣m﹣1)x+3m+3,
    当x=0时,y=3m+3,故点N(0,3m+3),则ON=3m+3;
    S1=AE×yM=×(m+1)×(﹣m2+2m+3),
    2S2=ON•xM=(3m+3)×m=S1=×(m+1)×(﹣m2+2m+3),
    解得m=﹣2±或﹣1(舍去负值),
    故m=﹣2.
    41.(2020•日照)如图,函数y=﹣x2+bx+c的图象经过点A(m,0),B(0,n)两点,m,n分别是方程x2﹣2x﹣3=0的两个实数根,且m<n.
    (Ⅰ)求m,n的值以及函数的解析式;
    (Ⅱ)设抛物线y=﹣x2+bx+c与x轴的另一个交点为C,抛物线的顶点为D,连接AB,BC,BD,CD.求证:△BCD∽△OBA;
    (Ⅲ)对于(Ⅰ)中所求的函数y=﹣x2+bx+c,
    (1)当0≤x≤3时,求函数y的最大值和最小值;
    (2)设函数y在t≤x≤t+1内的最大值为p,最小值为q,若p﹣q=3,求t的值.

    【答案】见试题解答内容
    【解答】(I)解:∵m,n分别是方程x2﹣2x﹣3=0的两个实数根,且m<n,
    用因式分解法解方程:(x+1)(x﹣3)=0,
    ∴x1=﹣1,x2=3,
    ∴m=﹣1,n=3,
    ∴A(﹣1,0),B(0,3),
    把(﹣1,0),(0,3)代入得,,解得,
    ∴函数解析式为y=﹣x2+2x+3.
    ( II)证明:令y=﹣x2+2x+3=0,即x2﹣2x﹣3=0,
    解得x1=﹣1,x2=3,
    ∴抛物线y=﹣x2+2x+3与x轴的交点为A(﹣1,0),C(3,0),
    ∴OA=1,OC=3,
    ∴对称轴为,顶点D(1,﹣1+2+3),即D(1,4),
    ∴,,,
    ∵CD2=DB2+CB2,
    ∴△BCD是直角三角形,且∠DBC=90°,
    ∴∠AOB=∠DBC,
    在Rt△AOB和Rt△DBC中,=,,
    ∴,
    ∴△BCD∽△OBA;
    ( III)解:抛物线y=﹣x2+2x+3的对称轴为x=1,顶点为D(1,4),
    (1)在0≤x≤3范围内,
    当x=1时,y最大值=4;当x=3时,y最小值=0;
    (2)①当函数y在t≤x≤t+1内的抛物线完全在对称轴的左侧,当x=t时取得最小值q=﹣t2+2t+3,最大值p=﹣(t+1)2+2(t+1)+3,
    令p﹣q=﹣(t+1)2+2(t+1)+3﹣(﹣t2+2t+3)=3,即﹣2t+1=3,解得t=﹣1.
    ②当t+1=1时,此时p=4,q=3,不合题意,舍去;
    ③当函数y在t≤x≤t+1内的抛物线分别在对称轴的两侧,
    此时p=4,令p﹣q=4﹣(﹣t2+2t+3)=3,即t2﹣2t﹣2=0解得:t1=1+(舍),t2=1﹣(舍);
    或者p﹣q=4﹣[﹣(t+1)2+2(t+1)+3]=3,即(不合题意,舍去);
    ④当t=1时,此时p=4,q=3,不合题意,舍去;
    ⑤当函数y在t≤x≤t+1内的抛物线完全在对称轴的右侧,当x=t时取得最大值p=﹣t2+2t+3,最小值q=﹣(t+1)2+2(t+1)+3,
    令p﹣q=﹣t2+2t+3﹣[﹣(t+1)2+2(t+1)+3]=3,解得t=2.
    综上,t=﹣1或t=2.
    42.(2020•阜新)如图,二次函数y=x2+bx+c的图象交x轴于点A(﹣3,0),B(1,0),交y轴于点 C.点P(m,0)是x轴上的一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.
    (1)求这个二次函数的表达式;
    (2)①若点P仅在线段AO上运动,如图,求线段MN的最大值;
    ②若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.

    【答案】(1)y=x2+2x﹣3.
    (2)①.
    ②点Q的坐标为(0,﹣3﹣1)或(0,﹣1)或(0,3﹣1).
    【解答】解:(1)把A(﹣3,0),B(1,0)代入y=x2+bx+c中,得,
    解得,
    ∴y=x2+2x﹣3.

    (2)①设直线AC的表达式为y=kx+b,把A(﹣3,0),C(0,﹣3)代入y=kx+b.得,
    解得,
    ∴y=﹣x﹣3,
    ∵点P(m,0)是x轴上的一动点,且PM⊥x轴.
    ∴M(m,﹣m﹣3),N(m,m2+2m﹣3),
    ∴MN=(﹣m﹣3)﹣(m2+2m﹣3)=﹣m2﹣3m=﹣(m+)2+,
    ∵a=﹣1<0,
    ∴此函数有最大值.
    又∵点P在线段OA上运动,且﹣3<﹣<0,
    ∴当m=﹣时,MN有最大值.

    ②如图2﹣1中,当点M在线段AC上,MN=MC,四边形MNQC是菱形时.

    ∵MN=﹣m2﹣3m,MC=﹣m,
    ∴﹣m2﹣3m=﹣m,
    解得m=﹣3+或0(舍弃)
    ∴MN=3﹣2,
    ∴CQ=MN=3﹣2,
    ∴OQ=3+1,
    ∴Q(0,﹣3﹣1).

    如图2﹣2中,当MC是菱形的对角线时,四边形MNCQ是正方形,此时CN=MN=CQ=2,可得Q(0,﹣1).

    如图2﹣3中,当点M在CA延长线上时,MN=CM,四边形MNQC是菱形时,

    则有,m2+3m=﹣m,
    解得m=﹣3﹣或0(舍弃),
    ∴MN=CQ=3+2,
    ∴OQ=CQ﹣OC=3﹣1,
    ∴Q(0,3﹣1).
    综上所述,满足条件的点Q的坐标为(0,﹣3﹣1)或(0,﹣1)或(0,3﹣1).
    43.(2020•盘锦)如图1,直线y=x﹣4与x轴交于点B,与y轴交于点A,抛物线y=﹣x2+bx+c经过点B和点C(0,4),△ABO沿射线AB方向以每秒个单位长度的速度平移,平移后的三角形记为△DEF(点A,B,O的对应点分别为点D,E,F),平移时间为t(0<t<4)秒,射线DF交x轴于点G,交抛物线于点M,连接ME.

    (1)求抛物线的解析式;
    (2)当tan∠EMF=时,请直接写出t的值;
    (3)如图2,点N在抛物线上,点N的横坐标是点M的横坐标的,连接OM,NF,OM与NF相交于点P,当NP=FP时,求t的值.
    【答案】(1).
    (2)或.
    (3).
    【解答】解:(1)∵直线y=x﹣4与x轴交于点B,与y轴交于点A,
    ∴B(4,0),A(0,﹣4),
    把B(4,0),C(0,4)代入y=﹣x2+bx+c得到,
    解得,
    ∴抛物线的解析式为y=﹣x2+x+4.

    (2)如图1中,当点M在线段DF的上方时,

    由题意得,D(t,t﹣4),则M(t,﹣t2+t+4),
    ∴DM=﹣t2+8,
    在Rt△MEF中,tan∠EMF===,
    ∴MF=3,
    ∵DF=EF=4,
    ∴DM=7,
    ∴﹣t2+8=7,
    ∴t=或﹣(舍弃)
    当点M在线段DF上时,DM=1,
    ∴﹣t2+8=1,
    解得t=或﹣(舍弃),
    综上所述,满足条件的t的值为或.

    (3)如图2中,过点N作NT∥y轴于T.由题意得D(t,t﹣4),则M(t,﹣t2+t+4),N(t,﹣t2+t+4),T(t,﹣t2+t+2),F(t,t)

    ∵NT∥FM,
    ∴∠PNT=∠PFM,
    ∵∠NPT=∠MPF,PN=PF,
    ∴△NPT≌△FPM(ASA),
    ∴NT=MF,
    ∴﹣t2+t+4﹣(﹣t2+t+2)=﹣t2+t+4﹣t,
    解得t=或﹣(舍弃),
    ∴t的值为.
    44.(2020•西藏)在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.
    (1)求二次函数的解析式;
    (2)如图甲,连接AC,PA,PC,若S△PAC=,求点P的坐标;
    (3)如图乙,过A,B,P三点作⊙M,过点P作PE⊥x轴,垂足为D,交⊙M于点E.点P在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE的长.

    【答案】(1)y=x2﹣x﹣4.
    (2)(3,﹣).
    (3)DE=2.
    【解答】解:(1)∵二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,
    ∴二次函数的解析式为y=(x+2)(x﹣4),
    即y=x2﹣x﹣4.

    (2)如图甲中,连接OP.设P(m,m2﹣m﹣4).

    由题意,A(﹣2,0),C(0,﹣4),
    ∵S△PAC=S△AOC+S△OPC﹣S△AOP,
    ∴=×2×4+×4×m﹣×2×(﹣m2+m+4),
    整理得,m2+2m﹣15=0,
    解得m=3或﹣5(舍弃),
    ∴P(3,﹣).

    (3)结论:点P在运动过程中线段DE的长是定值,DE=2.
    理由:如图乙中,连接AM,PM,EM,设M(1,t),P[m,(m+2)(m﹣4)],E(m,n).

    由题意A(﹣2,0),AM=PM,
    ∴32+t2=(m﹣1)2+[(m+2)(m﹣4)﹣t]2,
    解得t=1+(m+2)(m﹣4),
    ∵ME=PM,PE⊥AB,
    ∴t=,
    ∴n=2t﹣(m+2)(m﹣4)=2[1+(m+2)(m﹣4)]﹣(m+2)(m﹣4)=2,
    ∴DE=2,
    ∴点P在运动过程中线段DE的长是定值,DE=2.
    45.(2020•德阳)如图1,抛物线y=ax2﹣2ax﹣3a(a≠0)与x轴交于点A,B.与y轴交于点C.连接AC,BC.已知△ABC的面积为2.
    (1)求抛物线的解析式;
    (2)平行于x轴的直线与抛物线从左到右依次交于P,Q两点.过P,Q向x轴作垂线,垂足分别为G,H.若四边形PGHQ为正方形,求正方形的边长;
    (3)如图2,平行于y轴的直线交抛物线于点M,交x轴于点N (2,0).点D是抛物线上A,M之间的一动点,且点D不与A,M重合,连接DB交MN于点E.连接AD并延长交MN于点F.在点D运动过程中,3NE+NF是否为定值?若是,求出这个定值;若不是,请说明理由.

    【答案】(1)y=﹣x2+x+1;
    (2)6+2或2﹣6;
    (3)见解析内容.
    【解答】解:(1)如图1,y=ax2﹣2ax﹣3a=a(x2﹣2x﹣3)=a(x﹣3)(x+1),

    ∴A(﹣1,0),B(3,0),
    ∴AB=4,
    ∵△ABC的面积为2,即,
    ∴,
    ∴OC=1,
    ∴C(0,1),
    将C(0,1)代入y=ax2﹣2ax﹣3a,得:﹣3a=1,
    ∴a=﹣,
    ∴该二次函数的解析式为y=﹣x2+x+1;
    (2)如图2,设点P的纵坐标为m,当y=m时,﹣x2+x+1=m,

    解得:x1=1+,x2=1﹣,
    ∴点P的坐标为(1﹣,m),点Q的坐标为(1+,m),
    ∴点G的坐标为(1﹣,0),点H的坐标为(1+,0),
    ∵矩形PGHQ为正方形,
    ∴1+﹣(1﹣)=m,
    解得:m1=﹣6﹣2,m2=﹣6+2,
    ∴当四边形PGHQ为正方形时,边长为6+2或2﹣6;
    (3)如图3,设点D(n,﹣n2+n+1),延长BD交y轴于K,

    ∵A(﹣1,0),
    设AD的解析式为:y=kx+b,
    则,解得:,
    ∴AD的解析式为:y=(﹣)x﹣,
    当x=2时,y=﹣n+2﹣n+1=﹣n+3,
    ∴F(2,3﹣n),
    ∴FN=3﹣n,
    同理得直线BD的解析式为:y=(﹣)x+n+1,
    ∴K(0,n+1),
    ∴OK=n+1,
    ∵N(2,0),B(3,0),
    ∴,
    ∵EN∥OK,
    ∴,
    ∴OK=3EN,
    ∴3EN+FN=OK+FN=n+1+3﹣n=4,
    ∴在点D运动过程中,3NE+NF为定值4.
    46.(2020•锦州)在平面直角坐标系中,抛物线y=﹣x2+bx+c交x轴于A(﹣3,0),B(4,0)两点,交y轴于点C.
    (1)求抛物线的表达式;
    (2)如图,直线y=与抛物线交于A,D两点,与直线BC交于点E.若M(m,0)是线段AB上的动点,过点M作x轴的垂线,交抛物线于点F,交直线AD于点G,交直线BC于点H.
    ①当点F在直线AD上方的抛物线上,且S△EFG=S△OEG时,求m的值;
    ②在平面内是否在点P,使四边形EFHP为正方形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

    【答案】(1);(2)①或﹣2; ②存在;或.
    【解答】解:(1)∵抛物线y=﹣x2+bx+c交x轴于A(﹣3,0),B(4,0)两点,
    ∴y=﹣(x+3)(x﹣4)=﹣;
    (2)①如图1,∵B(4,0),C(0,4),

    ∴设BC的解析式为:y=kx+b,
    则,解得,
    ∴BC的解析式为:y=﹣x+4,
    ∴﹣x+4=,
    解得:x=1,
    ∴E(1,3),
    ∵M(m,0),且MH⊥x轴,
    ∴G(m,),F(m,﹣),
    ∵S△EFG=S△OEG,
    ∴,
    [(﹣)﹣()](1﹣m)=,
    解得:m1=,m2=﹣2;
    ②存在,由①知:E(1,3),
    ∵四边形EFHP是正方形,
    ∴FH=EF,∠EFH=∠FHP=∠HPE=90°,
    ∵M(m,0),且MH⊥x轴,
    ∴H(m,﹣m+4),F(m,﹣),
    分两种情况:
    i)当﹣3≤m<1时,如图2,点F在EP的左侧,

    ∴FH=(﹣m+4)﹣(﹣)=,
    ∵EF=FH,
    ∴,
    解得:m1=(舍),m2=,
    ∴H(,),
    ∴P(1,),
    ii)当1<m<4时,点F在PE的右边,如图3,

    同理得﹣=m﹣1,
    解得:m1=,m2=(舍),
    同理得P(1,);
    综上,点P的坐标为:或.
    47.(2020•朝阳)如图,抛物线y=﹣+bx+c与x轴交于点A,点B,与y轴交于点C,抛物线的对称轴为直线x=﹣1,点C坐标为(0,4).

    (1)求抛物线表达式;
    (2)在抛物线上是否存在点P,使∠ABP=∠BCO,如果存在,求出点P坐标;如果不存在,请说明理由;
    (3)在(2)的条件下,若点P在x轴上方,点M是直线BP上方抛物线上的一个动点,求点M到直线BP的最大距离;
    (4)点G是线段AC上的动点,点H是线段BC上的动点,点Q是线段AB上的动点,三个动点都不与点A,B,C重合,连接GH,GQ,HQ,得到△GHQ,直接写出△GHQ周长的最小值.
    【答案】(1)y=﹣﹣x+4.
    (2)存在,或,理由见解析.
    (3).
    (4).
    【解答】解:(1)∵抛物线对称轴为x=﹣1,
    ∴﹣=﹣1,
    ∴b=﹣1,
    将(0,4)代入y=﹣﹣x+c中,
    ∴c=4,
    ∴y=﹣﹣x+4.
    (2)如图1中,作PE⊥x轴于点E.

    ∵∠ABP=∠BCO,∠PEB=∠BOC=90°,
    ∴△PEB∽△BOC,
    ∴(此处也可以由等角的正切值相等得到),
    设,则PE=|﹣m2﹣m+4|,BE=2﹣m,
    ①当点P在x轴上方时:,
    解得m1=﹣3,m2=2(不符题意,舍),
    ②当点P在x轴下方时:,
    解得m1=﹣5,m2=2(不符题意,舍),
    ∴或.

    (3)作MF⊥x轴于点F,交BP于点R,作MN⊥BP于点N.

    ∵y=﹣(x+4)(x﹣2),
    ∴A(﹣4,0),B(2,0),
    设yBP=kx+b1,
    将代入得解得k=﹣=1,
    ∴yBP=﹣x+1,
    设,则,
    ∴a+3,
    ∵∠MNR=∠RFB=90°,∠NRM=∠FRB,
    ∴△MNR∽△BFR,
    ∴,
    ∵tan∠ABP=,
    在Rt△MNR中NR:MN:MR=1:2:,
    ∴,
    ∴MN=﹣,
    当a=﹣时,MN最大为.

    (4)作Q点关于AC的对称点Q1,作Q关于CB的对称点Q2,连接Q1Q2与AC于G1,与CB交于点H1,连接QQ1交AC于J,连接QQ2交CB于K,此时△QG1H1的周长最小,这个最小值=QQ2.

    ∵QJ=JQ1,QK=KQ2,
    ∴Q1Q2=2JK,
    ∴当JK最小时,Q1Q2最小,如图2中:

    ∵∠CJQ=∠CKQ=90°,
    ∴C、J、Q、K四点共圆,线段CQ就是圆的直径,JK是弦,
    ∵∠JCK是定值,
    ∴直径CQ最小时,弦JK最小,
    ∴当点Q与点O重合时,CQ最小,此时JK最小,如图3中:

    ∵在Rt△COA中,∠COA=90°,CO=4,AO=4,
    ∴AC=,
    ∵Rt△COB,∠COB=90°,BO=2CB=,
    ∵OJ⊥AC,OK⊥CB,
    ∴OC•OB,
    ∴OK=,
    ∴CN=,
    ∵∠JCO=∠OCA,∠CJO=∠COA,
    ∴△CJO∽△COA,
    ∴,
    ∴CO2=CJ•CA,同理可得:CO2=CK•CB,
    ∴CJ•CA=CK•CB,
    ∴,
    ∵∠JCK=∠BCA,
    ∴△CJK∽△CBA,
    ∴=,
    ∴,
    ∴JK=,
    ∴△QGH周长的最小值=Q1Q2=2JK=.
    48.(2020•鞍山)在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)经过点A(﹣2,﹣4)和点C(2,0),与y轴交于点D,与x轴的另一交点为点B.

    (1)求抛物线的解析式;
    (2)如图1,连接BD,在抛物线上是否存在点P,使得∠PBC=2∠BDO?若存在,请求出点P的坐标;若不存在,请说明理由;
    (3)如图2,连接AC,交y轴于点E,点M是线段AD上的动点(不与点A,点D重合),将△CME沿ME所在直线翻折,得到△FME,当△FME与△AME重叠部分的面积是△AMC面积的时,请直接写出线段AM的长.
    【答案】(1)y=﹣x2+x+2;
    (2)存在,(,)或(,);
    (3)或.
    【解答】解:(1)∵抛物线y=ax2+bx+2经过点A(﹣2,﹣4)和点C(2,0),
    则,解得:,
    ∴抛物线的解析式为y=﹣x2+x+2;
    (2)存在,理由是:
    在x轴正半轴上取点E,使OB=OE,过点E作EF⊥BD,垂足为F,
    在y=﹣x2+x+2中,
    令y=0,解得:x=2或﹣1,
    ∴点B坐标为(﹣1,0),
    ∴点E坐标为(1,0),
    可知:点B和点E关于y轴对称,
    ∴∠BDO=∠EDO,即∠BDE=2∠BDO,
    ∵D(0,2),
    ∴DE===BD,
    在△BDE中,×BE×OD=×BD×EF,
    即2×2=×EF,解得:EF=,
    ∴DF=,
    ∴tan∠BDE=,
    若∠PBC=2∠BDO,
    则∠PBC=∠BDE,
    ∵BD=DE=,BE=2,
    则BD2+DE2>BE2,
    ∴∠BDE为锐角,
    当点P在第三象限时,
    ∠PBC为钝角,不符合;
    当点P在x轴上方时,
    ∵∠PBC=∠BDE,设点P坐标为(c,﹣c2+c+2),
    过点P作x轴的垂线,垂足为G,
    则BG=c+1,PG=﹣c2+c+2,
    ∴tan∠PBC==,
    解得:c=,
    ∴﹣c2+c+2=,
    ∴点P的坐标为(,);

    当点P在第四象限时,
    同理可得:PG=c2﹣c﹣2,BG=c+1,
    tan∠PBC=,
    解得:c=,
    ∴,
    ∴点P的坐标为(,),
    综上:点P的坐标为(,)或(,);

    (3)设EF与AD交于点N,
    ∵A(﹣2,﹣4),D(0,2),设直线AD表达式为y=mx+n,
    则,解得:,
    ∴直线AD表达式为y=3x+2,
    设点M的坐标为(s,3s+2),
    ∵A(﹣2,﹣4),C(2,0),设直线AC表达式为y=m1x+n1,
    则,解得:,
    ∴直线AC表达式为y=x﹣2,
    令x=0,则y=﹣2,
    ∴点E坐标为(0,﹣2),
    可得:点E是线段AC中点,
    ∴△AME和△CME的面积相等,
    由于折叠,
    ∴△CME≌△FME,即S△CME=S△FME,
    由题意可得:
    当点F在直线AC上方时,
    ∴S△MNE=S△AMC=S△AME=S△FME,
    即S△MNE=S△ANE=S△MNF,
    ∴MN=AN,FN=NE,
    ∴四边形FMEA为平行四边形,
    ∴CM=FM=AE=AC=,
    ∵M(s,3s+2),
    ∴,
    解得:s=或0(舍),
    ∴M(,),
    ∴AM=,

    当点F在直线AC下方时,如图,
    同理可得:四边形AFEM为平行四边形,
    ∴AM=EF,
    由于折叠可得:CE=EF,
    ∴AM=EF=CE=,

    综上:AM的长度为或.
    49.(2020•赤峰)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(1,0),B(4,0)两点,与y轴交于点C,直线y=﹣x+2经过B,C两点.
    (1)直接写出二次函数的解析式 y=x2﹣x+2 ;
    (2)平移直线BC,当直线BC与抛物线有唯一公共点Q时,求此时点Q的坐标;
    (3)过(2)中的点Q作QE∥y轴,交x轴于点E.若点M是抛物线上一个动点,点N是x轴上一个动点,是否存在以E,M,N三点为顶点的直角三角形(其中M为直角顶点)与△BOC相似?如果存在,请直接写出满足条件的点M的个数和其中一个符合条件的点M的坐标;如果不存在,请说明理由.

    【答案】(1)y=x2﹣x+2;
    (2)点Q(2,﹣1);
    (3)满足条件的点M共有8个,其点的坐标为(3+,)或(3﹣,)或(2+,﹣)或(2﹣,)或(,5+)或(,5﹣)或(,3﹣)或(,3+).
    【解答】解:(1)∵直线y=﹣x+2经过B,C两点.
    ∴点C(0,2),
    ∵二次函数y=ax2+bx+c(a≠0)的图象经过A(1,0),B(4,0),点C(0,2),
    ∴,
    解得:,
    ∴抛物线解析式为y=x2﹣x+2,
    故答案为:y=x2﹣x+2;

    (2)∵B(4,0),点C(0,2),
    ∴直线BC解析式为:y=﹣x+2,
    ∴设平移后的解析式为:y=﹣x+2+m,
    ∵平移后直线BC与抛物线有唯一公共点Q
    ∴x2﹣x+2=﹣x+2+m,
    ∴△=4﹣4××(﹣m)=0,
    ∴m=﹣2,
    ∴设平移后的解析式为:y=﹣x,
    联立方程组得:,
    ∴,
    ∴点Q(2,﹣1);

    (3)设点M的坐标为(m,m2﹣m+2),
    ∵以E,M,N三点为顶点的直角三角形(其中M为直角顶点)与△BOC相似,
    ∴①当△MEN∽△OBC时,
    ∴∠MEN=∠OBC,
    过点M作MH⊥x轴于H,
    ∴∠EHM=90°=∠BOC,
    ∴△EHM∽△BOC,
    ∴,
    ∴MH=|m2﹣m+2|,EH=|m﹣2|,
    ∵OB=4,OC=2.
    ∴=2,
    ∴m=3±或m=2±,
    当m=3+时,m2﹣m+2=,
    ∴M(3+,),
    当m=3﹣时,m2﹣m+2=,
    ∴M(3﹣,),
    当m=2+时,m2﹣m+2=﹣,
    ∴M(2+,﹣),
    当m=2﹣时,m2﹣m+2=,
    ∴M(2﹣,),
    ②当△NEM∽△OBC时,
    同①的方法得,=,
    ∴m=或m=,
    当m=时,m2﹣m+2=5+,
    ∴M(,5+),
    当m=时,m2﹣m+2=5﹣,
    ∴M(,5﹣),
    当m=时,m2﹣m+2=3﹣,
    ∴M(,3﹣),
    当m=时,m2﹣m+2=3+,
    ∴M(,3+),
    即满足条件的点M共有8个,其点的坐标为(3+,)或(3﹣,)或(2+,﹣)或(2﹣,)或(,5+)或(,5﹣)或(,3﹣)或(,3+).

    50.(2020•葫芦岛)如图,抛物线y=ax2+x+c(a≠0)与x轴相交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),作直线BC.

    (1)求抛物线的解析式;
    (2)在直线BC上方的抛物线上存在点D,使∠DCB=2∠ABC,求点D的坐标;
    (3)在(2)的条件下,点F的坐标为(0,),点M在抛物线上,点N在直线BC上.当以D,F,M,N为顶点的四边形是平行四边形时,请直接写出点N的坐标.
    【答案】(1);
    (2)(2,);
    (3)(,3﹣)或(﹣,3+)或(4+,﹣)或(4﹣,).
    【解答】解:(1)∵抛物线经过点A(﹣1,0),C(0,3),
    ∴,解得:,
    ∴抛物线的解析式为:;
    (2)如图1,过点C作CE∥x轴交抛物线于点E,则∠ECB=∠ABC,

    过点D作DH⊥CE于点H,则∠DHC=90°,
    ∵∠DCB=∠DCH+∠ECB=2∠ABC,
    ∴∠DCH=∠ABC,
    ∵∠DHC=∠COB=90°,
    ∴△DCH∽△CBO,
    ∴,
    设点D的横坐标为t,则,
    ∵C(0,3),
    ∴,
    ∵点B是与x轴的交点,
    ∴,
    解得x1=4,x2=﹣1,
    ∴B的坐标为(4,0),
    ∴OB=4,
    ∴,
    解得t1=0(舍去),t2=2,
    ∴点D的纵坐标为:,
    则点D坐标为;
    (3)设直线BC的解析式为:y=kx+b,
    则,解得:,
    ∴直线BC的解析式为:y=﹣x+3,
    设N(m,﹣m+3),
    分两种情况:
    ①如图2﹣1和图2﹣2,以DF为边,N在x轴的上方时,四边形DFNM是平行四边形,

    ∵D(2,),F(0,),
    ∴M(m+2,﹣m+4),
    代入抛物线的解析式得:﹣=﹣m+4,
    解得:m=,
    ∴N(,3﹣)或(﹣,3+);
    ②如图3﹣1和3﹣2,以DF为边,四边形DFMN是平行四边形,

    同理得:M(m﹣2,﹣m+2),
    代入抛物线的解析式得:﹣=﹣m+2,
    解得:m=4,
    ∴N(4+,﹣)或(4﹣,);
    综上,点N的坐标分别为:(,3﹣)或(﹣,3+)或(4+,﹣)或(4﹣,).


    相关试卷

    2020年全国中考数学试题精选分类(7)三角形(含解析):

    这是一份2020年全国中考数学试题精选分类(7)三角形(含解析),共70页。

    2020年全国中考数学试题精选分类(10)概率与统计(含解析):

    这是一份2020年全国中考数学试题精选分类(10)概率与统计(含解析),共64页。

    2020年全国中考数学试题精选分类(4)一次函数(含解析):

    这是一份2020年全国中考数学试题精选分类(4)一次函数(含解析),共42页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map