2021-2022学年陕西省汉中市名校中考考前最后一卷数学试卷含解析
展开
这是一份2021-2022学年陕西省汉中市名校中考考前最后一卷数学试卷含解析,共24页。试卷主要包含了下列运算正确的是,下列各数中,无理数是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.如图:A、B、C、D四点在一条直线上,若AB=CD,下列各式表示线段AC错误的是( )
A.AC=AD﹣CD B.AC=AB+BC
C.AC=BD﹣AB D.AC=AD﹣AB
2.如图,已知反比函数的图象过Rt△ABO斜边OB的中点D,与直角边AB相交于C,连结AD、OC,若△ABO的周长为,AD=2,则△ACO的面积为( )
A. B.1 C.2 D.4
3.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可得到最佳加工时间为( )
A.4.25分钟 B.4.00分钟 C.3.75分钟 D.3.50分钟
4.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字6、7、8、1.若转动转盘一次,转盘停止后(当指针恰好指在分界线上时,不记,重转),指针所指区域的数字是奇数的概率为( )
A. B. C. D.
5.下列运算正确的是( )
A.2a+3a=5a2 B.(a3)3=a9 C.a2•a4=a8 D.a6÷a3=a2
6.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( )
A.众数 B.平均数 C.中位数 D.方差
7.下列各数中,无理数是( )
A.0 B. C. D.π
8.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )
A.五丈 B.四丈五尺 C.一丈 D.五尺
9.已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若∠1=25°,则∠2的度数是( )
A.25° B.30° C.35° D.55°
10.关于x的一元二次方程x2-4x+k=0有两个相等的实数根,则k的值是( )
A.2 B.-2 C.4 D.-4
二、填空题(本大题共6个小题,每小题3分,共18分)
11.分解因式:_____.
12.一副直角三角板叠放如图所示,现将含45°角的三角板固定不动,把含30°角的三角板绕直角顶点沿逆时针方向匀速旋转一周,第一秒旋转5°,第二秒旋转10°,第三秒旋转5°,第四秒旋转10°,…按此规律,当两块三角板的斜边平行时,则三角板旋转运动的时间为_____.
13.如图,在ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=cm,则EF+CF的长为 cm.
14.如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为 ________.
15.计算的结果为_____.
16.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E是线段BO上的一个动点,点F为射线DC上一点,若∠ABC=60°,∠AEF=120°,AB=4,则EF可能的整数值是_____.
三、解答题(共8题,共72分)
17.(8分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(cos80°≈0.17,sin80°≈0.98,≈1.414)
(1)此时小强头部E点与地面DK相距多少?
(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?
18.(8分)(1)计算:|﹣3|+(π﹣2 018)0﹣2sin 30°+()﹣1.
(2)先化简,再求值:(x﹣1)÷(﹣1),其中x为方程x2+3x+2=0的根.
19.(8分)由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m³)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m³)与时间(天)的关系如图中线段l2所示(不考虑其他因素).
(1)求原有蓄水量y1(万m³)与时间(天)的函数关系式,并求当x=20时的水库总蓄水量.
(2)求当0≤x≤60时,水库的总蓄水量y万(万m³)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m³为严重干旱,直接写出发生严重干旱时x的范围.
20.(8分)如图,已知是直角坐标平面上三点.将先向右平移3个单位,再向上平移3个单位,画出平移后的图形;以点为位似中心,位似比为2,将放大,在轴右侧画出放大后的图形;填空:面积为 .
21.(8分)如图,直线y=x与双曲线y=(k>0,x>0)交于点A,将直线y=x向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B.
(1)设点B的横坐标分别为b,试用只含有字母b的代数式表示k;
(2)若OA=3BC,求k的值.
22.(10分)已知:如图,AB为⊙O的直径,C是BA延长线上一点,CP切⊙O于P,弦PD⊥AB于E,过点B作BQ⊥CP于Q,交⊙O于H,
(1)如图1,求证:PQ=PE;
(2)如图2,G是圆上一点,∠GAB=30°,连接AG交PD于F,连接BF,若tan∠BFE=3,求∠C的度数;
(3)如图3,在(2)的条件下,PD=6,连接QC交BC于点M,求QM的长.
23.(12分)某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.
收集数据:从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:
排球
10
9.5
9.5
10
8
9
9.5
9
7
10
4
5.5
10
9.5
9.5
10
篮球
9.5
9
8.5
8.5
10
9.5
10
8
6
9.5
10
9.5
9
8.5
9.5
6
整理、描述数据:按如下分数段整理、描述这两组样本数据:
(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格)
分析数据:两组样本数据的平均数、中位数、众数如下表所示:
项目
平均数
中位数
众数
排球
8.75
9.5
10
篮球
8.81
9.25
9.5
得出结论:
(1)如果全校有160人选择篮球项目,达到优秀的人数约为_________人;
(2)初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高.小军说:篮球项目整体水平较高.
你同意_______的看法,理由为____________________________.(至少从两个不同的角度说明推断的合理性)
24.如图,直线y=﹣x+3分别与x轴、y交于点B、C;抛物线y=x2+bx+c经过点B、C,与x轴的另一个交点为点A(点A在点B的左侧),对称轴为l1,顶点为D.
(1)求抛物线y=x2+bx+c的解析式.
(2)点M(1,m)为y轴上一动点,过点M作直线l2平行于x轴,与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),且x2>x1>1.
①结合函数的图象,求x3的取值范围;
②若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,求m的值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据线段上的等量关系逐一判断即可.
【详解】
A、∵AD-CD=AC,
∴此选项表示正确;
B、∵AB+BC=AC,
∴此选项表示正确;
C、∵AB=CD,
∴BD-AB=BD-CD,
∴此选项表示不正确;
D、∵AB=CD,
∴AD-AB=AD-CD=AC,
∴此选项表示正确.
故答案选:C.
【点睛】
本题考查了线段上两点间的距离及线段的和、差的知识,解题的关键是找出各线段间的关系.
2、A
【解析】
在直角三角形AOB中,由斜边上的中线等于斜边的一半,求出OB的长,根据周长求出直角边之和,设其中一直角边AB=x,表示出OA,利用勾股定理求出AB与OA的长,过D作DE垂直于x轴,得到E为OA中点,求出OE的长,在直角三角形DOE中,利用勾股定理求出DE的长,利用反比例函数k的几何意义求出k的值,确定出三角形AOC面积即可.
【详解】
在Rt△AOB中,AD=2,AD为斜边OB的中线,
∴OB=2AD=4,
由周长为4+2
,得到AB+AO=2,
设AB=x,则AO=2-x,
根据勾股定理得:AB2+OA2=OB2,即x2+(2-x)2=42,
整理得:x2-2x+4=0,
解得x1=+,x2=-,
∴AB=+,OA=-,
过D作DE⊥x轴,交x轴于点E,可得E为AO中点,
∴OE=OA=(-)(假设OA=+,与OA=-,求出结果相同),
在Rt△DEO中,利用勾股定理得:DE==(+)),
∴k=-DE•OE=-(+))×(-))=1.
∴S△AOC=DE•OE=,
故选A.
【点睛】
本题属于反比例函数综合题,涉及的知识有:勾股定理,直角三角形斜边的中线性质,三角形面积求法,以及反比例函数k的几何意义,熟练掌握反比例的图象与性质是解本题关键.
3、C
【解析】
根据题目数据求出函数解析式,根据二次函数的性质可得.
【详解】
根据题意,将(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,
得:
解得:a=−0.2,b=1.5,c=−2,
即p=−0.2t2+1.5t−2,
当t=−=3.75时,p取得最大值,
故选C.
【点睛】
本题考查了二次函数的应用,熟练掌握性质是解题的关键.
4、A
【解析】
转盘中4个数,每转动一次就要4种可能,而其中是奇数的有2种可能.然后根据概率公式直接计算即可
【详解】
奇数有两种,共有四种情况,将转盘转动一次,求得到奇数的概率为:
P(奇数)= = .故此题选A.
【点睛】
此题主要考查了几何概率,正确应用概率公式是解题关键.
5、B
【解析】
直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别化简得出答案.
【详解】
A、2a+3a=5a,故此选项错误;
B、(a3)3=a9,故此选项正确;
C、a2•a4=a6,故此选项错误;
D、a6÷a3=a3,故此选项错误.
故选:B.
【点睛】
此题主要考查了同底数幂的乘除运算以及合并同类项和幂的乘方运算,正确掌握运算法则是解题关键.
6、D
【解析】
方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。
【详解】
由于方差能反映数据的稳定性,需要比较这两名学生立定跳远成绩的方差.
故选D.
7、D
【解析】
利用无理数定义判断即可.
【详解】
解:π是无理数,
故选:D.
【点睛】
此题考查了无理数,弄清无理数的定义是解本题的关键.
8、B
【解析】
【分析】根据同一时刻物高与影长成正比可得出结论.
【详解】设竹竿的长度为x尺,
∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,
∴,
解得x=45(尺),
故选B.
【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键.
9、C
【解析】
根据平行线的性质即可得到∠3的度数,再根据三角形内角和定理,即可得到结论.
【详解】
解:∵直线m∥n,
∴∠3=∠1=25°,
又∵三角板中,∠ABC=60°,
∴∠2=60°﹣25°=35°,
故选C.
【点睛】
本题考查平行线的性质,熟练掌握平行线的性质是解题的关键.
10、C
【解析】
对于一元二次方程a+bx+c=0,当Δ=-4ac=0时,方程有两个相等的实数根.
即16-4k=0,解得:k=4.
考点:一元二次方程根的判别式
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,
先提取公因式2后继续应用完全平方公式分解即可:.
12、14s或38s.
【解析】
试题解析:分两种情况进行讨论:
如图:
旋转的度数为:
每两秒旋转
如图:
旋转的度数为:
每两秒旋转
故答案为14s或38s.
13、5
【解析】
分析:∵AF是∠BAD的平分线,∴∠BAF=∠FAD.
∵ABCD中,AB∥DC,∴∠FAD =∠AEB.∴∠BAF=∠AEB.
∴△BAE是等腰三角形,即BE=AB=6cm.
同理可证△CFE也是等腰三角形,且△BAE∽△CFE.
∵BC= AD=9cm,∴CE=CF=3cm.∴△BAE和△CFE的相似比是2:1.
∵BG⊥AE, BG=cm,∴由勾股定理得EG=2cm.∴AE=4cm.∴EF=2cm.
∴EF+CF=5cm.
14、1
【解析】
如图,由勾股定理可以先求出AB的值,再证明△AED∽△ACB,根据相似三角形的性质就可以求出结论.
【详解】
在Rt△ABC中,由勾股定理.得
AB==10,
∵DE⊥AB,
∴∠AED=∠C=90°.
∵∠A=∠A,
∴△AED∽△ACB,
∴,
∴,
∴AD=1.
故答案为1
【点睛】
本题考查了勾股定理的运用,相似三角形的判定及性质的运用,解答时求出△AED∽△ACB是解答本题的关键.
15、﹣2
【解析】
根据分式的运算法则即可得解.
【详解】
原式===,
故答案为:.
【点睛】
本题主要考查了同分母的分式减法,熟练掌握相关计算法则是解决本题的关键.
16、2,3,1.
【解析】
分析:根据题意得出EF的取值范围,从而得出EF的值.
详解:∵AB=1,∠ABC=60°, ∴BD=1,
当点E和点B重合时,∠FBD=90°,∠BDC=30°,则EF=1;
当点E和点O重合时,∠DEF=30°,则△EFD为等腰三角形,则EF=FD=2,
∴EF可能的整数值为2、3、1.
点睛:本题主要考查的就是菱形的性质以及直角三角形的勾股定理,属于中等难度的题型.解决这个问题的关键就是找出当点E在何处时取到最大值和最小值,从而得出答案.
三、解答题(共8题,共72分)
17、 (1) 小强的头部点E与地面DK的距离约为144.5 cm.(2) 他应向前9.5 cm.
【解析】
试题分析:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.求出MF、FN的值即可解决问题;
(2)求出OH、PH的值即可判断;
试题解析:解:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.
∵EF+FG=166,FG=100,∴EF=66,∵∠FGK=80°,∴FN=100sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66cos45°=≈46.53,∴MN=FN+FM≈144.5,∴此时小强头部E点与地面DK相距约为144.5cm.
(2)过点E作EP⊥AB于点P,延长OB交MN于H.∵AB=48,O为AB中点,∴AO=BO=24,∵EM=66sin45°≈46.53,∴PH≈46.53,∵GN=100cos80°≈17,CG=15,∴OH=24+15+17=56,OP=OH﹣PH=56﹣46.53=9.47≈9.5,∴他应向前9.5cm.
18、(1)6;(2)﹣(x+1),1.
【解析】
(1)原式=3+1﹣2×+3=6
(2)由题意可知:x2+3x+2=0,
解得:x=﹣1或x=﹣2
原式=(x﹣1)÷
=﹣(x+1)
当x=﹣1时,x+1=0,分式无意义,
当x=﹣2时,
原式=1
19、(1)y1=-20x+1200, 800;(2)15≤x≤40.
【解析】
(1)根据图中的已知点用待定系数法求出一次函数解析式(2)设y2=kx+b,把(20,0)和(60,1000)代入求出解析式,在已知范围内求出解即可.
【详解】
解:(1)设y1=kx+b,把(0,1200)和(60,0)代入得解得,所以y1=-20x+1200,当x=20时,y1=-20×20+1200=800,
(2)设y2=kx+b,把(20,0)和(60,1000)代入得则,所以y2=25x-500,当0≤x≤20时,y=-20x+1200,当20<x≤60时,y=y1+y2=-20x+1200+25x-500=5x+700,
由题意
解得该不等式组的解集为15≤x≤40
所以发生严重干旱时x的范围为15≤x≤40.
【点睛】
此题重点考察学生对一次函数和一元一次不等式的实际应用能力,掌握一次函数和一元一次不等式的解法是解题的关键.
20、(1)详见解析;(2)详见解析;(3).
【解析】
(1)分别画出A、B、C三点的对应点即可解决问题;
(2)由(1)得各顶点的坐标,然后利用位似图形的性质,即可求得各点的坐标,然后在图中作出位似三角形即可.
(3)求得所在矩形的面积减去三个三角形的面积即可.
【详解】
(1)如图,即为所求作;
(2)如图,即为所求作;
(3)面积=4×4-×2×4-×2×2-×2×4=6.
【点睛】
本题主要考查了利用平移变换作图、位似作图以及求三角形的面积,作图时要先找到图形的关键点,把这几个关键点按平移的方向和距离确定对应点后,再顺序连接对应点即可得到平移后的图形.
21、(1)k=b2+4b;(2).
【解析】
试题分析:(1)分别求出点B的坐标,即可解答.
(2)先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,再设A(3x,x),由于OA=3BC,故可得出B(x,x+4),再根据反比例函数中k=xy为定值求出x
试题解析:(1)∵将直线y=向上平移4个单位长度后,与y轴交于点C,
∴平移后直线的解析式为y=+4,
∵点B在直线y=+4上,
∴B(b,b+4),
∵点B在双曲线y=上,
∴B(b,),
令b+4=
得
(2)分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,x),
∵OA=3BC,BC∥OA,CF∥x轴,
∴CF=OD,
∵点A、B在双曲线y=上,
∴3b•b=,解得b=1,
∴k=3×1××1=.
考点:反比例函数综合题.
22、(1)证明见解析(2)30°(3) QM=
【解析】
试题分析:
(1)连接OP,PB,由已知易证∠OBP=∠OPB=∠QBP,从而可得BP平分∠OBQ,结合BQ⊥CP于点Q,PE⊥AB于点E即可由角平分线的性质得到PQ=PE;
(2)如下图2,连接OP,则由已知易得∠CPO=∠PEC=90°,由此可得∠C=∠OPE,设EF=x,则由∠GAB=30°,∠AEF=90°可得AE=,在Rt△BEF中,由tan∠BFE=可得BE=,从而可得AB=,则OP=OA=,结合AE=可得OE=,这样即可得到sin∠OPE=,由此可得∠OPE=30°,则∠C=30°;
(3)如下图3,连接BG,过点O作OK⊥HB于点K,结合BQ⊥CP,∠OPQ=90°,可得四边形POKQ为矩形.由此可得QK=PO,OK∥CQ从而可得∠KOB=∠C=30°;由已知易证PE=,在Rt△EPO中结合(2)可解得PO=6,由此可得OB=QK=6;在Rt△KOB中可解得KB=3,由此可得QB=9;在△ABG中由已知条件可得BG=6,∠ABG=60°;过点G作GN⊥QB交QB的延长线于点N,由∠ABG=∠CBQ=60°,可得∠GBN=60°,从而可得解得GN=,BN=3,由此可得QN=12,则在Rt△BGN中可解得QG=,由∠ABG=∠CBQ=60°可知△BQG中BM是角平分线,由此可得QM:GM=QB:GB=9:6由此即可求得QM的长了.
试题解析:
(1)如下图1,连接OP,PB,∵CP切⊙O于P,
∴OP⊥CP于点P,
又∵BQ⊥CP于点Q,
∴OP∥BQ,
∴∠OPB=∠QBP,
∵OP=OB,
∴∠OPB=∠OBP,
∴∠QBP=∠OBP,
又∵PE⊥AB于点E,
∴PQ=PE;
(2)如下图2,连接,∵CP切⊙O于P,
∴
∴
∵PD⊥AB
∴
∴
∴
在Rt中,∠GAB=30°
∴设EF=x,则
在Rt中,tan∠BFE=3
∴
∴
∴
∴
∴在RtPEO中,
∴30°;
(3)如下图3,连接BG,过点O作于K,又BQ⊥CP,
∴,
∴四边形POKQ为矩形,
∴QK=PO,OK//CQ,
∴30°,
∵⊙O 中PD⊥AB于E ,PD=6 ,AB为⊙O的直径,
∴PE= PD= 3,
根据(2)得,在RtEPO中,,
∴,
∴OB=QK=PO=6,
∴在Rt中, ,
∴,
∴QB=9,
在△ABG中,AB为⊙O的直径,
∴AGB=90°,
∵BAG=30°,
∴BG=6,ABG=60°,
过点G作GN⊥QB交QB的延长线于点N,则∠N=90°,∠GBN=180°-∠CBQ-∠ABG=60°,
∴BN=BQ·cos∠GBQ=3,GN=BQ·sin∠GBQ=,
∴QN=QB+BN=12,
∴在Rt△QGN中,QG=,
∵∠ABG=∠CBQ=60°,
∴BM是△BQG的角平分线,
∴QM:GM=QB:GB=9:6,
∴QM=.
点睛:解本题第3小题的要点是:(1)作出如图所示的辅助线,结合已知条件和(2)先求得BQ、BG的长及∠CBQ=∠ABG=60°;(2)再过点G作GN⊥QB并交QB的延长线于点N,解出BN和GN的长,这样即可在Rt△QGN中求得QG的长,最后在△BQG中“由角平分线分线段成比例定理”即可列出比例式求得QM的长了.
23、130 小明 平均数接近,而排球成绩的中位数和众数都较高.
【解析】
根据抽取的16人中成绩达到优秀的百分比,即可得到全校达到优秀的人数;
根据平均数接近,而排球成绩的中位数和众数都较高,即可得到结论.
【详解】
解:补全表格成绩:
人数
项目
10
排球
1
1
2
7
5
篮球
0
2
1
10
3
达到优秀的人数约为(人);
故答案为130;
同意小明的看法,理由为:平均数接近,而排球成绩的中位数和众数都较高答案不唯一,理由需支持判断结论
故答案为小明,平均数接近,而排球成绩的中位数和众数都较高.
【点睛】
本题考查众数、中位数,平均数的应用,解题的关键是掌握众数、中位数、平均数的定义以及用样本估计总体.
24、(2)y=x2﹣4x+3;(2)①2<x3<4,②m的值为或2.
【解析】
(2)由直线y=﹣x+3分别与x轴、y交于点B、C求得点B、C的坐标,再代入y=x2+bx+c求得b、c的值,即可求得抛物线的解析式;(2)①先求得抛物线的顶点坐标为D(2,﹣2),当直线l2经过点D时求得m=﹣2;当直线l2经过点C时求得m=3,再由x2>x2>2,可得﹣2<y3<3,即可﹣2<﹣x3+3<3,所以2<x3<4;②分当直线l2在x轴的下方时,点Q在点P、N之间和当直线l2在x轴的上方时,点N在点P、Q之间两种情况求m的值即可.
【详解】
(2)在y=﹣x+3中,令x=2,则y=3;
令y=2,则x=3;得B(3,2),C(2,3),
将点B(3,2),C(2,3)的坐标代入y=x2+bx+c
得:,解得
∴y=x2﹣4x+3;
(2)∵直线l2平行于x轴,
∴y2=y2=y3=m,
①如图①,y=x2﹣4x+3=(x﹣2)2﹣2,
∴顶点为D(2,﹣2),
当直线l2经过点D时,m=﹣2;
当直线l2经过点C时,m=3
∵x2>x2>2,
∴﹣2<y3<3,
即﹣2<﹣x3+3<3,
得2<x3<4,
②如图①,当直线l2在x轴的下方时,点Q在点P、N之间,
若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PQ=QN.
∵x2>x2>2,
∴x3﹣x2=x2﹣x2,
即 x3=2x2﹣x2,
∵l2∥x轴,即PQ∥x轴,
∴点P、Q关于抛物线的对称轴l2对称,
又抛物线的对称轴l2为x=2,
∴2﹣x2=x2﹣2,
即x2=4﹣x2,
∴x3=3x2﹣4,
将点Q(x2,y2)的坐标代入y=x2﹣4x+3
得y2=x22﹣4x2+3,又y2=y3=﹣x3+3
∴x22﹣4x2+3=﹣x3+3,
∴x22﹣4x2=﹣(3x2﹣4)
即 x22﹣x2﹣4=2,解得x2=,(负值已舍去),
∴m=()2﹣4×+3=
如图②,当直线l2在x轴的上方时,点N在点P、Q之间,
若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PN=NQ.
由上可得点P、Q关于直线l2对称,
∴点N在抛物线的对称轴l2:x=2,
又点N在直线y=﹣x+3上,
∴y3=﹣2+3=2,即m=2.
故m的值为或2.
【点睛】
本题是二次函数综合题,
本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、线段的中点及分类讨论思想等知识.在(2)中注意待定系数法的应用;在(2)①注意利用数形结合思想;在(2)②注意分情况讨论.本题考查知识点较多,综合性较强,难度较大.
相关试卷
这是一份陕西省西安市莲湖区重点名校2021-2022学年中考考前最后一卷数学试卷含解析,共24页。试卷主要包含了若分式有意义,则a的取值范围是,下列计算正确的是等内容,欢迎下载使用。
这是一份河北省邯郸市名校2021-2022学年中考考前最后一卷数学试卷含解析,共17页。试卷主要包含了下列计算正确的是,计算3的结果是,在平面直角坐标系中,将点P,二次函数y=等内容,欢迎下载使用。
这是一份2022届陕西省商洛市名校中考考前最后一卷数学试卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,下列调查中适宜采用抽样方式的是等内容,欢迎下载使用。