2021-2022学年陕西省安康市名校中考数学最后冲刺模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )
A.五丈 B.四丈五尺 C.一丈 D.五尺
2.下面的统计图反映了我国最近十年间核电发电量的增长情况,根据统计图提供的信息,下列判断合理的是( )
A.2011年我国的核电发电量占总发电量的比值约为1.5%
B.2006年我国的总发电量约为25000亿千瓦时
C.2013年我国的核电发电量占总发电量的比值是2006年的2倍
D.我国的核电发电量从2008年开始突破1000亿千瓦时
3.现有两根木棒,它们的长分别是20cm和30cm,若不改变木棒的长短,要钉成一个三角形木架,则应在下列四根木棒中选取( )
A.10cm的木棒 B.40cm的木棒 C.50cm的木棒 D.60cm的木棒
4.钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是( )
A. B. C. D.
5.计算(1-)÷的结果是( )
A.x-1 B. C. D.
6.如图,点A,B,C在⊙O上,∠ACB=30°,⊙O的半径为6,则的长等于( )
A.π B.2π C.3π D.4π
7.在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中点,G是△ABC的重心,如果以点D为圆心DG为半径的圆和以点C为圆心半径为r的圆相交,那么r的取值范围是( )
A.r<5 B.r>5 C.r<10 D.5<r<10
8.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是
A. B. C. D.
9.某校八年级两个班,各选派10名学生参加学校举行的“古诗词”大赛,各参赛选手成绩的数据分析如表所示,则以下判断错误的是( )
班级
平均数
中位数
众数
方差
八(1)班
94
93
94
12
八(2)班
95
95.5
93
8.4
A.八(2)班的总分高于八(1)班
B.八(2)班的成绩比八(1)班稳定
C.两个班的最高分在八(2)班
D.八(2)班的成绩集中在中上游
10.一元二次方程2x2﹣3x+1=0的根的情况是( )
A.有两个相等的实数根 B.有两个不相等的实数根
C.只有一个实数根 D.没有实数根
11.下列关于x的方程一定有实数解的是( )
A. B.
C. D.
12.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是( )
A.我爱美 B.宜晶游 C.爱我宜昌 D.美我宜昌
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在 区域的可能性最大(填A或B或C).
14.分式方程的解是 .
15.如图,在四边形ABCD中,AC、BD是对角线,AC=AD,BC>AB,AB∥CD,AB=4,BD=2,tan∠BAC=3,则线段BC的长是_____.
16.如图,AB,AC分别为⊙O的内接正六边形,内接正方形的一边,BC是圆内接n边形的一边,则n等于_____.
17.在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax1相交于A,B两点(点B在第一象限),点C在AB的延长线上.
(1)已知a=1,点B的纵坐标为1.如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,AC的长为__.
(1)如图1,若BC=AB,过O,B,C三点的抛物线L3,顶点为P,开口向下,对应函数的二次项系数为a3, =__.
18.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.
(1)求抛物线的解析式;
(2)当点P运动到什么位置时,△PAB的面积有最大值?
(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.
20.(6分)如图,以AD为直径的⊙O交AB于C点,BD的延长线交⊙O于E点,连CE交AD于F点,若AC=BC.
(1)求证:;
(2)若,求tan∠CED的值.
21.(6分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.
若AC=4,BC=2,求OE的长.试判断∠A与∠CDE的数量关系,并说明理由.
22.(8分)如图所示,已知,试判断与的大小关系,并说明理由.
23.(8分)据城市速递报道,我市一辆高为2.5米的客车,卡在快速路引桥上高为2.55米的限高杆的上端,已知引桥的坡角∠ABC为14°,请结合示意图,用你学过的知识通过数据说明客车不能通过的原因.(参考数据:sin14°=0.24,cos14°=0.97,tan14°=0.25)
24.(10分)程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?
25.(10分)如图,▱ABCD的边CD为斜边向内作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且点E在平行四边形内部,连接AE、BE,求∠AEB的度数.
26.(12分)如图,一棵大树在一次强台风中折断倒下,未折断树杆与地面仍保持垂直的关系,而折断部分与未折断树杆形成的夹角.树杆旁有一座与地面垂直的铁塔,测得米,塔高米.在某一时刻的太阳照射下,未折断树杆落在地面的影子长为米,且点、、、在同一条直线上,点、、也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到,参考数据:,,).
27.(12分)无锡市新区某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示.
(1)求日均销售量p(桶)与销售单价x(元)的函数关系;
(2)若该经营部希望日均获利1350元,那么销售单价是多少?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
【分析】根据同一时刻物高与影长成正比可得出结论.
【详解】设竹竿的长度为x尺,
∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,
∴,
解得x=45(尺),
故选B.
【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键.
2、B
【解析】
由折线统计图和条形统计图对各选项逐一判断即可得.
【详解】
解:A、2011年我国的核电发电量占总发电量的比值大于1.5%、小于2%,此选项错误;
B、2006年我国的总发电量约为500÷2.0%=25000亿千瓦时,此选项正确;
C、2013年我国的核电发电量占总发电量的比值是2006年的显然不到2倍,此选项错误;
D、我国的核电发电量从2012年开始突破1000亿千瓦时,此选项错误;
故选:B.
【点睛】
本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;折线统计图表示的是事物的变化情况.
3、B
【解析】
设应选取的木棒长为x,再根据三角形的三边关系求出x的取值范围.进而可得出结论.
【详解】
设应选取的木棒长为x,则30cm-20cm<x<30cm+20cm,即10cm<x<50cm.
故选B.
【点睛】
本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键.
4、A
【解析】
根据轴对称图形的概念求解.
解:根据轴对称图形的概念可知:B,C,D是轴对称图形,A不是轴对称图形,
故选A.
“点睛”本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
5、B
【解析】
先计算括号内分式的加法、将除式分子因式分解,再将除法转化为乘法,约分即可得.
【详解】
解:原式=(-)÷=•=,
故选B.
【点睛】
本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.
6、B
【解析】
根据圆周角得出∠AOB=60°,进而利用弧长公式解答即可.
【详解】
解:∵∠ACB=30°,
∴∠AOB=60°,
∴的长==2π,
故选B.
【点睛】
此题考查弧长的计算,关键是根据圆周角得出∠AOB=60°.
7、D
【解析】
延长CD交⊙D于点E,
∵∠ACB=90°,AC=12,BC=9,∴AB==15,
∵D是AB中点,∴CD=,
∵G是△ABC的重心,∴CG==5,DG=2.5,
∴CE=CD+DE=CD+DF=10,
∵⊙C与⊙D相交,⊙C的半径为r,
∴ ,
故选D.
【点睛】本题考查了三角形的重心的性质、直角三角形斜边中线等于斜边一半、两圆相交等,根据知求出CG的长是解题的关键.
8、B
【解析】
根据常见几何体的展开图即可得.
【详解】
由展开图可知第一个图形是②正方体的展开图,
第2个图形是①圆柱体的展开图,
第3个图形是③三棱柱的展开图,
第4个图形是④四棱锥的展开图,
故选B
【点睛】
本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.
9、C
【解析】
直接利用表格中数据,结合方差的定义以及算术平均数、中位数、众数得出答案.
【详解】
A选项:八(2)班的平均分高于八(1)班且人数相同,所以八(2)班的总分高于八(1)班,正确;
B选项:八(2)班的方差比八(1)班小,所以八(2)班的成绩比八(1)班稳定,正确;
C选项:两个班的最高分无法判断出现在哪个班,错误;
D选项:八(2)班的中位数高于八(1)班,所以八(2)班的成绩集中在中上游,正确;
故选C.
【点睛】
考查了方差的定义以及算术平均数、中位数、众数,利用表格获取正确的信息是解题关键.
10、B
【解析】
试题分析:对于一元二次方程,当△=时方程有两个不相等的实数根,当△=时方程有两个相等的实数根,当△=时方程没有实数根.根据题意可得:△=,则方程有两个不相等的实数根.
11、A
【解析】
根据一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根逐一判断即可得.
【详解】
A.x2-mx-1=0中△=m2+4>0,一定有两个不相等的实数根,符合题意;
B.ax=3中当a=0时,方程无解,不符合题意;
C.由可解得不等式组无解,不符合题意;
D.有增根x=1,此方程无解,不符合题意;
故选A.
【点睛】
本题主要考查方程的解,解题的关键是掌握一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根.
12、C
【解析】
试题分析:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),因为x﹣y,x+y,a+b,a﹣b四个代数式分别对应爱、我,宜,昌,所以结果呈现的密码信息可能是“爱我宜昌”,故答案选C.
考点:因式分解.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、A
【解析】
试题分析:由题意得:SA>SB>SC,
故落在A区域的可能性大
考点: 几何概率
14、x=﹣1.
【解析】
试题分析:分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
试题解析:去分母得:x=2x﹣1+2,
解得:x=﹣1,
经检验x=﹣1是分式方程的解.
考点:解分式方程.
15、6
【解析】
作DE⊥AB,交BA的延长线于E,作CF⊥AB,可得DE=CF,且AC=AD,可证Rt△ADE≌Rt△AFC,可得AE=AF,∠DAE=∠BAC,根据tan∠BAC=∠DAE=,可设DE=3a,AE=a,根据勾股定理可求a的值,由此可得BF,CF的值.再根据勾股定理求BC的长.
【详解】
如图:
作DE⊥AB,交BA的延长线于E,作CF⊥AB,
∵AB∥CD,DE⊥AB⊥,CF⊥AB
∴CF=DE,且AC=AD
∴Rt△ADE≌Rt△AFC
∴AE=AF,∠DAE=∠BAC
∵tan∠BAC=3
∴tan∠DAE=3
∴设AE=a,DE=3a
在Rt△BDE中,BD2=DE2+BE2
∴52=(4+a)2+27a2
解得a1=1,a2=-(不合题意舍去)
∴AE=1=AF,DE=3=CF
∴BF=AB-AF=3
在Rt△BFC中,BC==6
【点睛】
本题是解直角三角形问题,恰当地构建辅助线是本题的关键,利用三角形全等证明边相等,并借助同角的三角函数值求线段的长,与勾股定理相结合,依次求出各边的长即可.
16、12
【解析】
连接AO,BO,CO,如图所示:
∵AB、AC分别为⊙O的内接正六边形、内接正方形的一边,
∴∠AOB==60°,∠AOC==90°,
∴∠BOC=30°,
∴n==12,
故答案为12.
17、4 ﹣
【解析】
解:(1)当a=1时,抛物线L的解析式为:y=x1,
当y=1时,1=x1,
∴x=±,
∵B在第一象限,
∴A(﹣,1),B(,1),
∴AB=1,
∵向右平移抛物线L使该抛物线过点B,
∴AB=BC=1,
∴AC=4;
(1)如图1,设抛物线L3与x轴的交点为G,其对称轴与x轴交于Q,过B作BK⊥x轴于K,
设OK=t,则AB=BC=1t,
∴B(t,at1),
根据抛物线的对称性得:OQ=1t,OG=1OQ=4t,
∴O(0,0),G(4t,0),
设抛物线L3的解析式为:y=a3(x﹣0)(x﹣4t),
y=a3x(x﹣4t),
∵该抛物线过点B(t,at1),
∴at1=a3t(t﹣4t),
∵t≠0,
∴a=﹣3a3,
∴=﹣,
故答案为(1)4;(1)﹣.
点睛:本题考查二次函数的图象和性质.熟练掌握二次函数的性质是解题的关键.
18、.
【解析】
根据共走了45米,每次前进5米且左转的角度相同,则可计算出该正多边形的边数,再根据外角和计算左转的角度.
【详解】
连续左转后形成的正多边形边数为:,
则左转的角度是.
故答案是:.
【点睛】
本题考查了多边形的外角计算,正确理解多边形的外角和是360°是关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)抛物线解析式为y=﹣x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6).
【解析】
(1)利用待定系数法进行求解即可得;
(2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=PN•AG+PN•BM=PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得;
(3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.
【详解】
(1)∵抛物线过点B(6,0)、C(﹣2,0),
∴设抛物线解析式为y=a(x﹣6)(x+2),
将点A(0,6)代入,得:﹣12a=6,
解得:a=﹣,
所以抛物线解析式为y=﹣(x﹣6)(x+2)=﹣x2+2x+6;
(2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,
设直线AB解析式为y=kx+b,
将点A(0,6)、B(6,0)代入,得:
,
解得:,
则直线AB解析式为y=﹣x+6,
设P(t,﹣t2+2t+6)其中0<t<6,
则N(t,﹣t+6),
∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t,
∴S△PAB=S△PAN+S△PBN
=PN•AG+PN•BM
=PN•(AG+BM)
=PN•OB
=×(﹣t2+3t)×6
=﹣t2+9t
=﹣(t﹣3)2+,
∴当t=3时,△PAB的面积有最大值;
(3)△PDE为等腰直角三角形,
则PE=PD,
点P(m,-m2+2m+6),
函数的对称轴为:x=2,则点E的横坐标为:4-m,
则PE=|2m-4|,
即-m2+2m+6+m-6=|2m-4|,
解得:m=4或-2或5+或5-(舍去-2和5+)
故点P的坐标为:(4,6)或(5-,3-5).
【点睛】
本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.
20、(1)见解析;(2)tan∠CED=
【解析】
(1)欲证明,只要证明即可;
(2)由,可得,设FO=2a,OC=3a,则DF=a,DE=1.5a,AD=DB=6a,由,可得BD•BE=BC•BA,设AC=BC=x,则有,由此求出AC、CD即可解决问题.
【详解】
(1)证明:如下图,连接AE,
∵AD是直径,
∴,
∴DC⊥AB,
∵AC=CB,
∴DA=DB,
∴∠CDA=∠CDB,
∵,,
∴∠BDC=∠EAC,
∵∠AEC=∠ADC,
∴∠EAC=∠AEC,
∴;
(2)解:如下图,连接OC,
∵AO=OD,AC=CB,
∴OC∥BD,
∴,
∴,
设FO=2a,OC=3a,则DF=a,DE=1.5a,AD=DB=6a,
∵∠BAD=∠BEC,∠B=∠B,
∴,
∴BD•BE=BC•BA,设AC=BC=x,
则有,
∴,
∴,
∴,
∴.
【点睛】
本题属于圆的综合题,涉及到三角形的相似,解直角三角形等相关考点,熟练掌握三角形相似的判定及解直角三角形等相关内容是解决本题的关键.
21、(1);(2)∠CDE=2∠A.
【解析】
(1)在Rt△ABC中,由勾股定理得到AB的长,从而得到半径AO .再由△AOE∽△ACB,得到OE的长;
(2)连结OC,得到∠1=∠A,再证∠3=∠CDE,从而得到结论.
【详解】
(1)∵AB是⊙O的直径,
∴∠ACB=90°,
在Rt△ABC中,由勾股定理得:
AB=
=,
∴AO=AB=.
∵OD⊥AB,
∴∠AOE=∠ACB=90°,
又∵∠A=∠A,
∴△AOE∽△ACB,
∴,
∴OE=
=.
(2)∠CDE=2∠A.理由如下:
连结OC,
∵OA=OC,
∴∠1=∠A,
∵CD是⊙O的切线,
∴OC⊥CD,
∴∠OCD=90°,
∴∠2+∠CDE=90°,
∵OD⊥AB,
∴∠2+∠3=90°,
∴∠3=∠CDE.
∵∠3=∠A+∠1=2∠A,
∴∠CDE=2∠A.
考点:切线的性质;探究型;和差倍分.
22、.
【解析】
首先判断∠AED与∠ACB是一对同位角,然后根据已知条件推出DE∥BC,得出两角相等.
【详解】
解:∠AED=∠ACB.
理由:如图,分别标记∠1,∠2,∠3,∠1.
∵∠1+∠1=180°(平角定义),∠1+∠2=180°(已知).
∴∠2=∠1.
∴EF∥AB(内错角相等,两直线平行).
∴∠3=∠ADE(两直线平行,内错角相等).
∵∠3=∠B(已知),
∴∠B=∠ADE(等量代换).
∴DE∥BC(同位角相等,两直线平行).
∴∠AED=∠ACB(两直线平行,同位角相等).
【点睛】
本题重点考查平行线的性质和判定,难度适中.
23、客车不能通过限高杆,理由见解析
【解析】
根据DE⊥BC,DF⊥AB,得到∠EDF=∠ABC=14°.在Rt△EDF中,根据cos∠EDF=,求出DF的值,即可判断.
【详解】
∵DE⊥BC,DF⊥AB,
∴∠EDF=∠ABC=14°.
在Rt△EDF中,∠DFE=90°,
∵cos∠EDF=,
∴DF=DE•cos∠EDF=2.55×cos14°≈2.55×0.97≈2.1.
∵限高杆顶端到桥面的距离DF为2.1米,小于客车高2.5米,
∴客车不能通过限高杆.
【点睛】
考查解直角三角形,选择合适的锐角三角函数是解题的关键.
24、大和尚有25人,小和尚有75人.
【解析】
设大和尚有x人,小和尚有y人,根据100个和尚吃100个馒头且1个大和尚分3个、3个小和尚分1个,即可得出关于x,y的二元一次方程组,解之即可得出结论.
【详解】
解:设大和尚有x人,小和尚有y人,
依题意,得:,
解得:.
答:大和尚有25人,小和尚有75人.
【点睛】
考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
25、135°
【解析】
先证明AD=DE=CE=BC,得出∠DAE=∠AED,∠CBE=∠CEB,∠EDC=∠ECD=45°,设∠DAE=∠AED=x,∠CBE=∠CEB=y,求出∠ADC=225°-2x,∠BAD=2x-45°,由平行四边形的对角相等得出方程,求出x+y=135°,即可得出结果.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD=BC,∠BAD=∠BCD,∠BAD+∠ADC=180°,
∵AD=DE=CE,
∴AD=DE=CE=BC,
∴∠DAE=∠AED,∠CBE=∠CEB,
∵∠DEC=90°,
∴∠EDC=∠ECD=45°,
设∠DAE=∠AED=x,∠CBE=∠CEB=y,
∴∠ADE=180°﹣2x,∠BCE=180°﹣2y,
∴∠ADC=180°﹣2x+45°=225°﹣2x,∠BCD=225°﹣2y
,∴∠BAD=180°﹣(225°﹣2x)=2x﹣45°,
∴2x﹣45°=225°﹣2y,
∴x+y=135°,
∴∠AEB=360°﹣135°﹣90°=135°.
【点睛】
本题考查了平行四边形的性质,解题的关键是熟练的掌握平行四边形的性质.
26、米.
【解析】
试题分析:要求这棵大树没有折断前的高度,只要求出AB和AC的长度即可,根据题目中的条件可以求得AB和AC的长度,即可得到结论.
试题解析:解:∵AB⊥EF,DE⊥EF,∴∠ABC=90°,AB∥DE,∴△FAB∽△FDE,∴ ,∵FB=4米,BE=6米,DE=9米,∴,得AB=3.6米,∵∠ABC=90°,∠BAC=53°,cos∠BAC=,∴AC= ==6米,∴AB+AC=3.6+6=9.6米,即这棵大树没有折断前的高度是9.6米.
点睛:本题考查直角三角形的应用,解题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数进行解答.
27、(1)日均销售量p(桶)与销售单价x(元)的函数关系为p=﹣50x+850;(2)该经营部希望日均获利1350元,那么销售单价是9元.
【解析】
(1)设日均销售p(桶)与销售单价x(元)的函数关系为:p=kx+b(k≠0),把(7,500),(12,250)代入,得到关于k,b的方程组,解方程组即可;(2)设销售单价应定为x元,根据题意得,(x-5)•p-250=1350,由(1)得到p=-50x+850,于是有(x-5)•(-50x+850)-250=1350,然后整理,解方程得到x1=9,x2=13,满足7≤x≤12的x的值为所求;
【详解】
(1)设日均销售量p(桶)与销售单价x(元)的函数关系为p=kx+b,
根据题意得,
解得k=﹣50,b=850,
所以日均销售量p(桶)与销售单价x(元)的函数关系为p=﹣50x+850;
(2)根据题意得一元二次方程 (x﹣5)(﹣50x+850)﹣250=1350,
解得x1=9,x2=13(不合题意,舍去),
∵销售单价不得高于12元/桶,也不得低于7元/桶,
∴x=13不合题意,
答:若该经营部希望日均获利1350元,那么销售单价是9元.
【点睛】
本题考查了一元二次方程及一次函数的应用,解题的关键是通过题目和图象弄清题意,并列出方程或一次函数,用数学知识解决生活中的实际问题.
2022年陕西省安康市名校中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年陕西省安康市名校中考数学最后冲刺浓缩精华卷含解析,共18页。试卷主要包含了剪纸是我国传统的民间艺术等内容,欢迎下载使用。
2021-2022学年陕西省西安交通大附中重点达标名校中考数学最后冲刺模拟试卷含解析: 这是一份2021-2022学年陕西省西安交通大附中重点达标名校中考数学最后冲刺模拟试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,如图,与∠1是内错角的是等内容,欢迎下载使用。
2021-2022学年陕西省安康市达标名校中考考前最后一卷数学试卷含解析: 这是一份2021-2022学年陕西省安康市达标名校中考考前最后一卷数学试卷含解析,共19页。