2021-2022学年山西省永济市重点达标名校中考数学对点突破模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,电线杆CD的高度为h,两根拉线AC与BC互相垂直(A、D、B在同一条直线上),设∠CAB=α,那么拉线BC的长度为( )
A. B. C. D.
2.如图,线段AB是直线y=4x+2的一部分,点A是直线与y轴的交点,点B的纵坐标为6,曲线BC是双曲线y=的一部分,点C的横坐标为6,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线.点P(2017,m)与Q(2020,n)均在该波浪线上,分别过P、Q两点向x轴作垂线段,垂足为点D和E,则四边形PDEQ的面积是( )
A.10 B. C. D.15
3.如图,把一个矩形纸片ABCD沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′为( )。
A.70° B.65° C.50° D.25°
4.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为 ( )
A.2 B.2 C.3 D.
5.设a,b是常数,不等式的解集为,则关于x的不等式的解集是( )
A. B. C. D.
6.如图,在下列条件中,不能判定直线a与b平行的是( )
A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°
7.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:
班级
参加人数
平均数
中位数
方差
甲
55
135
149
191
乙
55
135
151
110
某同学分析上表后得出如下结论:
①甲、乙两班学生的平均成绩相同;
②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);
③甲班成绩的波动比乙班大.
上述结论中,正确的是( )
A.①② B.②③ C.①③ D.①②③
8.如图,在平面直角坐标系中,位于第二象限,点的坐标是,先把向右平移3个单位长度得到,再把绕点顺时针旋转得到,则点的对应点的坐标是( )
A. B. C. D.
9.若点都是反比例函数的图象上的点,并且,则下列各式中正确的是(( )
A. B. C. D.
10.已知a=(+1)2,估计a的值在( )
A.3 和4之间 B.4和5之间 C.5和6之间 D.6和7之间
二、填空题(共7小题,每小题3分,满分21分)
11.如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.若∠1=34°,则∠2=_____°.
12.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:
①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC
其中正确的是_____(填序号)
13.已知点,在二次函数的图象上,若,则__________.(填“”“”“”)
14.当a=3时,代数式的值是______.
15.如图,直线x=2与反比例函数和的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB的面积是_____.
16.如图,在Rt△ABC中,∠B=90°,∠A=45°,BC=4,以BC为直径的⊙O与AC相交于点O,则阴影部分的面积为_____.
17.分解因式:_____.
三、解答题(共7小题,满分69分)
18.(10分)如图①,在正方形ABCD中,点E与点F分别在线段AC、BC上,且四边形DEFG是正方形.
(1)试探究线段AE与CG的关系,并说明理由.
(2)如图②若将条件中的四边形ABCD与四边形DEFG由正方形改为矩形,AB=3,BC=1.
①线段AE、CG在(1)中的关系仍然成立吗?若成立,请证明,若不成立,请写出你认为正确的关系,并说明理由.
②当△CDE为等腰三角形时,求CG的长.
19.(5分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?
20.(8分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.
(1)求证:AC是⊙O的切线;
(2)若BF=6,⊙O的半径为5,求CE的长.
21.(10分)4月9日上午8时,2017 徐州国际马拉松赛鸣枪开跑,一名岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:
根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.
22.(10分)解不等式组,并把解集在数轴上表示出来.
23.(12分)某同学用两个完全相同的直角三角形纸片重叠在一起(如图1)固定△ABC不动,将△DEF沿线段AB向右平移.
(1)若∠A=60°,斜边AB=4,设AD=x(0≤x≤4),两个直角三角形纸片重叠部分的面积为y,试求出y与x的函数关系式;
(2)在运动过程中,四边形CDBF能否为正方形,若能,请指出此时点D的位置,并说明理由;若不能,请你添加一个条件,并说明四边形CDBF为正方形?
24.(14分)先化简,再求值:1+÷(1﹣),其中x=2cos30°+tan45°.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
根据垂直的定义和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中 cos∠BCD=,可得BC=.
故选B.
点睛:本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.
2、C
【解析】
A,C之间的距离为6,点Q与点P的水平距离为3,进而得到A,B之间的水平距离为1,且k=6,根据四边形PDEQ的面积为,即可得到四边形PDEQ的面积.
【详解】
A,C之间的距离为6,
2017÷6=336…1,故点P离x轴的距离与点B离x轴的距离相同,
在y=4x+2中,当y=6时,x=1,即点P离x轴的距离为6,
∴m=6,
2020﹣2017=3,故点Q与点P的水平距离为3,
∵
解得k=6,
双曲线
1+3=4,
即点Q离x轴的距离为,
∴
∵四边形PDEQ的面积是.
故选:C.
【点睛】
考查了反比例函数的图象与性质,平行四边形的面积,综合性比较强,难度较大.
3、C
【解析】
首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠DEF=∠FED′,最后求得∠AED′的大小.
【详解】
解:∵AD∥BC,
∴∠EFB=∠FED=65°,
由折叠的性质知,∠DEF=∠FED′=65°,
∴∠AED′=180°-2∠FED=50°,
故选:C.
【点睛】
此题考查了长方形的性质与折叠的性质.此题比较简单,解题的关键是注意数形结合思想的应用.
4、A
【解析】
连接BD,交AC于O,
∵正方形ABCD,
∴OD=OB,AC⊥BD,
∴D和B关于AC对称,
则BE交于AC的点是P点,此时PD+PE最小,
∵在AC上取任何一点(如Q点),QD+QE都大于PD+PE(BE),
∴此时PD+PE最小,
此时PD+PE=BE,
∵正方形的面积是12,等边三角形ABE,
∴BE=AB=,
即最小值是2,
故选A.
【点睛】本题考查了正方形的性质,等边三角形的性质,轴对称-最短路线问题等知识点的应用,关键是找出PD+PE最小时P点的位置.
5、C
【解析】
根据不等式的解集为x< 即可判断a,b的符号,则根据a,b的符号,即可解不等式bx-a<0
【详解】
解不等式,
移项得:
∵解集为x<
∴ ,且a<0
∴b=-5a>0,
解不等式,
移项得:bx>a
两边同时除以b得:x>,
即x>-
故选C
【点睛】
此题考查解一元一次不等式,掌握运算法则是解题关键
6、C
【解析】
解:A.∵∠1与∠2是直线a,b被c所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不符合题意
B.∵∠2与∠3是直线a,b被c所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不符合题意,
C.∵∠3与∠5既不是直线a,b被任何一条直线所截的一组同位角,内错角,∴∠3=∠5,不能得到a∥b,∴符合题意,
D.∵∠3与∠4是直线a,b被c所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不符合题意,
故选C.
【点睛】
本题考查平行线的判定,难度不大.
7、D
【解析】
分析:根据平均数、中位数、方差的定义即可判断;
详解:由表格可知,甲、乙两班学生的成绩平均成绩相同;
根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;
根据方差可知,甲班成绩的波动比乙班大.
故①②③正确,
故选D.
点睛:本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
8、D
【解析】
根据要求画出图形,即可解决问题.
【详解】
解:根据题意,作出图形,如图:
观察图象可知:A2(4,2);
故选:D.
【点睛】
本题考查平移变换,旋转变换等知识,解题的关键是正确画出图象,属于中考常考题型.
9、B
【解析】
解:根据题意可得:
∴反比例函数处于二、四象限,则在每个象限内为增函数,
且当x<0时y>0,当x>0时,y<0,
∴<<.
10、D
【解析】
首先计算平方,然后再确定的范围,进而可得4+的范围.
【详解】
解:a=×(7+1+2)=4+,
∵2<<3,
∴6<4+<7,
∴a的值在6和7之间,
故选D.
【点睛】
此题主要考查了估算无理数的大小,用有理数逼近无理数,求无理数的近似值.
二、填空题(共7小题,每小题3分,满分21分)
11、46
【解析】
试卷分析:根据平行线的性质和平角的定义即可得到结论.
解:∵直线a∥b,
∴∠3=∠1=34°,
∵∠BAC=100°,
∴∠2=180°−34°−100°=46°,
故答案为46°.
12、①②④
【解析】
由正方形的性质和相似三角形的判定与性质,即可得出结论.
【详解】
∵△BPC是等边三角形,
∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,
在正方形ABCD中,
∵AB=BC=CD,∠A=∠ADC=∠BCD=90°
∴∠ABE=∠DCF=30°,
∴BE=2AE;故①正确;
∵PC=CD,∠PCD=30°,
∴∠PDC=75°,
∴∠FDP=15°,
∵∠DBA=45°,
∴∠PBD=15°,
∴∠FDP=∠PBD,
∵∠DFP=∠BPC=60°,
∴△DFP∽△BPH;故②正确;
∵∠FDP=∠PBD=15°,∠ADB=45°,
∴∠PDB=30°,而∠DFP=60°,
∴∠PFD≠∠PDB,
∴△PFD与△PDB不会相似;故③错误;
∵∠PDH=∠PCD=30°,∠DPH=∠DPC,
∴△DPH∽△CPD,
∴,
∴DP2=PH•PC,故④正确;
故答案是:①②④.
【点睛】
本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.
13、
【解析】
抛物线的对称轴为:x=1,
∴当x>1时,y随x的增大而增大.
∴若x1>x2>1 时,y1>y2 .
故答案为>
14、1.
【解析】
先根据分式混合运算顺序和运算法则化简原式,再将a的值代入计算可得.
【详解】
原式=÷
=•
=,
当a=3时,原式==1,
故答案为:1.
【点睛】
本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.
15、.
【解析】
解:∵把x=1分别代入、,得y=1、y=,
∴A(1,1),B(1,).∴.
∵P为y轴上的任意一点,∴点P到直线BC的距离为1.
∴△PAB的面积.
故答案为:.
16、6﹣π
【解析】
连接、,根据阴影部分的面积计算.
【详解】
连接、,
,,
,,
为的直径,
,
,
,
,
,
阴影部分的面积
.
故答案为.
【点睛】
本题考查的是扇形面积计算,掌握直角三角形的性质、扇形面积公式是解题的关键.
17、
【解析】
分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,
先提取公因式2后继续应用完全平方公式分解即可:.
三、解答题(共7小题,满分69分)
18、(1)AE=CG,AE⊥CG,理由见解析;(2)①位置关系保持不变,数量关系变为;
理由见解析;②当△CDE为等腰三角形时,CG的长为或或.
【解析】
试题分析:证明≌即可得出结论.
①位置关系保持不变,数量关系变为证明根据相似的性质即可得出.
分成三种情况讨论即可.
试题解析:(1)
理由是:如图1,∵四边形EFGD是正方形,
∴
∵四边形ABCD是正方形,
∴
∴
∴≌
∴
∵
∴
∴ 即
(2)①位置关系保持不变,数量关系变为
理由是:如图2,连接EG、DF交于点O,连接OC,
∵四边形EFGD是矩形,
∴
Rt中,OG=OF,
Rt中,
∴
∴D、E、F、C、G在以点O为圆心的圆上,
∵
∴DF为的直径,
∵
∴EG也是的直径,
∴∠ECG=90°,即
∴
∵
∴
∵
∴
∴
②由①知:
∴设
分三种情况:
(i)当时,如图3,过E作于H,则EH∥AD,
∴
∴ 由勾股定理得:
∴
(ii)当时,如图1,过D作于H,
∵
∴
∴
∴
∴
∴
(iii)当时,如图5,
∴
∴
综上所述,当为等腰三角形时,CG的长为或或.
点睛:两组角对应,两三角形相似.
19、(1)本次试点投放的A型车60辆、B型车40辆;(2)3辆;2辆
【解析】
分析:(1)设本次试点投放的A型车x辆、B型车y辆,根据“两种款型的单车共100辆,总价值36800元”列方程组求解可得;
(2)由(1)知A、B型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据“投资总价值不低于184万元”列出关于a的不等式,解之求得a的范围,进一步求解可得.
详解:(1)设本次试点投放的A型车x辆、B型车y辆,
根据题意,得:,
解得:,
答:本次试点投放的A型车60辆、B型车40辆;
(2)由(1)知A、B型车辆的数量比为3:2,
设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,
根据题意,得:3a×400+2a×320≥1840000,
解得:a≥1000,
即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,
则城区10万人口平均每100人至少享有A型车3000×=3辆、至少享有B型车2000×=2辆.
点睛:本题主要考查二元一次方程组和一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的相等(或不等)关系,并据此列出方程组.
20、(1)证明见解析;(2)CE=1.
【解析】
(1)根据等角对等边得∠OBE=∠OEB,由角平分线的定义可得∠OBE=∠EBC,从而可得∠OEB=∠EBC,根据内错角相等,两直线平行可得OE∥BC,根据两直线平行,同位角相等可得∠OEA=90°,从而可证AC是⊙O的切线.
(2)根据垂径定理可求BH=BF=3,根据三个角是直角的四边形是矩形,可得四边形OHCE是矩形,由矩形的对边相等可得CE=OH,在Rt△OBH中,利用勾股定理可求出OH的长,从而求出CE的长.
【详解】
(1)证明:如图,连接OE,
∵OB=OE,
∴∠OBE=∠OEB,
∵ BE平分∠ABC.
∴∠OBE=∠EBC,
∴∠OEB=∠EBC,
∴OE∥BC,
∵ ∠ACB=90° ,
∴∠OEA=∠ACB=90°,
∴ AC是⊙O的切线 .
(2)解:过O作OH⊥BF,
∴BH=BF=3,四边形OHCE是矩形,
∴CE=OH,
在Rt△OBH中,BH=3,OB=5,
∴OH==1,
∴CE=1.
【点睛】
本题考查切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线和垂径定理以及勾股定理的运用,具有一定的综合性.
21、今年妹妹6岁,哥哥10岁.
【解析】
试题分析:设今年妹妹的年龄为x岁,哥哥的年龄为y岁,根据两个孩子的对话,即可得出关于x、y的二元一次方程组,解之即可得出结论.
试题解析:设今年妹妹的年龄为x岁,哥哥的年龄为y岁,
根据题意得:
解得: .
答:今年妹妹6岁,哥哥10岁.
考点:二元一次方程组的应用.
22、﹣1≤x<1.
【解析】
求不等式组的解集首先要分别解出两个不等式的解集,然后利用口诀“同大取大,同小取小,大小小大中间找,大大小小找不到(”确定不等式组解集的公共部分.
【详解】
解不等式①,得x<1,
解不等式②,得x≥﹣1,
∴不等式组的解集是﹣1≤x<1.
不等式组的解集在数轴上表示如下:
23、(1)y=(0≤x≤4);(2) 不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形.
【解析】
分析:(1)根据平移的性质得到DF∥AC,所以由平行线的性质、勾股定理求得GD=,BG==,所以由三角形的面积公式列出函数关系式;(2)不能为正方形,添加条件:AC=BC时,点D运动到AB中点时,四边形CDBF为正方形;当D运动到AB中点时,四边形CDBF是菱形,根据“直角三角形斜边上的中线等于斜边的一半”推知CD=AB,BF=DE,所以AD=CD=BD=CF,又有BE=AD,则CD=BD=BF=CF,故四边形CDBF是菱形,根据有一内角为直角的菱形是正方形来添加条件.
详解:(1)如图(1)
∵DF∥AC,
∴∠DGB=∠C=90°,∠GDB=∠A=60°,∠GBD=30°
∵BD=4﹣x,
∴GD=,BG==
y=S△BDG=××=(0≤x≤4);
(2)不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形.
∵∠ACB=∠DFE=90°,D是AB的中点
∴CD=AB,BF=DE,
∴CD=BD=BF=BE,
∵CF=BD,
∴CD=BD=BF=CF,
∴四边形CDBF是菱形;
∵AC=BC,D是AB的中点.
∴CD⊥AB即∠CDB=90°
∵四边形CDBF为菱形,
∴四边形CDBF是正方形.
点睛:本题是几何变换综合题型,主要考查了平移变换的性质,勾股定理,正方形的判定,菱形的判定与性质以及直角三角形斜边上的中线.(2)难度稍大,根据三角形斜边上的中线推知CD=BD=BF=BE是解题的关键.
24、
【解析】
先化简分式,再计算x的值,最后把x的值代入化简后的分式,计算出结果.
【详解】
原式=
=1+
=1+
=
当x=2cos30°+tan45°
=2×+1
=+1时.
=
【点睛】
本题主要考查了分式的加减及锐角三角函数值.解决本题的关键是掌握分式的运算法则和运算顺序.
2022年安阳市重点达标名校中考数学对点突破模拟试卷含解析: 这是一份2022年安阳市重点达标名校中考数学对点突破模拟试卷含解析,共17页。试卷主要包含了下列各数中是有理数的是等内容,欢迎下载使用。
2021-2022学年浙江省杭州北干重点达标名校中考数学对点突破模拟试卷含解析: 这是一份2021-2022学年浙江省杭州北干重点达标名校中考数学对点突破模拟试卷含解析,共17页。试卷主要包含了若a与5互为倒数,则a=等内容,欢迎下载使用。
2021-2022学年山西省永济市重点达标名校中考猜题数学试卷含解析: 这是一份2021-2022学年山西省永济市重点达标名校中考猜题数学试卷含解析,共24页。试卷主要包含了答题时请按要求用笔,下列计算正确的是,下列各式计算正确的是等内容,欢迎下载使用。