|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年陕西省安康市汉滨区恒口高中学服务区重点名校十校联考最后数学试题含解析
    立即下载
    加入资料篮
    2021-2022学年陕西省安康市汉滨区恒口高中学服务区重点名校十校联考最后数学试题含解析01
    2021-2022学年陕西省安康市汉滨区恒口高中学服务区重点名校十校联考最后数学试题含解析02
    2021-2022学年陕西省安康市汉滨区恒口高中学服务区重点名校十校联考最后数学试题含解析03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年陕西省安康市汉滨区恒口高中学服务区重点名校十校联考最后数学试题含解析

    展开
    这是一份2021-2022学年陕西省安康市汉滨区恒口高中学服务区重点名校十校联考最后数学试题含解析,共25页。试卷主要包含了若点P等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图所示的几何体是一个圆锥,下面有关它的三视图的结论中,正确的是(  )

    A.主视图是中心对称图形
    B.左视图是中心对称图形
    C.主视图既是中心对称图形又是轴对称图形
    D.俯视图既是中心对称图形又是轴对称图形
    2.有个零件(正方体中间挖去一个圆柱形孔)如图放置,它的主视图是  

    A. B. C. D.
    3.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为(  )

    A.105° B.110° C.115° D.120°
    4.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是(  )

    A.中位数是9 B.众数为16 C.平均分为7.78 D.方差为2
    5.如图,是的直径,弦,,,则阴影部分的面积为( )

    A.2π B.π C. D.
    6.如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则sin∠AFG的值为( )

    A. B. C. D.
    7.若点P(﹣3,y1)和点Q(﹣1,y2)在正比例函数y=﹣k2x(k≠0)图象上,则y1与y2的大小关系为(  )
    A.y1>y2 B.y1≥y2 C.y1<y2 D.y1≤y2
    8.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )

    A.14° B.15° C.16° D.17°
    9.如图,在数轴上有点O,A,B,C对应的数分别是0,a,b,c,AO=2,OB=1,BC=2,则下列结论正确的是( )

    A. B. C. D.
    10.已知⊙O及⊙O外一点P,过点P作出⊙O的一条切线(只有圆规和三角板这两种工具),以下是甲、乙两同学的作业:

    甲:①连接OP,作OP的垂直平分线l,交OP于点A;
    ②以点A为圆心、OA为半径画弧、交⊙O于点M;
    ③作直线PM,则直线PM即为所求(如图1).
    乙:①让直角三角板的一条直角边始终经过点P;
    ②调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在⊙O上,记这时直角顶点的位置为点M;
    ③作直线PM,则直线PM即为所求(如图2).
    对于两人的作业,下列说法正确的是( )
    A.甲乙都对 B.甲乙都不对
    C.甲对,乙不对 D.甲不对,已对
    11.如图,在△ABC中,∠ACB=90°, ∠ABC=60°, BD平分∠ABC ,P点是BD的中点,若AD=6, 则CP的长为( )

    A.3.5 B.3 C.4 D.4.5
    12.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为( )

    A.2.3 B.2.4 C.2.5 D.2.6
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在△ABC中,AB=AC,D、E、F分别为AB、BC、AC的中点,则下列结论:①△ADF≌△FEC;②四边形ADEF为菱形;③.其中正确的结论是____________.(填写所有正确结论的序号)

    14.如图,设△ABC的两边AC与BC之和为a,M是AB的中点,MC=MA=5,则a的取值范围是_____.

    15.有一个正六面体,六个面上分别写有1~6这6个整数,投掷这个正六面体一次,向上一面的数字是2的倍数或3的倍数的概率是____.
    16.在函数y=中,自变量x的取值范围是_____.
    17.如图,AB是半圆O的直径,E是半圆上一点,且OE⊥AB,点C为的中点,则∠A=__________°.

    18.如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=_____

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在矩形ABCD中,E是边BC上的点,AE=BC, DF⊥AE,垂足为F,连接DE.
    求证:AB=DF.

    20.(6分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.

    请根据以上信息解答下列问题:课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为______;请补全条形统计图;该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判断这种说法是否正确,并说明理由.
    21.(6分)如图,抛物线(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).
    (1)求抛物线的解析式;
    (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;
    (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.

    22.(8分)化简(),并说明原代数式的值能否等于-1.
    23.(8分)如图,在中,,,点D是BC上任意一点,将线段AD绕点A逆时针方向旋转,得到线段AE,连结EC.
    依题意补全图形;
    求的度数;
    若,,将射线DA绕点D顺时针旋转交EC的延长线于点F,请写出求AF长的思路.

    24.(10分)如图,在锐角△ABC中,小明进行了如下的尺规作图:
    ①分别以点A、B为圆心,以大于AB的长为半径作弧,两弧分别相交于点P、Q;
    ②作直线PQ分别交边AB、BC于点E、D.小明所求作的直线DE是线段AB的   ;联结AD,AD=7,sin∠DAC=,BC=9,求AC的长.

    25.(10分)在2018年韶关市开展的“善美韶关•情暖三江”的志愿者系列括动中,某志愿者组织筹集了部分资金,计划购买甲、乙两种书包若干个送给贫困山区的学生,已知每个甲种书包的价格比每个乙种书包的价格贵10元,用350元购买甲种书包的个数恰好与用300元购买乙种书包的个数相同,求甲、乙两种书包每个的价格各是多少元?
    26.(12分)某校九年级数学测试后,为了解学生学习情况,随机抽取了九年级部分学生的数学成绩进行统计,得到相关的统计图表如下.
    成绩/分
    120﹣111
    110﹣101
    100﹣91
    90以下
    成绩等级
    A
    B
    C
    D
    请根据以上信息解答下列问题:
    (1)这次统计共抽取了   名学生的数学成绩,补全频数分布直方图;
    (2)若该校九年级有1000名学生,请据此估计该校九年级此次数学成绩在B等级以上(含B等级)的学生有多少人?
    (3)根据学习中存在的问题,通过一段时间的针对性复习与训练,若A等级学生数可提高40%,B等级学生数可提高10%,请估计经过训练后九年级数学成绩在B等级以上(含B等级)的学生可达多少人?

    27.(12分)已知:如图,平行四边形ABCD中,E、F分别是边BC和AD上的点,且BE=DF,求证:AE=CF



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    先得到圆锥的三视图,再根据中心对称图形和轴对称图形的定义求解即可.
    【详解】
    解:A、主视图不是中心对称图形,故A错误;
    B、左视图不是中心对称图形,故B错误;
    C、主视图不是中心对称图形,是轴对称图形,故C错误;
    D、俯视图既是中心对称图形又是轴对称图形,故D正确.
    故选:D.
    【点睛】
    本题考查简单几何体的三视图,中心对称图形和轴对称图形,熟练掌握各自的定义是解题关键.
    2、C
    【解析】
    根据主视图的定义判断即可.
    【详解】
    解:从正面看一个正方形被分成三部分,两条分别是虚线,故正确.
    故选:.
    【点睛】
    此题考查的是主视图的判断,掌握主视图的定义是解决此题的关键.
    3、C
    【解析】
    如图,首先证明∠AMO=∠2,然后运用对顶角的性质求出∠ANM=55°;借助三角形外角的性质求出∠AMO即可解决问题.
    【详解】
    如图,对图形进行点标注.

    ∵直线a∥b,
    ∴∠AMO=∠2;
    ∵∠ANM=∠1,而∠1=55°,
    ∴∠ANM=55°,
    ∴∠2=∠AMO=∠A+∠ANM=60°+55°=115°,
    故选C.
    【点睛】
    本题考查了平行线的性质,三角形外角的性质,熟练掌握和灵活运用相关知识是解题的关键.
    4、A
    【解析】
    根据中位数,众数,平均数,方差等知识即可判断;
    【详解】
    观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1.
    故选A.
    【点睛】
    本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.
    5、D
    【解析】
    分析:连接OD,则根据垂径定理可得出CE=DE,继而将阴影部分的面积转化为扇形OBD的面积,代入扇形的面积公式求解即可.
    详解:连接OD,
    ∵CD⊥AB,
    ∴ (垂径定理),

    即可得阴影部分的面积等于扇形OBD的面积,
    又∵
    ∴ (圆周角定理),
    ∴OC=2,
    故S扇形OBD=
    即阴影部分的面积为.
    故选D.

    点睛:考查圆周角定理,垂径定理,扇形面积的计算,熟记扇形的面积公式是解题的关键.
    6、B
    【解析】
    如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.由题意可得:DE=1,∠HDE=60°,△BCD是等边三角形,即可求DH的长,HE的长,AE的长,
    NE的长,EF的长,则可求sin∠AFG的值.
    【详解】
    解:如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.

    ∵四边形ABCD是菱形,AB=4,∠DAB=60°,
    ∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB
    ∴∠HDE=∠DAB=60°,
    ∵点E是CD中点
    ∴DE=CD=1
    在Rt△DEH中,DE=1,∠HDE=60°
    ∴DH=1,HE=
    ∴AH=AD+DH=5
    在Rt△AHE中,AE==1
    ∴AN=NE=,AE⊥GF,AF=EF
    ∵CD=BC,∠DCB=60°
    ∴△BCD是等边三角形,且E是CD中点
    ∴BE⊥CD,
    ∵BC=4,EC=1
    ∴BE=1
    ∵CD∥AB
    ∴∠ABE=∠BEC=90°
    在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.
    ∴EF=
    由折叠性质可得∠AFG=∠EFG,
    ∴sin∠EFG= sin∠AFG = ,故选B.
    【点睛】
    本题考查了折叠问题,菱形的性质,勾股定理,添加恰当的辅助线构造直角三角形,利用勾股定理求线段长度是本题的关键.
    7、A
    【解析】
    分别将点P(﹣3,y1)和点Q(﹣1,y2)代入正比例函数y=﹣k2x,求出y1与y2的值比较大小即可.
    【详解】
    ∵点P(﹣3,y1)和点Q(﹣1,y2)在正比例函数y=﹣k2x(k≠0)图象上,
    ∴y1=﹣k2×(-3)=3k2,
    y2=﹣k2×(-1)=k2,
    ∵k≠0,
    ∴y1>y2.
    故答案选A.
    【点睛】
    本题考查了正比例函数,解题的关键是熟练的掌握正比例函数的知识点.
    8、C
    【解析】
    依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.
    【详解】
    如图,

    ∵∠ABC=60°,∠2=44°,
    ∴∠EBC=16°,
    ∵BE∥CD,
    ∴∠1=∠EBC=16°,
    故选:C.
    【点睛】
    本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.
    9、C
    【解析】
    根据AO=2,OB=1,BC=2,可得a=-2,b=1,c=3,进行判断即可解答.
    【详解】
    解:∵AO=2,OB=1,BC=2,
    ∴a=-2,b=1,c=3,
    ∴|a|≠|c|,ab<0,,,
    故选:C.
    【点睛】
    此题考查有理数的大小比较以及绝对值,解题的关键结合数轴求解.
    10、A
    【解析】
    (1)连接OM,OA,连接OP,作OP的垂直平分线l可得OA=MA=AP,进而得到∠O=∠AMO,∠AMP=∠MPA,所以∠OMA+∠AMP=∠O+∠MPA=90°,得出MP是⊙O的切线,(1)直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在⊙O上,所以∠OMP=90°,得到MP是⊙O的切线.
    【详解】
    证明:(1)如图1,连接OM,OA.
    ∵连接OP,作OP的垂直平分线l,交OP于点A,∴OA=AP.
    ∵以点A为圆心、OA为半径画弧、交⊙O于点M;
    ∴OA=MA=AP,∴∠O=∠AMO,∠AMP=∠MPA,∴∠OMA+∠AMP=∠O+∠MPA=90°,∴OM⊥MP,∴MP是⊙O的切线;
    (1)如图1.
    ∵直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在⊙O上,∴∠OMP=90°,∴MP是⊙O的切线.
    故两位同学的作法都正确.
    故选A.

    【点睛】
    本题考查了复杂的作图,重点是运用切线的判定来说明作法的正确性.
    11、B
    【解析】
    解:∵∠ACB=90°,∠ABC=60°,
    ∴∠A=10°,
    ∵BD平分∠ABC,
    ∴∠ABD=∠ABC=10°,
    ∴∠A=∠ABD,
    ∴BD=AD=6,
    ∵在Rt△BCD中,P点是BD的中点,
    ∴CP=BD=1.
    故选B.
    12、B
    【解析】
    试题分析:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,
    ∴∠C=90°,如图:设切点为D,连接CD,∵AB是⊙C的切线,∴CD⊥AB,
    ∵S△ABC=AC×BC=AB×CD,∴AC×BC=AB×CD,即CD===,
    ∴⊙C的半径为,故选B.

    考点:圆的切线的性质;勾股定理.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、①②③
    【解析】
    ①根据三角形的中位线定理可得出AD=FE、AF=FC、DF=EC,进而可证出△ADF≌△FEC(SSS),结论①正确;
    ②根据三角形中位线定理可得出EF∥AB、EF=AD,进而可证出四边形ADEF为平行四边形,由AB=AC结合D、F分别为AB、AC的中点可得出AD=AF,进而可得出四边形ADEF为菱形,结论②正确;
    ③根据三角形中位线定理可得出DF∥BC、DF=BC,进而可得出△ADF∽△ABC,再利用相似三角形的性质可得出,结论③正确.此题得解.
    【详解】
    解:①∵D、E、F分别为AB、BC、AC的中点,
    ∴DE、DF、EF为△ABC的中位线,
    ∴AD=AB=FE,AF=AC=FC,DF=BC=EC.
    在△ADF和△FEC中,

    ∴△ADF≌△FEC(SSS),结论①正确;
    ②∵E、F分别为BC、AC的中点,
    ∴EF为△ABC的中位线,
    ∴EF∥AB,EF=AB=AD,
    ∴四边形ADEF为平行四边形.
    ∵AB=AC,D、F分别为AB、AC的中点,
    ∴AD=AF,
    ∴四边形ADEF为菱形,结论②正确;
    ③∵D、F分别为AB、AC的中点,
    ∴DF为△ABC的中位线,
    ∴DF∥BC,DF=BC,
    ∴△ADF∽△ABC,
    ∴,结论③正确.
    故答案为①②③.
    【点睛】
    本题考查了菱形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质以及三角形中位线定理,逐一分析三条结论的正误是解题的关键.
    14、10<a≤10.
    【解析】
    根据题设知三角形ABC是直角三角形,由勾股定理求得AB的长度及由三角形的三边关系求得a的取值范围;然后根据题意列出二元二次方程组,通过方程组求得xy的值,再把该值依据根与系数的关系置于一元二次方程z2-az+=0中,最后由根的判别式求得a的取值范围.
    【详解】
    ∵M是AB的中点,MC=MA=5,
    ∴△ABC为直角三角形,AB=10;
    ∴a=AC+BC>AB=10;
    令AC=x、BC=y.
    ∴,
    ∴xy=,
    ∴x、y是一元二次方程z2-az+=0的两个实根,
    ∴△=a2-4×≥0,即a≤10.综上所述,a的取值范围是10<a≤10.
    故答案为10<a≤10.
    【点睛】
    本题综合考查了勾股定理、直角三角形斜边上的中线及根的判别式.此题的综合性比较强,解题时,还利用了一元二次方程的根与系数的关系、根的判别式的知识点.
    15、
    【解析】
    ∵投掷这个正六面体一次,向上的一面有6种情况,向上一面的数字是2的倍数或3的倍数的有2、3、4、6共4种情况,
    ∴其概率是=.
    【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    16、x≥4
    【解析】
    试题分析:二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义.
    由题意得,.
    考点:二次根式有意义的条件
    点评:本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.
    17、22.5
    【解析】
    连接半径OC,先根据点C为的中点,得∠BOC=45°,再由同圆的半径相等和等腰三角形的性质得:∠A=∠ACO=×45°,可得结论.
    【详解】
    连接OC,
    ∵OE⊥AB,
    ∴∠EOB=90°,
    ∵点C为的中点,
    ∴∠BOC=45°,
    ∵OA=OC,
    ∴∠A=∠ACO=×45°=22.5°,
    故答案为:22.5°.
    【点睛】
    本题考查了圆周角定理与等腰三角形的性质.解题的关键是注意掌握数形结合思想的应用.
    18、.
    【解析】
    解:令AE=4x,BE=3x,
    ∴AB=7x.
    ∵四边形ABCD为平行四边形,
    ∴CD=AB=7x,CD∥AB,
    ∴△BEF∽△DCF.
    ∴,
    ∴DF=
    【点睛】
    本题考查平行四边形的性质及相似三角形的判定与性质,掌握定理正确推理论证是本题的解题关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、详见解析.
    【解析】
    根据矩形性质推出BC=AD=AE,AD∥BC,根据平行线性质推出∠DAE=∠AEB,根据AAS证出△ABE≌△DFA即可.
    【详解】
    证明:在矩形ABCD中
    ∵BC=AD,AD∥BC,∠B=90°,
     ∴∠DAF=∠AEB,
     ∵DF⊥AE,AE=BC=AD,
       ∴∠AFD=∠B=90°,
       在△ABE和△DFA中
        ∵  ∠AFD=∠B,∠DAF=∠AEB    ,AE=AD    
       ∴△ABE≌△DFA(AAS),
      ∴AB=DF.
    【点睛】
    本题考查的知识点有矩形的性质,全等三角形的判定与性质,平行线的性质.解决本题的关键在于能够找到证明三角形全等的有关条件.
    20、(1)144°;(2)补图见解析;(3)160人;(4)这个说法不正确,理由见解析.
    【解析】
    试题分析:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案为144°;
    (2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120﹣27﹣33﹣20=120﹣80=40人;补全统计图如图所示;

    (3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200×=160人;
    (4)这个说法不正确.理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人.
    考点:①条形统计图;②扇形统计图.
    21、(1);(2)(,0);(3)1,M(2,﹣3).
    【解析】
    试题分析:方法一:
    (1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.
    (2)首先根据抛物线的解析式确定A点坐标,然后通过证明△ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标.
    (3)△MBC的面积可由S△MBC=BC×h表示,若要它的面积最大,需要使h取最大值,即点M到直线BC的距离最大,若设一条平行于BC的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M.
    方法二:
    (1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.
    (2)通过求出A,B,C三点坐标,利用勾股定理或利用斜率垂直公式可求出AC⊥BC,从而求出圆心坐标.
    (3)利用三角形面积公式,过M点作x轴垂线,水平底与铅垂高乘积的一半,得出△MBC的面积函数,从而求出M点.
    试题解析:解:方法一:
    (1)将B(1,0)代入抛物线的解析式中,得: 0=16a﹣×1﹣2,即:a=,∴抛物线的解析式为:.
    (2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2);
    ∴OA=1,OC=2,OB=1,即:OC2=OA•OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC;
    ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC为直角三角形,AB为△ABC外接圆的直径;
    所以该外接圆的圆心为AB的中点,且坐标为:(,0).
    (3)已求得:B(1,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2;
    设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:
    x+b=,即:,且△=0;
    ∴1﹣1×(﹣2﹣b)=0,即b=﹣1;
    ∴直线l:y=x﹣1.
    所以点M即直线l和抛物线的唯一交点,有:,解得:
    即 M(2,﹣3).
    过M点作MN⊥x轴于N,S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×1=1.
    方法二:
    (1)将B(1,0)代入抛物线的解析式中,得: 0=16a﹣×1﹣2,即:a=,∴抛物线的解析式为:.
    (2)∵y=(x﹣1)(x+1),∴A(﹣1,0),B(1,0).C(0,﹣2),∴KAC= =﹣2,KBC= =,∴KAC×KBC=﹣1,∴AC⊥BC,∴△ABC是以AB为斜边的直角三角形,△ABC的外接圆的圆心是AB的中点,△ABC的外接圆的圆心坐标为(,0).
    (3)过点M作x轴的垂线交BC′于H,∵B(1,0),C(0,﹣2),∴lBC:y=x﹣2,设H(t,t﹣2),M(t,),∴S△MBC=×(HY﹣MY)(BX﹣CX)=×(t﹣2﹣)(1﹣0)=﹣t2+1t,∴当t=2时,S有最大值1,∴M(2,﹣3).

    点睛:考查了二次函数综合题,该题的难度不算太大,但用到的琐碎知识点较多,综合性很强.熟练掌握直角三角形的相关性质以及三角形的面积公式是理出思路的关键.
    22、见解析
    【解析】
    先根据分式的混合运算顺序和运算法则化简原式,若原代数式的值为﹣1,则=﹣1,截至求得x的值,再根据分式有意义的条件即可作出判断.
    【详解】
    原式=[
    =
    =
    =,
    若原代数式的值为﹣1,则=﹣1,
    解得:x=0,
    因为x=0时,原式没有意义,
    所以原代数式的值不能等于﹣1.
    【点睛】
    本题考查了分式的化简求值,熟练掌握运算法则是解题的关键.
    23、(1)见解析;(2)90°;(3)解题思路见解析.
    【解析】
    (1)将线段AD绕点A逆时针方向旋转90°,得到线段AE,连结EC.
    (2)先判定△ABD≌△ACE,即可得到,再根据,即可得出;
    (3)连接DE,由于△ADE为等腰直角三角形,所以可求;由, ,可求的度数和的度数,从而可知DF的长;过点A作于点H,在Rt△ADH中,由,AD=1可求AH、DH的长;由DF、DH的长可求HF的长;在Rt△AHF中,由AH和HF,利用勾股定理可求AF的长.
    【详解】
    解:如图,

    线段AD绕点A逆时针方向旋转,得到线段AE.
    ,,




    在和中

    ≌.

    中,,,


    Ⅰ连接DE,由于为等腰直角三角形,所以可求;
    Ⅱ由,,可求的度数和的度数,从而可知DF的长;
    Ⅲ过点A作于点H,在中,由,可求AH、DH的长;
    Ⅳ由DF、DH的长可求HF的长;
    Ⅴ在中,由AH和HF,利用勾股定理可求AF的长.
    故答案为(1)见解析;(2)90°;(3)解题思路见解析.
    【点睛】
    本题主要考查旋转的性质,等腰直角三角形的性质的运用,解题的关键是要注意对应点与旋转中心所连线段的夹角等于旋转角.
    24、(1)线段AB的垂直平分线(或中垂线);(2)AC=5.
    【解析】
    (1)垂直平分线:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线
    (2)根据题意垂直平分线定理可得AD=BD,得到CD=2,又因为已知sin∠DAC=,故可过点D作AC垂线,求得DF=1,利用勾股定理可求得AF,CF,即可求出AC长.
    【详解】
    (1)小明所求作的直线DE是线段AB的垂直平分线(或中垂线);
    故答案为线段AB的垂直平分线(或中垂线);
    (2)过点D作DF⊥AC,垂足为点F,如图,
    ∵DE是线段AB的垂直平分线,
    ∴AD=BD=7
    ∴CD=BC﹣BD=2,
    在Rt△ADF中,∵sin∠DAC=,
    ∴DF=1,
    在Rt△ADF中,AF=,
    在Rt△CDF中,CF=,
    ∴AC=AF+CF=.

    【点睛】
    本题考查了垂直平分线的尺规作图方法,三角函数和勾股定理求线段长度,解本题的关键是充分利用中垂线,将已知条件与未知条件结合起来解题.
    25、每件乙种商品的价格为1元,每件甲种商品的价格为70元
    【解析】
    设每件甲种商品的价格为x元,则每件乙种商品的价格为(x-10)元,根据数量=总价÷单价结合用350元购买甲种书包的个数恰好与用300元购买乙种书包的个数相同,即可得出关于x的分式方程,解之并检验后即可得出结论.
    【详解】
    解:
    设每件甲种商品的价格为x元,则每件乙种商品的价格为(x﹣10)元,
    根据题意得:,
    解得:x=70,
    经检验,x=70是原方程的解,
    ∴x﹣10=1.
    答:每件乙种商品的价格为1元,每件甲种商品的价格为70元.
    【点睛】
    本题考查了分式方程的应用,解题的关键是:根据数量=总价÷单价,列出分式方程.
    26、(1)1人;补图见解析;(2)10人;(3)610名.
    【解析】
    (1)用总人数乘以A所占的百分比,即可得到总人数;再用总人数乘以A等级人数所占比例可得其人数,继而根据各等级人数之和等于总人数可得D等级人数,据此可补全条形图;
    (2)用总人数乘以(A的百分比+B的百分比),即可解答;
    (3)先计算出提高后A,B所占的百分比,再乘以总人数,即可解答.
    【详解】
    解:(1)本次调查抽取的总人数为15÷=1(人),
    则A等级人数为1×=10(人),D等级人数为1﹣(10+15+5)=20(人),
    补全直方图如下:

    故答案为1.
    (2)估计该校九年级此次数学成绩在B等级以上(含B等级)的学生有1000×=10(人);
    (3)∵A级学生数可提高40%,B级学生数可提高10%,
    ∴B级学生所占的百分比为:30%×(1+10%)=33%,A级学生所占的百分比为:20%×(1+40%)=28%,
    ∴1000×(33%+28%)=610(人),
    ∴估计经过训练后九年级数学成绩在B以上(含B级)的学生可达610名.
    【点睛】
    考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    27、详见解析
    【解析】
    根据平行四边形的性质和已知条件证明△ABE≌△CDF,再利用全等三角形的性质:即可得到AE=CF.
    【详解】
    证:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,又∵BE=DF,∴△ABE≌△CDF,∴AE=CF. (其他证法也可)

    相关试卷

    陕西省安康市汉滨区恒口高中学服务区2023-2024学年八上数学期末统考试题含答案: 这是一份陕西省安康市汉滨区恒口高中学服务区2023-2024学年八上数学期末统考试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,方程组的解为则a,b的值分别为,若点A等内容,欢迎下载使用。

    陕西省安康市汉滨区恒口高中学服务区2022-2023学年数学七下期末经典模拟试题含答案: 这是一份陕西省安康市汉滨区恒口高中学服务区2022-2023学年数学七下期末经典模拟试题含答案,共7页。试卷主要包含了若直线y=kx+k+1经过点等内容,欢迎下载使用。

    2022-2023学年陕西省安康市汉滨区恒口高中学服务区数学七下期末学业质量监测试题含答案: 这是一份2022-2023学年陕西省安康市汉滨区恒口高中学服务区数学七下期末学业质量监测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,已知点,下列等式中,计算正确的是,在下列各式中,是分式的有等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map