2021-2022学年上海市崇明县重点中学十校联考最后数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是( )
A.一次性购买数量不超过10本时,销售价格为20元/本
B.a=520
C.一次性购买10本以上时,超过10本的那部分书的价格打八折
D.一次性购买20本比分两次购买且每次购买10本少花80元
2.点P(﹣2,5)关于y轴对称的点的坐标为( )
A.(2,﹣5) B.(5,﹣2) C.(﹣2,﹣5) D.(2,5)
3.如图,四边形ABCD是菱形,对角线AC,BD交于点O,,,于点H,且DH与AC交于G,则OG长度为
A. B. C. D.
4.如图,AB是⊙O的弦,半径OC⊥AB 于D,若CD=2,⊙O的半径为5,那么AB的长为( )
A.3 B.4 C.6 D.8
5.如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将以DE为折痕向右折叠,AE与BC交于点F,则的面积为( )
A.4 B.6 C.8 D.10
6.下面的统计图反映了我市2011﹣2016年气温变化情况,下列说法不合理的是( )
A.2011﹣2014年最高温度呈上升趋势
B.2014年出现了这6年的最高温度
C.2011﹣2015年的温差成下降趋势
D.2016年的温差最大
7.等腰三角形两边长分别是2 cm和5 cm,则这个三角形周长是( )
A.9 cm B.12 cm C.9 cm或12 cm D.14 cm
8.某城年底已有绿化面积公顷,经过两年绿化,到年底增加到公顷,设绿化面积平均每年的增长率为,由题意所列方程正确的是( ).
A. B. C. D.
9.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是( )
劳动时间(小时) | 3 | 3.5 | 4 | 4.5 |
人 数 | 1 | 1 | 3 | 2 |
A.中位数是4,众数是4 B.中位数是3.5,众数是4
C.平均数是3.5,众数是4 D.平均数是4,众数是3.5
10.下列说法中,正确的是( )
A.不可能事件发生的概率为0
B.随机事件发生的概率为
C.概率很小的事件不可能发生
D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在Rt△ABC中,AC=4,BC=3,将Rt△ABC以点A为中心,逆时针旋转60°得到△ADE,则线段BE的长度为_____.
12.如图,直线a、b相交于点O,若∠1=30°,则∠2=___
13.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D,若OA=2,则阴影部分的面积为 .
14.抛物线y=mx2+2mx+5的对称轴是直线_____.
15.对于一元二次方程,根的判别式中的表示的数是__________.
16.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F.若∠E+∠F=80°,则∠A=____°.
17.在平面直角坐标系中,点A(2,3)绕原点O逆时针旋转90°的对应点的坐标为_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.求k和n的值;若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.
19.(5分)如图,已知AB是圆O的直径,弦CD⊥AB,垂足H在半径OB上,AH=5,CD=,点E在弧AD上,射线AE与CD的延长线交于点F.
(1)求圆O的半径;
(2)如果AE=6,求EF的长.
20.(8分)如图,安徽江淮集团某部门研制了绘图智能机器人,该机器人由机座、手臂和末端操作器三部分组成,底座直线且,手臂,末端操作器,直线.当机器人运作时,,求末端操作器节点到地面直线的距离.(结果保留根号)
21.(10分)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.
在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;在图2中画出线段AB的垂直平分线.
22.(10分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.
类别 | 频数(人数) | 频率 |
小说 |
| 0.5 |
戏剧 | 4 |
|
散文 | 10 | 0.25 |
其他 | 6 |
|
合计 |
| 1 |
根据图表提供的信息,解答下列问题:八年级一班有多少名学生?请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.
23.(12分)先化简,再求值:,其中满足.
24.(14分)某校团委为研究该校学生的课余活动情况,采取抽样调查的方法,从阅读、运动、娱乐、其他等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图,请你根据图中提供的信息解答下列各题:
(1)在这次研究中,一共调查了多少名学生?
(2)“其他”在扇形统计图中所占的圆心角是多少度?
(3)补全频数分布直方图;
(4)该校共有3200名学生,请你估计一下全校大约有多少学生课余爱好是阅读.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.
【详解】
解:A、∵200÷10=20(元/本),
∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;
C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,
∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;
B、∵200+16×(30﹣10)=520(元),
∴a=520,B选项正确;
D、∵200×2﹣200﹣16×(20﹣10)=40(元),
∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.
故选D.
【点睛】
考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.
2、D
【解析】
根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.
【详解】
点关于y轴对称的点的坐标为,
故选:D.
【点睛】
本题主要考查了平面直角坐标系中点的对称,熟练掌握点的对称特点是解决本题的关键.
3、B
【解析】
试题解析:在菱形中,,,所以,,在中,,
因为,所以,则,在中,由勾股定理得,,由可得,,即,所以.故选B.
4、D
【解析】
连接OA,构建直角三角形AOD;利用垂径定理求得AB=2AD;然后在直角三角形AOD中由勾股定理求得AD的长度,从而求得AB=2AD=1.
【详解】
连接OA.
∵⊙O的半径为5,CD=2,
∵OD=5-2=3,即OD=3;
又∵AB是⊙O的弦,OC⊥AB,
∴AD=AB;
在直角三角形ODC中,根据勾股定理,得
AD==4,
∴AB=1.
故选D.
【点睛】
本题考查了垂径定理、勾股定理.解答该题的关键是通过作辅助线OA构建直角三角形,在直角三角形中利用勾股定理求相关线段的长度.
5、C
【解析】
根据折叠易得BD,AB长,利用相似可得BF长,也就求得了CF的长度,△CEF的面积=CF•CE.
【详解】
解:由折叠的性质知,第二个图中BD=AB-AD=4,第三个图中AB=AD-BD=2,
因为BC∥DE,
所以BF:DE=AB:AD,
所以BF=2,CF=BC-BF=4,
所以△CEF的面积=CF•CE=8;
故选:C.
点睛:
本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②矩形的性质,平行线的性质,三角形的面积公式等知识点.
6、C
【解析】
利用折线统计图结合相应数据,分别分析得出符合题意的答案.
【详解】
A选项:年最高温度呈上升趋势,正确;
B选项:2014年出现了这6年的最高温度,正确;
C选项:年的温差成下降趋势,错误;
D选项:2016年的温差最大,正确;
故选C.
【点睛】
考查了折线统计图,利用折线统计图获取正确信息是解题关键.
7、B
【解析】当腰长是2 cm时,因为2+2<5,不符合三角形的三边关系,排除;当腰长是5 cm时,因为5+5>2,符合三角形三边关系,此时周长是12 cm.故选B.
8、B
【解析】
先用含有x的式子表示2015年的绿化面积,进而用含有x的式子表示2016年的绿化面积,根据等式关系列方程即可.
【详解】
由题意得,绿化面积平均每年的增长率为x,则2015年的绿化面积为300(1+x),2016年的绿化面积为300(1+x)(1+x),经过两年的增长,绿化面积由300公顷变为363公顷.可列出方程:300(1+x)2=363.故选B.
【点睛】
本题主要考查一元二次方程的应用,找准其中的等式关系式解答此题的关键.
9、A
【解析】
根据众数和中位数的概念求解.
【详解】
这组数据中4出现的次数最多,众数为4,
∵共有7个人,
∴第4个人的劳动时间为中位数,
所以中位数为4,
故选A.
【点睛】
本题考查众数与中位数的意义,一组数据中出现次数最多的数据叫做众数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
10、A
【解析】
试题分析:不可能事件发生的概率为0,故A正确;
随机事件发生的概率为在0到1之间,故B错误;
概率很小的事件也可能发生,故C错误;
投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D错误;
故选A.
考点:随机事件.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
连接CE,作EF⊥BC于F,根据旋转变换的性质得到∠CAE=60°,AC=AE,根据等边三角形的性质得到CE=AC=4,∠ACE=60°,根据直角三角形的性质、勾股定理计算即可.
【详解】
解:连接CE,作EF⊥BC于F,
由旋转变换的性质可知,∠CAE=60°,AC=AE,
∴△ACE是等边三角形,
∴CE=AC=4,∠ACE=60°,
∴∠ECF=30°,
∴EF=CE=2,
由勾股定理得,CF= = ,
∴BF=BC-CF= ,
由勾股定理得,BE== ,
故答案为:.
【点睛】
本题考查的是旋转变换的性质、等边三角形的判定和性质,掌握旋转变换对应点到旋转中心的距离相等、对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.
12、30°
【解析】
因∠1和∠2是邻补角,且∠1=30°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣30°=150°.
解:∵∠1+∠2=180°,
又∠1=30°,
∴∠2=150°.
13、.
【解析】
试题解析:连接OE、AE,
∵点C为OA的中点,
∴∠CEO=30°,∠EOC=60°,
∴△AEO为等边三角形,
∴S扇形AOE=
∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)
=
=
=.
14、x=﹣1
【解析】
根据抛物线的对称轴公式可直接得出.
【详解】
解:这里a=m,b=2m
∴对称轴x=
故答案为:x=-1.
【点睛】
解答本题关键是识记抛物线的对称轴公式x=.
15、-5
【解析】
分清一元二次方程中,二次项系数、一次项系数和常数项,直接解答即可.
【详解】
解:表示一元二次方程的一次项系数.
【点睛】
此题考查根的判别式,在解一元二次方程时程根的判别式△=b2-4ac,不要盲目套用,要看具体方程中的a,b,c的值.a代表二次项系数,b代表一次项系数,c是常数项.
16、50
【解析】
试题分析:连结EF,如图,根据圆内接四边形的性质得∠A+∠BCD=180°,根据对顶角相等得∠BCD=∠ECF,则∠A+∠ECF=180°,根据三角形内角和定理得∠ECF+∠1+∠2=180°,所以∠1+∠2=∠A,再利用三角形内角和定理得到∠A+∠AEB+∠1+∠2+∠AFD=180°,则∠A+80°+∠A=180°,然后解方程即可.
试题解析:连结EF,如图,
∵四边形ABCD内接于⊙O,
∴∠A+∠BCD=180°,
而∠BCD=∠ECF,
∴∠A+∠ECF=180°,
∵∠ECF+∠1+∠2=180°,
∴∠1+∠2=∠A,
∵∠A+∠AEF+∠AFE=180°,
即∠A+∠AEB+∠1+∠2+∠AFD=180°,
∴∠A+80°+∠A=180°,
∴∠A=50°.
考点:圆内接四边形的性质.
17、(﹣3,2)
【解析】
作出图形,然后写出点A′的坐标即可.
【详解】
解答:如图,点A′的坐标为(-3,2).
故答案为(-3,2).
【点睛】
本题考查的知识点是坐标与图象变化-旋转,解题关键是注意利用数形结合的思想求解.
三、解答题(共7小题,满分69分)
18、(1)n=1,k=1.(2)当2≤x≤1时,1≤y≤2.
【解析】
【分析】(1)利用一次函数图象上点的坐标特征可求出n值,进而可得出点B的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;
(2)由k=1>0结合反比例函数的性质,即可求出:当2≤x≤1时,1≤y≤2.
【详解】(1)当x=1时,n=﹣×1+4=1,
∴点B的坐标为(1,1).
∵反比例函数y=过点B(1,1),
∴k=1×1=1;
(2)∵k=1>0,
∴当x>0时,y随x值增大而减小,
∴当2≤x≤1时,1≤y≤2.
【点睛】本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,用到了点在函数图象上,则点的坐标就适合所在函数图象的函数解析式,待定系数法等知识,熟练掌握相关知识是解题的关键.
19、 (1) 圆的半径为4.5;(2) EF=.
【解析】
(1)连接OD,根据垂径定理得:DH=2,设圆O的半径为r,根据勾股定理列方程可得结论;
(2)过O作OG⊥AE于G,证明△AGO∽△AHF,列比例式可得AF的长,从而得EF的长.
【详解】
(1)连接OD,
∵直径AB⊥弦CD,CD=4,
∴DH=CH=CD=2,
在Rt△ODH中,AH=5,
设圆O的半径为r,
根据勾股定理得:OD2=(AH﹣OA)2+DH2,即r2=(5﹣r)2+20,
解得:r=4.5,
则圆的半径为4.5;
(2)过O作OG⊥AE于G,
∴AG=AE=×6=3,
∵∠A=∠A,∠AGO=∠AHF,
∴△AGO∽△AHF,
∴,
∴,
∴AF=,
∴EF=AF﹣AE=﹣6=.
【点睛】
本题考查了垂径定理,勾股定理,相似三角形的判定与性质,解答本题的关键是正确添加辅助线并熟练掌握垂径定理和相似三角形的判定与性质.
20、()cm.
【解析】
作BG⊥CD,垂足为G,BH⊥AF,垂足为H,解和,分别求出CG和BH的长,根据D到L的距离求解即可.
【详解】
如图,作BG⊥CD,垂足为G,BH⊥AF,垂足为H,
在中,∠BCD=60°,BC=60cm,
∴,
在中,∠BAF=45°,AB=60cm,
∴,
∴D到L的距离.
【点睛】
本题考查解直角三角形,解题的关键是构造出适当辅助线,从而利用锐角三角函数的定义求出相关线段.
21、(1)答案见解析;(2)答案见解析.
【解析】
试题分析:(1)根据等腰直角三角形的性质即可解决问题.
(2)根据正方形、长方形的性质对角线相等且互相平分,即可解决问题.
试题解析:(1)如图所示,∠ABC=45°.(AB、AC是小长方形的对角线).
(2)线段AB的垂直平分线如图所示,点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线.
考点:作图—应用与设计作图.
22、(1)41(2)15%(3)
【解析】
(1)用散文的频数除以其频率即可求得样本总数;
(2)根据其他类的频数和总人数求得其百分比即可;
(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.
【详解】
(1)∵喜欢散文的有11人,频率为1.25,
∴m=11÷1.25=41;
(2)在扇形统计图中,“其他”类所占的百分比为 ×111%=15%,
故答案为15%;
(3)画树状图,如图所示:
所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,
∴P(丙和乙)==.
23、1
【解析】
试题分析:原式第一项括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,已知方程变形后代入计算即可求出值.
试题解析:
原式=
∵x2−x−1=0,∴x2=x+1,
则原式=1.
24、(1)总调查人数是100人;(2)在扇形统计图中“其它”类的圆心角是36°;(3)补全频数分布直方图见解析;(4)估计一下全校课余爱好是阅读的学生约为960人.
【解析】
(1)利用参加运动的人数除以其所占的比例即可求得这次调查的总人数;(2)用360°乘以“其它”类的人数所占的百分比即可求解;(3)求得“其它”类的人数、“娱乐”类的人数,补全统计图即可;(4)用总人数乘以课余爱好是阅读的学生人数所占的百分比即可求解.
【详解】
(1)从条形统计图中得出参加运动的人数为20人,所占的比例为20%,
∴总调查人数=20÷20%=100人;
(2)参加娱乐的人数=100×40%=40人,
从条形统计图中得出参加阅读的人数为30人,
∴“其它”类的人数=100﹣40﹣30﹣20=10人,所占比例=10÷100=10%,
在扇形统计图中“其它”类的圆心角=360×10%=36°;
(3)如图
(4)估计一下全校课余爱好是阅读的学生约为3200×=960(人).
【点睛】
本题考查了条形统计图、扇形统计图的应用,从条形统计图、扇形统计图中获取必要的信息是解决问题的关键.
山东省庆云县重点中学2021-2022学年十校联考最后数学试题含解析: 这是一份山东省庆云县重点中学2021-2022学年十校联考最后数学试题含解析,共25页。试卷主要包含了﹣的绝对值是,若分式有意义,则的取值范围是等内容,欢迎下载使用。
庆阳市重点中学2021-2022学年十校联考最后数学试题含解析: 这是一份庆阳市重点中学2021-2022学年十校联考最后数学试题含解析,共19页。试卷主要包含了计算的结果是,一组数据等内容,欢迎下载使用。
2022届上海市浦东区重点中学十校联考最后数学试题含解析: 这是一份2022届上海市浦东区重点中学十校联考最后数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,-5的相反数是,下列各式,“绿水青山就是金山银山”等内容,欢迎下载使用。