2021-2022学年上海市浦东区第四教育署中考数学最后一模试卷含解析
展开
这是一份2021-2022学年上海市浦东区第四教育署中考数学最后一模试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,不等式组的解集在数轴上可表示为,如果,那么代数式的值是,如图等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子( )
A.1颗 B.2颗 C.3颗 D.4颗
2.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )
A. B. C. D.
3.如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是( )
A.AF=CF B.∠DCF=∠DFC
C.图中与△AEF相似的三角形共有5个 D.tan∠CAD=
4.若关于x的分式方程的解为非负数,则a的取值范围是( )
A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠4
5.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是
A.6.75×103吨 B.67.5×103吨 C.6.75×104吨 D.6.75×105吨
6.不等式组的解集在数轴上可表示为( )
A. B. C. D.
7.如果,那么代数式的值是( )
A.6 B.2 C.-2 D.-6
8.不论x、y为何值,用配方法可说明代数式x2+4y2+6x﹣4y+11的值( )
A.总不小于1 B.总不小于11
C.可为任何实数 D.可能为负数
9.如图:已知AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,则线段AP的长不可能是( )
A.3 B.3.5 C.4 D.5
10.△ABC在正方形网格中的位置如图所示,则cosB的值为( )
A. B. C. D.2
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知,正六边形的边长为1cm,分别以它的三个不相邻的顶点为圆心,1cm长为半径画弧(如图),则所得到的三条弧的长度之和为__________cm(结果保留π).
12.废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量).某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水用科学记数法表示为_____立方米.
13.一个扇形的面积是πcm,半径是3cm,则此扇形的弧长是_____.
14.如图,以原点O为圆心的圆交X轴于A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=20°,则∠OCD= .
15.如图,已知正方形边长为4,以A为圆心,AB为半径作弧BD,M是BC的中点,过点M作EM⊥BC交弧BD于点E,则弧BE的长为_____.
16.关于x的分式方程有增根,则m的值为__________.
三、解答题(共8题,共72分)
17.(8分)某企业为杭州计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:
月份x
1
2
3
4
5
6
7
8
9
价格y1(元/件)
560
580
600
620
640
660
680
700
720
随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1 与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=﹣0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润.
18.(8分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600米到达B处,测得C在点B的北偏西60°方向上.
(1)MN是否穿过原始森林保护区,为什么?(参考数据:≈1.732)
(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?
19.(8分)在“双十一”购物街中,某儿童品牌玩具专卖店购进了两种玩具,其中类玩具的金价比玩具的进价每个多元.经调查发现:用元购进类玩具的数量与用元购进类玩具的数量相同.求的进价分别是每个多少元?该玩具店共购进了两类玩具共个,若玩具店将每个类玩具定价为元出售,每个类玩具定价元出售,且全部售出后所获得的利润不少于元,则该淘宝专卖店至少购进类玩具多少个?
20.(8分)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D.求证:BE=CF ;当四边形ACDE为菱形时,求BD的长.
21.(8分)如图,▱ABCD的边CD为斜边向内作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且点E在平行四边形内部,连接AE、BE,求∠AEB的度数.
22.(10分)襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为 且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成木是18元/千克,每天的利润是W元(利润=销售收入﹣成本).m= ,n= ;求销售蓝莓第几天时,当天的利润最大?最大利润是多少?在销售蓝莓的30天中,当天利润不低于870元的共有多少天?
23.(12分)如图,点A的坐标为(﹣4,0),点B的坐标为(0,﹣2),把点A绕点B顺时针旋转90°得到的点C恰好在抛物线y=ax2上,点P是抛物线y=ax2上的一个动点(不与点O重合),把点P向下平移2个单位得到动点Q,则:
(1)直接写出AB所在直线的解析式、点C的坐标、a的值;
(2)连接OP、AQ,当OP+AQ获得最小值时,求这个最小值及此时点P的坐标;
(3)是否存在这样的点P,使得∠QPO=∠OBC,若不存在,请说明理由;若存在,请你直接写出此时P点的坐标.
24.抛物线y=﹣x2+bx+c(b,c均是常数)经过点O(0,0),A(4,4),与x轴的另一交点为点B,且抛物线对称轴与线段OA交于点P.
(1)求该抛物线的解析式和顶点坐标;
(2)过点P作x轴的平行线l,若点Q是直线上的动点,连接QB.
①若点O关于直线QB的对称点为点C,当点C恰好在直线l上时,求点Q的坐标;
②若点O关于直线QB的对称点为点D,当线段AD的长最短时,求点Q的坐标(直接写出答案即可).
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
试题解析:由题意得,
解得:.
故选B.
2、B
【解析】
由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.
故选B.
3、D
【解析】
由 又AD∥BC,所以 故A正确,不符合题意;过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=
BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;
根据相似三角形的判定即可求解,故C正确,不符合题意;
由△BAE∽△ADC,得到CD与AD的大小关系,根据正切函数可求tan∠CAD的值,故D错误,符合题意.
【详解】
A.∵AD∥BC,
∴△AEF∽△CBF,
∴
∵
∴,故A正确,不符合题意;
B. 过D作DM∥BE交AC于N,
∵DE∥BM,BE∥DM,
∴四边形BMDE是平行四边形,
∴
∴BM=CM,
∴CN=NF,
∵BE⊥AC于点F,DM∥BE,
∴DN⊥CF,
∴DF=DC,
∴∠DCF=∠DFC,故B正确,不符合题意;
C. 图中与△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,△ABE共有5个,故C正确,不符合题意;
D. 设AD=a,AB=b,由△BAE∽△ADC,有
∵tan∠CAD 故D错误,符合题意.
故选:D.
【点睛】
考查相似三角形的判定,矩形的性质,解直角三角形,掌握相似三角形的判定方法是解题的关键.
4、C
【解析】
试题分析:分式方程去分母转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不为1求出a的范围即可.
解:去分母得:2(2x﹣a)=x﹣2,
解得:x=,
由题意得:≥1且≠2,
解得:a≥1且a≠4,
故选C.
点睛:此题考查了分式方程的解,需注意在任何时候都要考虑分母不为1.
5、C
【解析】
试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).67500一共5位,从而67 500=6.75×2.故选C.
6、A
【解析】
先求出每个不等式的解集,再求出不等式组的解集即可.
【详解】
解:
∵不等式①得:x>1,
解不等式②得:x≤2,
∴不等式组的解集为1<x≤2,
在数轴上表示为:,
故选A.
【点睛】
本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.
7、A
【解析】
【分析】将所求代数式先利用单项式乘多项式法则、平方差公式进行展开,然后合并同类项,最后利用整体代入思想进行求值即可.
【详解】∵3a2+5a-1=0,
∴3a2+5a=1,
∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,
故选A.
【点睛】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.
8、A
【解析】
利用配方法,根据非负数的性质即可解决问题;
【详解】
解:∵x2+4y2+6x-4y+11=(x+3)2+(2y-1)2+1,
又∵(x+3)2≥0,(2y-1)2≥0,
∴x2+4y2+6x-4y+11≥1,
故选:A.
【点睛】
本题考查配方法的应用,非负数的性质等知识,解题的关键是熟练掌握配方法.
9、A
【解析】
根据直线外一点和直线上点的连线中,垂线段最短的性质,可得答案.
【详解】
解:由AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,得
AP≥AB,
AP≥3.5,
故选:A.
【点睛】
本题考查垂线段最短的性质,解题关键是利用垂线段的性质.
10、A
【解析】
解:在直角△ABD中,BD=2,AD=4,则AB=,
则cosB=.
故选A.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
考点:弧长的计算;正多边形和圆.
分析:本题主要考查求正多边形的每一个内角,以及弧长计算公式.
解:方法一:
先求出正六边形的每一个内角==120°,
所得到的三条弧的长度之和=3×=2πcm;
方法二:先求出正六边形的每一个外角为60°,
得正六边形的每一个内角120°,
每条弧的度数为120°,
三条弧可拼成一整圆,其三条弧的长度之和为2πcm.
12、3×1
【解析】
因为一粒纽扣电池能污染600立方米的水,如果每名学生一年丢弃一粒纽扣电池,那么被该班学生一年丢弃的纽扣电池能污染的水就是:
600×50=30 000,用科学记数法表示为3×1立方米.
故答案为3×1.
13、
【解析】
根据扇形面积公式求解即可
【详解】
根据扇形面积公式.
可得:,
,
故答案:.
【点睛】
本题主要考查了扇形的面积和弧长之间的关系, 利用扇形弧长和半径代入公式即可求解, 正确理解公式是解题的关键. 注意在求扇形面积时, 要根据条件选择扇形面积公式.
14、65°
【解析】
解:由题意分析之,得出弧BD对应的圆周角是∠DAB,
所以,=40°,由此则有:∠OCD=65°
考点:本题考查了圆周角和圆心角的关系
点评:此类试题属于难度一般的试题,考生在解答此类试题时一定要对圆心角、弧、弦等的基本性质要熟练把握
15、
【解析】
延长ME交AD于F,由M是BC的中点,MF⊥AD,得到F点为AD的中点,即AF=AD,则∠AEF=30°,得到∠BAE=30°,再利用弧长公式计算出弧BE的长.
【详解】
延长ME交AD于F,如图,∵M是BC的中点,MF⊥AD,∴F点为AD的中点,即AF=AD.
又∵AE=AD,∴AE=2AF,∴∠AEF=30°,∴∠BAE=30°,∴弧BE的长==.
故答案为.
【点睛】
本题考查了弧长公式:l=.也考查了在直角三角形中,一直角边是斜边的一半,这条直角边所对的角为30度.
16、1.
【解析】
去分母得:7x+5(x-1)=2m-1,
因为分式方程有增根,所以x-1=0,所以x=1,
把x=1代入7x+5(x-1)=2m-1,得:7=2m-1,
解得:m=1,
故答案为1.
三、解答题(共8题,共72分)
17、(1)y1=20x+540,y2=10x+1;(2)去年4月销售该配件的利润最大,最大利润为450万元.
【解析】
(1)利用待定系数法,结合图象上点的坐标求出一次函数解析式即可;
(2)根据生产每件配件的人力成本为50元,其它成本30元,以及售价销量进而求出最大利润.
【详解】
(1)利用表格得出函数关系是一次函数关系:
设y1=kx+b,
∴
解得:
∴y1=20x+540,
利用图象得出函数关系是一次函数关系:
设y2=ax+c,
∴
解得:
∴y2=10x+1.
(2)去年1至9月时,销售该配件的利润w=p1(1000﹣50﹣30﹣y1),
=(0.1x+1.1)(1000﹣50﹣30﹣20x﹣540)=﹣2x2+16x+418,
=﹣2( x﹣4)2+450,(1≤x≤9,且x取整数)
∵﹣2<0,1≤x≤9,∴当x=4时,w最大=450(万元);
去年10至12月时,销售该配件的利润w=p2(1000﹣50﹣30﹣y2)
=(﹣0.1x+2.9)(1000﹣50﹣30﹣10x﹣1),
=( x﹣29)2,(10≤x≤12,且x取整数),
∵10≤x≤12时,∴当x=10时,w最大=361(万元),
∵450>361,∴去年4月销售该配件的利润最大,最大利润为450万元.
【点睛】
此题主要考查了一次函数的应用,根据已知得出函数关系式以及利用函数增减性得出函数最值是解题关键.
18、(1)不会穿过森林保护区.理由见解析;(2)原计划完成这项工程需要25天.
【解析】
试题分析:(1)要求MN是否穿过原始森林保护区,也就是求C到MN的距离.要构造直角三角形,再解直角三角形;
(2)根据题意列方程求解.
试题解析:(1)如图,过C作CH⊥AB于H,
设CH=x,由已知有∠EAC=45°, ∠FBC=60°
则∠CAH=45°, ∠CBA=30°,在RT△ACH中,AH=CH=x,在RT△HBC中, tan∠HBC=
∴HB===x,
∵AH+HB=AB
∴x+x=600解得x≈220(米)>200(米).∴MN不会穿过森林保护区.
(2)设原计划完成这项工程需要y天,则实际完成工程需要y-5
根据题意得:=(1+25%)×,解得:y=25知:y=25的根.
答:原计划完成这项工程需要25天.
19、(1)的进价是元,的进价是元;(2)至少购进类玩具个.
【解析】
(1)设的进价为元,则的进价为元,根据用元购进类玩具的数量与用元购进类玩具的数量相同这个等量关系列出方程即可;
(2)设玩具个,则玩具个,结合“玩具点将每个类玩具定价为元出售,每个类玩具定价元出售,且全部售出后所获得利润不少于元”列出不等式并解答.
【详解】
解:(1)设的进价为元,则的进价为元
由题意得,
解得,
经检验是原方程的解.
所以(元)
答:的进价是元,的进价是元;
(2)设玩具个,则玩具个
由题意得:
解得.
答:至少购进类玩具个.
【点睛】
本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系,准确的解分式方程或不等式是需要掌握的基本计算能力.
20、(1)证明见解析(2)-1
【解析】
(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;
(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以BE=AC=,于是利用BD=BE﹣DE求解.
【详解】
(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,
∴AE=AB,AF=AC,∠EAF=∠BAC,
∴∠EAF+∠BAF=∠BAC+∠BAF,
即∠EAB=∠FAC,
在△ACF和△ABE中,
△ACF≌△ABE
BE=CF.
(2)∵四边形ACDE为菱形,AB=AC=1,
∴DE=AE=AC=AB=1,AC∥DE,
∴∠AEB=∠ABE,∠ABE=∠BAC=45°,
∴∠AEB=∠ABE=45°,
∴△ABE为等腰直角三角形,
∴BE=AC=,
∴BD=BE﹣DE=.
考点:1.旋转的性质;2.勾股定理;3.菱形的性质.
21、135°
【解析】
先证明AD=DE=CE=BC,得出∠DAE=∠AED,∠CBE=∠CEB,∠EDC=∠ECD=45°,设∠DAE=∠AED=x,∠CBE=∠CEB=y,求出∠ADC=225°-2x,∠BAD=2x-45°,由平行四边形的对角相等得出方程,求出x+y=135°,即可得出结果.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD=BC,∠BAD=∠BCD,∠BAD+∠ADC=180°,
∵AD=DE=CE,
∴AD=DE=CE=BC,
∴∠DAE=∠AED,∠CBE=∠CEB,
∵∠DEC=90°,
∴∠EDC=∠ECD=45°,
设∠DAE=∠AED=x,∠CBE=∠CEB=y,
∴∠ADE=180°﹣2x,∠BCE=180°﹣2y,
∴∠ADC=180°﹣2x+45°=225°﹣2x,∠BCD=225°﹣2y
,∴∠BAD=180°﹣(225°﹣2x)=2x﹣45°,
∴2x﹣45°=225°﹣2y,
∴x+y=135°,
∴∠AEB=360°﹣135°﹣90°=135°.
【点睛】
本题考查了平行四边形的性质,解题的关键是熟练的掌握平行四边形的性质.
22、(1)m=﹣,n=25;(2)18,W最大=968;(3)12天.
【解析】
【分析】(1)根据题意将第12天的售价、第26天的售价代入即可得;
(2)在(1)的基础上分段表示利润,讨论最值;
(3)分别在(2)中的两个函数取值范围内讨论利润不低于870的天数,注意天数为正整数.
【详解】(1)当第12天的售价为32元/件,代入y=mx﹣76m得
32=12m﹣76m,
解得m=,
当第26天的售价为25元/千克时,代入y=n,
则n=25,
故答案为m=,n=25;
(2)由(1)第x天的销售量为20+4(x﹣1)=4x+16,
当1≤x<20时,
W=(4x+16)(x+38﹣18)=﹣2x2+72x+320=﹣2(x﹣18)2+968,
∴当x=18时,W最大=968,
当20≤x≤30时,W=(4x+16)(25﹣18)=28x+112,
∵28>0,
∴W随x的增大而增大,
∴当x=30时,W最大=952,
∵968>952,
∴当x=18时,W最大=968;
(3)当1≤x<20时,令﹣2x2+72x+320=870,
解得x1=25,x2=11,
∵抛物线W=﹣2x2+72x+320的开口向下,
∴11≤x≤25时,W≥870,
∴11≤x<20,
∵x为正整数,
∴有9天利润不低于870元,
当20≤x≤30时,令28x+112≥870,
解得x≥27,
∴27≤x≤30
∵x为正整数,
∴有3天利润不低于870元,
∴综上所述,当天利润不低于870元的天数共有12天.
【点睛】本题考查了一次函数的应用,二次函数的应用,弄清题意,找准题中的数量关系,运用分类讨论思想是解题的关键.
23、(1)a=;(2)OP+AQ的最小值为2,此时点P的坐标为(﹣1,);(3)P(﹣4,8)或(4,8),
【解析】
(1)利用待定系数法求出直线AB解析式,根据旋转性质确定出C的坐标,代入二次函数解析式求出a的值即可;
(2)连接BQ,可得PQ与OB平行,而PQ=OB,得到四边形PQBO为平行四边形,当Q在线段AB上时,求出OP+AQ的最小值,并求出此时P的坐标即可;
(3)存在这样的点P,使得∠QPO=∠OBC,如备用图所示,延长PQ交x轴于点H,设此时点P的坐标为(m,m2),根据正切函数定义确定出m的值,即可确定出P的坐标.
【详解】
解:(1)设直线AB解析式为y=kx+b,
把A(﹣4,0),B(0,﹣2)代入得:,
解得:,
∴直线AB的解析式为y=﹣x﹣2,
根据题意得:点C的坐标为(2,2),
把C(2,2)代入二次函数解析式得:a=;
(2)连接BQ,
则易得PQ∥OB,且PQ=OB,
∴四边形PQBO是平行四边形,
∴OP=BQ,
∴OP+AQ=BQ+AQ≥AB=2,(等号成立的条件是点Q在线段AB上),
∵直线AB的解析式为y=﹣x﹣2,
∴可设此时点Q的坐标为(t,﹣t﹣2),
于是,此时点P的坐标为(t,﹣t),
∵点P在抛物线y=x2上,
∴﹣t=t2,
解得:t=0或t=﹣1,
∴当t=0,点P与点O重合,不合题意,应舍去,
∴OP+AQ的最小值为2,此时点P的坐标为(﹣1,);
(3)P(﹣4,8)或(4,8),
如备用图所示,延长PQ交x轴于点H,
设此时点P的坐标为(m,m2),
则tan∠HPO=,
又,易得tan∠OBC=,
当tan∠HPO=tan∠OBC时,可使得∠QPO=∠OBC,
于是,得,
解得:m=±4,
所以P(﹣4,8)或(4,8).
【点睛】
此题属于二次函数综合题,涉及的知识有:二次函数的图象与性质,待定系数法求一次函数解析式,旋转的性质,以及锐角三角函数定义,熟练掌握各自的性质是解本题的关键.
24、(1)y=﹣(x﹣)2+;(,);(2)①(﹣,)或(,);②(0,);
【解析】
1)把0(0,0),A(4,4v3)的坐标代入
y=﹣x2+bx+c,转化为解方程组即可.
(2)先求出直线OA的解析式,点B坐标,抛物线的对称轴即可解决问题.
(3)①如图1中,点O关于直线BQ的对称点为点C,当点C恰好在直线l上时,首先证明四边形BOQC是菱形,设Q(m,),根据OQ=OB=5,可得方程,解方程即可解决问题.
②如图2中,由题意点D在以B为圆心5为半径的OB上运动,当A,D、B共线时,线段AD最小,设OD与BQ交于点H.先求出D、H两点坐标,再求出直线BH的解析式即可解决问题.
【详解】
(1)把O(0,0),A(4,4)的坐标代入y=﹣x2+bx+c,
得,
解得,
∴抛物线的解析式为y=﹣x2+5x=﹣(x﹣)2+.
所以抛物线的顶点坐标为(,);
(2)①由题意B(5,0),A(4,4),
∴直线OA的解析式为y=x,AB==7,
∵抛物线的对称轴x=,
∴P(,).
如图1中,点O关于直线BQ的对称点为点C,当点C恰好在直线l上时,
∵QC∥OB,
∴∠CQB=∠QBO=∠QBC,
∴CQ=BC=OB=5,
∴四边形BOQC是平行四边形,
∵BO=BC,
∴四边形BOQC是菱形,
设Q(m,),
∴OQ=OB=5,
∴m2+()2=52,
∴m=±,
∴点Q坐标为(﹣,)或(,);
②如图2中,由题意点D在以B为圆心5为半径的⊙B上运动,当A、D、B共线时,线段AD最小,设OD与BQ交于点H.
∵AB=7,BD=5,
∴AD=2,D(,),
∵OH=HD,
∴H(,),
∴直线BH的解析式为y=﹣x+,
当y=时,x=0,
∴Q(0,).
【点睛】
本题二次函数与一次函数的关系、几何动态问题、最值问题、作辅助圆解决问题,难度较大,需积极思考,灵活应对.
相关试卷
这是一份2023-2024学年上海市浦东区第四教育署八上数学期末经典模拟试题含答案,共7页。试卷主要包含了估计的值约为,计算 的结果为,下列计算中,不正确的是等内容,欢迎下载使用。
这是一份上海市浦东区第四教育署2021-2022学年中考数学猜题卷含解析,共18页。试卷主要包含了下列运算中正确的是,下列命题中错误的有个,﹣18的倒数是等内容,欢迎下载使用。
这是一份2022年上海市浦东区第四教育署达标名校中考冲刺卷数学试题含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,不等式组 的整数解有,下列计算正确的是等内容,欢迎下载使用。