2021-2022学年四川省阿坝市市级名校中考数学模拟精编试卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.在一个口袋中有4个完全相同的小球,把它们分别标号为 1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球.则两次摸出的小球的标号的和等于6的概率为( )
A. B. C. D.
2.如图,在6×4的正方形网格中,△ABC的顶点均为格点,则sin∠ACB=( )
A. B.2 C. D.
3.在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
4.在下列网格中,小正方形的边长为1,点A、B、O都在格点上,则的正弦值是
A. B. C. D.
5.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为( )
A.0.5×10﹣9米 B.5×10﹣8米 C.5×10﹣9米 D.5×10﹣10米
6.的绝对值是( )
A.﹣4 B. C.4 D.0.4
7.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是( )
A. B. C. D.
8.二元一次方程组的解为( )
A. B. C. D.
9.如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2,设弦AP的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是
A. B. C. D.
10.如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是( )
A.8,9 B.8,8.5 C.16,8.5 D.16,10.5
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,以锐角△ABC的边AB为直径作⊙O,分别交AC,BC于E、D两点,若AC=14,CD=4,7sinC=3tanB,则BD=_____.
12.如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为_____.
13.已知圆锥的高为3,底面圆的直径为8,则圆锥的侧面积为_____.
14.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,每块方砖大小、质地完全一致,那么它最终停留在黑色区域的概率是__________.
15.在平面直角坐标系中,点A1,A2,A3和B1,B2,B3分别在直线y=和x轴上,△OA1B1,△B1A2B2,△B2A3B3都是等腰直角三角形.则A3的坐标为_______.
.
16.如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=_____
三、解答题(共8题,共72分)
17.(8分)如图,已知点D、E为△ABC的边BC上两点.AD=AE,BD=CE,为了判断∠B与∠C的大小关系,请你填空完成下面的推理过程,并在空白括号内注明推理的依据.
解:过点A作AH⊥BC,垂足为H.
∵在△ADE中,AD=AE(已知)
AH⊥BC(所作)
∴DH=EH(等腰三角形底边上的高也是底边上的中线)
又∵BD=CE(已知)
∴BD+DH=CE+EH(等式的性质)
即:BH=
又∵ (所作)
∴AH为线段 的垂直平分线
∴AB=AC(线段垂直平分线上的点到线段两个端点的距离相等)
∴ (等边对等角)
18.(8分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调査结果绘制了如下尚不完整的统计图:
根据以上信息解答下列问题:这次接受调查的市民总人数是_______人;扇形统计图中,“电视”所对应的圆心角的度数是_________;请补全条形统计图;若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.
19.(8分)如图,的顶点是方格纸中的三个格点,请按要求完成下列作图,①仅用无刻度直尺,且不能用直尺中的直角;②保留作图痕迹.
在图1中画出边上的中线;在图2中画出,使得.
20.(8分)如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.求y与x之间的函数关系式;直接写出当x>0时,不等式x+b>的解集;若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.
21.(8分)在平面直角坐标系xOy中,抛物线,与x轴交于点C,点C在点D的左侧,与y轴交于点A.
求抛物线顶点M的坐标;
若点A的坐标为,轴,交抛物线于点B,求点B的坐标;
在的条件下,将抛物线在B,C两点之间的部分沿y轴翻折,翻折后的图象记为G,若直线与图象G有一个交点,结合函数的图象,求m的取值范围.
22.(10分)为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.
求A,B两种品牌的足球的单价.求该校购买20个A品牌的足球和2个B品牌的足球的总费用.
23.(12分)某校运动会需购买A、B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.
(1)求A、B两种奖品的单价各是多少元?
(2)学校计划购买A、B两种奖品共100件,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.请您确定当购买A种奖品多少件时,费用W的值最少.
24.已知在梯形ABCD中,AD∥BC,AB=BC,DC⊥BC,且AD=1,DC=3,点P为边AB上一动点,以P为圆心,BP为半径的圆交边BC于点Q.
(1)求AB的长;
(2)当BQ的长为时,请通过计算说明圆P与直线DC的位置关系.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
列举出所有情况,看两次摸出的小球的标号的和等于6的情况数占总情况数的多少即可.
解:
共16种情况,和为6的情况数有3种,所以概率为.
故选C.
2、C
【解析】
如图,由图可知BD=2、CD=1、BC=,根据sin∠BCA=可得答案.
【详解】
解:如图所示,
∵BD=2、CD=1,
∴BC===,
则sin∠BCA===,
故选C.
【点睛】
本题主要考查解直角三角形,解题的关键是熟练掌握正弦函数的定义和勾股定理.
3、C
【解析】
根据轴对称图形和中心对称图形的定义进行分析即可.
【详解】
A、不是轴对称图形,也不是中心对称图形.故此选项错误;
B、不是轴对称图形,也不是中心对称图形.故此选项错误;
C、是轴对称图形,也是中心对称图形.故此选项正确;
D、是轴对称图形,但不是中心对称图形.故此选项错误.
故选C.
【点睛】
考点:1、中心对称图形;2、轴对称图形
4、A
【解析】
由题意根据勾股定理求出OA,进而根据正弦的定义进行分析解答即可.
【详解】
解:由题意得,,,
由勾股定理得,,
.
故选:A.
【点睛】
本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.
5、D
【解析】
解:0.5纳米=0.5×0.000 000 001米=0.000 000 000 5米=5×10﹣10米.
故选D.
点睛:在负指数科学计数法 中,其中 ,n等于第一个非0数字前所有0的个数(包括下数点前面的0).
6、B
【解析】
分析:根据绝对值的性质,一个负数的绝对值等于其相反数,可有相反数的意义求解.
详解:因为-的相反数为
所以-的绝对值为.
故选:B
点睛:此题主要考查了求一个数的绝对值,关键是明确绝对值的性质,一个正数的绝对值等于本身,0的绝对值是0,一个负数的绝对值为其相反数.
7、D
【解析】
由题意知:△ABC≌△DEC,
∴∠ACB=∠DCE=30°,AC=DC,
∴∠DAC=(180°−∠DCA)÷2=(180°−30°)÷2=75°.
故选D.
【点睛】
本题主要考查了旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.
8、C
【解析】
利用加减消元法解这个二元一次方程组.
【详解】
解:
①-②2,得:y=-2,
将y=-2代入②,得:2x-2=4,
解得,x=3,
所以原方程组的解是.
故选C.
【点睛】
本题考查了解二元一次方程组和解一元一次方程等知识点,解此题的关键是把二元一次方程组转化成一元一次方程,题目比较典型,难度适中.
9、A。
【解析】如图,∵根据三角形面积公式,当一边OA固定时,它边上的高最大时,三角形面积最大,
∴当PO⊥AO,即PO为三角形OA边上的高时,△APO的面积y最大。
此时,由AB=2,根据勾股定理,得弦AP=x=。
∴当x=时,△APO的面积y最大,最大面积为y=。从而可排除B,D选项。
又∵当AP=x=1时,△APO为等边三角形,它的面积y=,
∴此时,点(1,)应在y=的一半上方,从而可排除C选项。
故选A。
10、A
【解析】
根据中位数、众数的概念分别求得这组数据的中位数、众数.
【详解】
解:众数是一组数据中出现次数最多的数,即8;
而将这组数据从小到大的顺序排列后,处于20,21两个数的平均数,由中位数的定义可知,这组数据的中位数是9.
故选A.
【点睛】
考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1
【解析】
如图,连接AD,根据圆周角定理可得AD⊥BC.在Rt△ADC中,sinC= ;在Rt△ABD中,tanB=.已知7sinC=3tanB,所以7×=3×,又因AC=14,即可求得BD=1.
点睛:此题主要考查的是圆周角定理和锐角三角函数的定义,以公共边AD为桥梁,利用锐角三角函数的定义得到tanB和sinC的式子是解决问题的关键.
12、1
【解析】
解:∵正六边形ABCDEF的边长为3,
∴AB=BC=CD=DE=EF=FA=3,
∴弧BAF的长=3×6﹣3﹣3═12,
∴扇形AFB(阴影部分)的面积=×12×3=1.
故答案为1.
【点睛】
本题考查正多边形和圆;扇形面积的计算.
13、20π
【解析】
利用勾股定理可求得圆锥的母线长,然后根据圆锥的侧面积公式进行计算即可.
【详解】
底面直径为8,底面半径=4,底面周长=8π,
由勾股定理得,母线长==5,
故圆锥的侧面积=×8π×5=20π,
故答案为:20π.
【点睛】
本题主要考查了圆锥的侧面积的计算方法.解题的关键是熟记圆锥的侧面展开扇形的面积计算方法.
14、.
【解析】
先求出黑色方砖在整个地面中所占的比值,再根据其比值即可得出结论.
【详解】
解:∵由图可知,黑色方砖4块,共有16块方砖,
∴黑色方砖在整个区域中所占的比值
∴它停在黑色区域的概率是;
故答案为.
【点睛】
本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
15、A3()
【解析】
设直线y=与x轴的交点为G,过点A1,A2,A3分别作x轴的垂线,垂足分别为D、E、F,由条件可求得,再根据等腰三角形可分别求得A1D、A2E、A3F,可得到A1,A2,A3的坐标.
【详解】
设直线y=与x轴的交点为G,
令y=0可解得x=-4,
∴G点坐标为(-4,0),
∴OG=4,
如图1,过点A1,A2,A3分别作x轴的垂线,垂足分别为D、E、F,
∵△A1B1O为等腰直角三角形,
∴A1D=OD,
又∵点A1在直线y=x+上,
∴=,即=,
解得A1D=1=()0,
∴A1(1,1),OB1=2,
同理可得=,即=,
解得A2E=
=()1,则OE=OB1+B1E=,
∴A2(,),OB2=5,
同理可求得A3F=
=()2,则OF=5+=,
∴A3(,);
故答案为(,)
【点睛】
本题主要考查等腰三角形的性质和直线上点的坐标特点,根据题意找到点的坐标的变化规律是解题的关键,注意观察数据的变化.
16、.
【解析】
解:令AE=4x,BE=3x,
∴AB=7x.
∵四边形ABCD为平行四边形,
∴CD=AB=7x,CD∥AB,
∴△BEF∽△DCF.
∴,
∴DF=
【点睛】
本题考查平行四边形的性质及相似三角形的判定与性质,掌握定理正确推理论证是本题的解题关键.
三、解答题(共8题,共72分)
17、见解析
【解析】
根据等腰三角形的性质与判定及线段垂直平分线的性质解答即可.
【详解】
过点A作AH⊥BC,垂足为H.
∵在△ADE中,AD=AE(已知),
AH⊥BC(所作),
∴DH=EH(等腰三角形底边上的高也是底边上的中线).
又∵BD=CE(已知),
∴BD+DH=CE+EH(等式的性质),
即:BH=CH.
∵AH⊥BC(所作),
∴AH为线段BC的垂直平分线.
∴AB=AC(线段垂直平分线上的点到线段两个端点的距离相等).
∴∠B=∠C(等边对等角).
【点睛】
本题考查等腰三角形的性质及线段垂直平分线的性质,等腰三角形的底边中线、底边上的高、顶角的角平分线三线合一;线段垂直平分线上的点到线段两端的距离相等;
18、 (1)1000;(2)54°;(3)见解析;(4)32万人
【解析】
根据“每项人数=总人数×该项所占百分比”,“所占角度=360度×该项所占百分比”来列出式子,即可解出答案.
【详解】
解:
(1)400÷40%=1000(人)
(2)360°×=54°,
故答案为:1000人; 54° ;
(3)1-10%-9%-26%-40%=15%
15%×1000=150(人)
(4)80×=52.8(万人)
答:总人数为52.8万人.
【点睛】
本题考查获取图表信息的能力,能够根据图表找到必要条件是解题关键.
19、(1)见解析;(2)见解析.
【解析】
(1)利用矩形的性质得出AB的中点,进而得出答案.
(2)利用矩形的性质得出AC、BC的中点,连接并延长,使延长线段与连接这两个中点的线段相等.
【详解】
(1)如图所示:CD即为所求.
(2)
【点睛】
本题考查应用设计与作图,正确借助矩形性质和网格分析是解题关键.
20、(1);(2)x>1;(3)P(﹣,0)或(,0)
【解析】
分析:(1)求得A(1,3),把A(1,3)代入双曲线y=,可得y与x之间的函数关系式;
(2)依据A(1,3),可得当x>0时,不等式x+b>的解集为x>1;
(3)分两种情况进行讨论,AP把△ABC的面积分成1:3两部分,则CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,进而得出点P的坐标.
详解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,
∴A(1,3),
把A(1,3)代入双曲线y=,可得k=1×3=3,
∴y与x之间的函数关系式为:y=;
(2)∵A(1,3),
∴当x>0时,不等式x+b>的解集为:x>1;
(3)y1=﹣x+4,令y=0,则x=4,
∴点B的坐标为(4,0),
把A(1,3)代入y2=x+b,可得3=+b,
∴b=,
∴y2=x+,
令y2=0,则x=﹣3,即C(﹣3,0),
∴BC=7,
∵AP把△ABC的面积分成1:3两部分,
∴CP=BC=,或BP=BC=
∴OP=3﹣=,或OP=4﹣=,
∴P(﹣,0)或(,0).
点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
21、(1)M的坐标为;(2)B(4,3);(3)或.
【解析】
利用配方法将已知函数解析式转化为顶点式方程,可以直接得到答案
根据抛物线的对称性质解答;
利用待定系数法求得抛物线的表达式为根据题意作出图象G,结合图象求得m的取值范围.
【详解】
解:(1) ,
该抛物线的顶点M的坐标为;
由知,该抛物线的顶点M的坐标为;
该抛物线的对称轴直线是,
点A的坐标为,轴,交抛物线于点B,
点A与点B关于直线对称,
;
抛物线与y轴交于点,
.
.
抛物线的表达式为.
抛物线G的解析式为:
由.
由,得:
抛物线与x轴的交点C的坐标为,
点C关于y轴的对称点的坐标为.
把代入,得:.
把代入,得:.
所求m的取值范围是或.
故答案为(1)M的坐标为;(2)B(4,3);(3)或.
【点睛】
本题考查了二次函数图象与几何变换,待定系数法求二次函数的解析式、二次函数的图象和性质,画出函数G的图象是解题的关键.
22、(1)一个A品牌的足球需90元,则一个B品牌的足球需100元;(2)1.
【解析】
(1)设一个A品牌的足球需x元,则一个B品牌的足球需y元,根据“购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元”列出方程组并解答;
(2)把(1)中的数据代入求值即可.
【详解】
(1)设一个A品牌的足球需x元,则一个B品牌的足球需y元,依题意得:,解得:.
答:一个A品牌的足球需40元,则一个B品牌的足球需100元;
(2)依题意得:20×40+2×100=1(元).
答:该校购买20个A品牌的足球和2个B品牌的足球的总费用是1元.
考点:二元一次方程组的应用.
23、(1)A、B两种奖品的单价各是10元、15元;(2)W(元)与m(件)之间的函数关系式是W=﹣5m+1,当购买A种奖品75件时,费用W的值最少.
【解析】
(1)设A种奖品的单价是x元、B种奖品的单价是y元,根据题意可以列出相应的方程组,从而可以求得A、B两种奖品的单价各是多少元;
(2)根据题意可以得到W(元)与m(件)之间的函数关系式,然后根据A种奖品的数量不大于B种奖品数量的3倍,可以求得m的取值范围,再根据一次函数的性质即可解答本题.
【详解】
(1)设A种奖品的单价是x元、B种奖品的单价是y元,根据题意得:
解得:.
答:A种奖品的单价是10元、B种奖品的单价是15元.
(2)由题意可得:W=10m+15(100﹣m)=﹣5m+1.
∵A种奖品的数量不大于B种奖品数量的3倍,∴m≤3(100﹣m),解得:m≤75
∴当m=75时,W取得最小值,此时W=﹣5×75+1=2.
答:W(元)与m(件)之间的函数关系式是W=﹣5m+1,当购买A种奖品75件时,费用W的值最少.
【点睛】
本题考查了一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.
24、(1)AB长为5;(2)圆P与直线DC相切,理由详见解析.
【解析】
(1)过A作AE⊥BC于E,根据矩形的性质得到CE=AD=1,AE=CD=3,根据勾股定理即可得到结论;
(2)过P作PF⊥BQ于F,根据相似三角形的性质得到PB=,得到PA=AB-PB=,过P作PG⊥CD于G交AE于M,根据相似三角形的性质得到PM=,根据切线的判定定理即可得到结论.
【详解】
(1)过A作AE⊥BC于E,
则四边形AECD是矩形,
∴CE=AD=1,AE=CD=3,
∵AB=BC,
∴BE=AB-1,
在Rt△ABE中,∵AB2=AE2+BE2,
∴AB2=32+(AB-1)2,
解得:AB=5;
(2)过P作PF⊥BQ于F,
∴BF=BQ=,
∴△PBF∽△ABE,
∴,
∴,
∴PB=,
∴PA=AB-PB=,
过P作PG⊥CD于G交AE于M,
∴GM=AD=1,
∵DC⊥BC
∴PG∥BC
∴△APM∽△ABE,
∴,
∴,
∴PM=,
∴PG=PM+MG==PB,
∴圆P与直线DC相切.
【点睛】
本题考查了直线与圆的位置关系,矩形的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.
2022届四川省阿坝市市级名校中考数学模拟试题含解析: 这是一份2022届四川省阿坝市市级名校中考数学模拟试题含解析,共18页。
2022届贵州省毕节市市级名校中考数学模拟精编试卷含解析: 这是一份2022届贵州省毕节市市级名校中考数学模拟精编试卷含解析,共21页。试卷主要包含了下列说法正确的是,我省2013年的快递业务量为1等内容,欢迎下载使用。
2021-2022学年山西省吕梁汾阳市市级名校中考数学模拟精编试卷含解析: 这是一份2021-2022学年山西省吕梁汾阳市市级名校中考数学模拟精编试卷含解析,共21页。试卷主要包含了下列命题中假命题是等内容,欢迎下载使用。