


2021-2022学年上海市嘉定区中考数学猜题卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是( )
A. B. C. D.
2.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为( )
A.140° B.160° C.170° D.150°
3.对于不为零的两个实数a,b,如果规定:a★b=,那么函数y=2★x的图象大致是( )
A. B. C. D.
4.下面运算正确的是( )
A. B.(2a)2=2a2 C.x2+x2=x4 D.|a|=|﹣a|
5.下列函数是二次函数的是( )
A. B. C. D.
6.已知反比例函数下列结论正确的是( )
A.图像经过点(-1,1) B.图像在第一、三象限
C.y 随着 x 的增大而减小 D.当 x > 1时, y < 1
7.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( ).
A. B. C. D.
8.如图,左、右并排的两棵树AB和CD,小树的高AB=6m,大树的高CD=9m,小明估计自己眼睛距地面EF=1.5m,当他站在F点时恰好看到大树顶端C点.已知此时他与小树的距离BF=2m,则两棵树之间的距离BD是( )
A.1m B.m C.3m D.m
9.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于( )
A.75° B.90° C.105° D.115°
10.某青年排球队12名队员年龄情况如下:
年龄
18
19
20
21
22
人数
1
4
3
2
2
则这12名队员年龄的众数、中位数分别是( )
A.20,19 B.19,19 C.19,20.5 D.19,20
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,Rt△ABC中,若∠C=90°,BC=4,tanA=,则AB=___.
12.如图,已知,D、E分别是边BA、CA延长线上的点,且如果,,那么AE的长为______.
13.如图为二次函数图象的一部分,其对称轴为直线.若其与x轴一交点为A(3,0)则由图象可知,不等式的解集是_______.
14.若一次函数y=﹣x+b(b为常数)的图象经过点(1,2),则b的值为_____.
15.当时,直线与抛物线有交点,则a的取值范围是_______.
16.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=_____.
三、解答题(共8题,共72分)
17.(8分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.
(1)直接写出甲投放的垃圾恰好是A类的概率;
(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.
18.(8分)如图,圆内接四边形ABCD的两组对边延长线分别交于E、F,∠AEB、∠AFD的平分线交于P点.
求证:PE⊥PF.
19.(8分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.
请补全条形统计图;若该校共有志愿者600人,则该校九年级大约有多少志愿者?
20.(8分)如图1,在圆中,垂直于弦,为垂足,作,与的延长线交于.
(1)求证:是圆的切线;
(2)如图2,延长,交圆于点,点是劣弧的中点,,,求的长 .
21.(8分)如图1,在矩形ABCD中,AD=4,AB=2,将矩形ABCD绕点A逆时针旋转α(0<α<90°)得到矩形AEFG.延长CB与EF交于点H.
(1)求证:BH=EH;
(2)如图2,当点G落在线段BC上时,求点B经过的路径长.
22.(10分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.
(1)求抛物线C的函数表达式;
(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.
(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.
23.(12分)在数学活动课上,老师提出了一个问题:把一副三角尺如图摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?
小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.
下面是小林的探究过程,请补充完整:
(1)画出几何图形,明确条件和探究对象;
如图2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是线段AB上一动点,射线DE⊥BC于点E,∠EDF=60°,射线DF与射线AC交于点F.设B,E两点间的距离为xcm,E,F两点间的距离为ycm.
(2)通过取点、画图、测量,得到了x与y的几组值,如下表:
x/cm
0
1
2
3
4
5
6
y/cm
6.9
5.3
4.0
3.3
4.5
6
(说明:补全表格时相关数据保留一位小数)
(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为 cm.
24.如图,是等腰三角形,,.
(1)尺规作图:作的角平分线,交于点(保留作图痕迹,不写作法);
(2)判断是否为等腰三角形,并说明理由.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.
【详解】
设索长为x尺,竿子长为y尺,
根据题意得:.
故选A.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
2、B
【解析】
试题分析:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.
考点:角度的计算
3、C
【解析】
先根据规定得出函数y=2★x的解析式,再利用一次函数与反比例函数的图象性质即可求解.
【详解】
由题意,可得当2<x,即x>2时,y=2+x,y是x的一次函数,图象是一条射线除去端点,故A、D错误;
当2≥x,即x≤2时,y=﹣,y是x的反比例函数,图象是双曲线,分布在第二、四象限,其中在第四象限时,0<x≤2,故B错误.
故选:C.
【点睛】
本题考查了新定义,函数的图象,一次函数与反比例函数的图象性质,根据新定义得出函数y=2★x的解析式是解题的关键.
4、D
【解析】
分别利用整数指数幂的性质以及合并同类项以及积的乘方运算、 绝对值的性质分别化简求出答案.
【详解】
解:A,,故此选项错误;
B,,故此选项错误;
C,,故此选项错误;
D,,故此选项正确.
所以D选项是正确的.
【点睛】
灵活运用整数指数幂的性质以及合并同类项以及积的乘方运算、 绝对值的性质可以求出答案.
5、C
【解析】
根据一次函数的定义,二次函数的定义对各选项分析判断利用排除法求解.
【详解】
A. y=x是一次函数,故本选项错误;
B. y=是反比例函数,故本选项错误;
C.y=x-2+x2是二次函数,故本选项正确;
D.y= 右边不是整式,不是二次函数,故本选项错误.
故答案选C.
【点睛】
本题考查的知识点是二次函数的定义,解题的关键是熟练的掌握二次函数的定义.
6、B
【解析】
分析:直接利用反比例函数的性质进而分析得出答案.
详解:A.反比例函数y=,图象经过点(﹣1,﹣1),故此选项错误;
B.反比例函数y=,图象在第一、三象限,故此选项正确;
C.反比例函数y=,每个象限内,y随着x的增大而减小,故此选项错误;
D.反比例函数y=,当x>1时,0<y<1,故此选项错误.
故选B.
点睛:本题主要考查了反比例函数的性质,正确掌握反比例函数的性质是解题的关键.
7、B
【解析】
朝上的数字为偶数的有3种可能,再根据概率公式即可计算.
【详解】
依题意得P(朝上一面的数字是偶数)=
故选B.
【点睛】
此题主要考查概率的计算,解题的关键是熟知概率公式进行求解.
8、B
【解析】
由∠AGE=∠CHE=90°,∠AEG=∠CEH可证明△AEG∽△CEH,根据相似三角形对应边成比例求出GH的长即BD的长即可.
【详解】
由题意得:FB=EG=2m,AG=AB﹣BG=6﹣1.5=4.5m,CH=CD﹣DH=9﹣1.5=7.5m,
∵AG⊥EH,CH⊥EH,
∴∠AGE=∠CHE=90°,
∵∠AEG=∠CEH,
∴△AEG∽△CEH,
∴ == ,即 =,
解得:GH=,
则BD=GH=m,
故选:B.
【点睛】
本题考查了相似三角形的应用,解题的关键是从实际问题中抽象出相似三角形.
9、C
【解析】
分析:依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.
详解:∵AB∥EF,
∴∠BDE=∠E=45°,
又∵∠A=30°,
∴∠B=60°,
∴∠1=∠BDE+∠B=45°+60°=105°,
故选C.
点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.
10、D
【解析】
先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解.
【详解】
这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为=1.
故选D.
【点睛】
本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.也考查了中位数的定义.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1.
【解析】
在Rt△ABC中,已知tanA,BC的值,根据tanA=,可将AC的值求出,再由勾股定理可将斜边AB的长求出.
【详解】
解:Rt△ABC中,∵BC=4,tanA=
∴
则
故答案为1.
【点睛】
考查解直角三角形以及勾股定理,熟练掌握锐角三角函数是解题的关键.
12、
【解析】
由DE∥BC不难证明△ABC△ADE,再由,将题中数值代入并根据等量关系计算AE的长.
【详解】
解:由DE∥BC不难证明△ABC△ADE,
∵,CE=4,
∴,
解得:AE=
故答案为.
【点睛】
本题考查了相似三角形的判定和性质,熟记三角形的判定和性质是解题关键.
13、﹣1<x<1
【解析】
试题分析:由图象得:对称轴是x=1,其中一个点的坐标为(1,0)
∴图象与x轴的另一个交点坐标为(-1,0)
利用图象可知:
ax2+bx+c<0的解集即是y<0的解集,
∴-1<x<1.
考点:二次函数与不等式(组).
14、3
【解析】
把点(1,2)代入解析式解答即可.
【详解】
解:把点(1,2)代入解析式y=-x+b,可得:2=-1+b,
解得:b=3,
故答案为3
【点睛】
本题考查的是一次函数的图象点的关系,关键是把点(1,2)代入解析式解答.
15、
【解析】
直线与抛物线有交点,则可化为一元二次方程组利用根的判别式进行计算.
【详解】
解:法一:与抛物线有交点
则有,整理得
解得
,对称轴
法二:由题意可知,
∵抛物线的 顶点为,而
∴抛物线y的取值为
,则直线y与x轴平行,
∴要使直线与抛物线有交点,
∴抛物线y的取值为,即为a的取值范围,
∴
故答案为:
【点睛】
考查二次函数图象的性质及交点的问题,此类问题,通常可化为一元二次方程,利用根的判别式或根与系数的关系进行计算.
16、60°
【解析】
先根据垂直的定义,得出∠BAD=60°,再根据平行线的性质,即可得出∠D的度数.
【详解】
∵DA⊥CE,
∴∠DAE=90°,
∵∠1=30°,
∴∠BAD=60°,
又∵AB∥CD,
∴∠D=∠BAD=60°,
故答案为60°.
【点睛】
本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.
三、解答题(共8题,共72分)
17、(1)(2).
【解析】
(1)根据总共三种,A只有一种可直接求概率;
(2)列出其树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可.
【详解】
解: (1)甲投放的垃圾恰好是A类的概率是.
(2)列出树状图如图所示:
由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.
所以, (乙投放的垃圾恰有一袋与甲投放的垃圾是同类).
即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.
18、证明见解析.
【解析】
由圆内接四边形ABCD的两组对边延长线分别交于E、F,∠AEB、∠AFD的平分线交于P点,继而可得EM=EN,即可证得:PE⊥PF.
【详解】
∵四边形内接于圆,
∴,
∵平分,
∴,
∵,,
∴,
∴,
∵平分,
∴.
【点睛】
此题考查了圆的内接多边形的性质以及圆周角定理.此题难度不大,注意掌握数形结合思想的应用.
19、(1)作图见解析;(2)1.
【解析】
试题分析:(1)根据百分比=计算即可解决问题,求出八年级、九年级、被抽到的志愿者人数画出条形图即可;
(2)用样本估计总体的思想,即可解决问题;
试题解析:解:(1)由题意总人数=20÷40%=50人,八年级被抽到的志愿者:50×30%=15人
九年级被抽到的志愿者:50×20%=10人,条形图如图所示:
(2)该校共有志愿者600人,则该校九年级大约有600×20%=1人.
答:该校九年级大约有1名志愿者.
20、(1)详见解析;(2)
【解析】
(1)连接OA,利用切线的判定证明即可;
(2)分别连结OP、PE、AE,OP交AE于F点,根据勾股定理解答即可.
【详解】
解:(1)如图,连结OA,
∵OA=OB,OC⊥AB,
∴∠AOC=∠BOC,
又∠BAD=∠BOC,
∴∠BAD=∠AOC
∵∠AOC+∠OAC=90°,
∴∠BAD+∠OAC=90°,
∴OA⊥AD,
即:直线AD是⊙O的切线;
(2)分别连结OP、PE、AE,OP交AE于F点,
∵BE是直径,
∴∠EAB=90°,
∴OC∥AE,
∵OB=,
∴BE=13
∵AB=5,在直角△ABE中,AE=12,EF=6,FP=OP-OF=-=4
在直角△PEF中,FP=4,EF=6,PE2=16+36=52,
在直角△PEB中,BE=13,PB2=BE2-PE2,
PB==3.
【点睛】
本题考查了切线的判定,勾股定理,正确的作出辅助线是解题的关键.
21、(1)见解析;(2)B点经过的路径长为π.
【解析】
(1)、连接AH,根据旋转图形的性质得出AB=AE,∠ABH=∠AEH=90°,根据AH为公共边得出Rt△ABH和Rt△AEH全等,从而得出答案;(2)、根据题意得出∠EAB的度数,然后根据弧长的计算公式得出答案.
【详解】
(1)、证明:如图1中,连接AH,
由旋转可得AB=AE,∠ABH=∠AEH=90°,又∵AH=AH,∴Rt△ABH≌Rt△AEH,∴BH=EH.
(2)、解:由旋转可得AG=AD=4,AE=AB,∠EAG=∠BAC=90°,在Rt△ABG中,AG=4,AB=2,
∴cos∠BAG=,∴∠BAG=30°,∴∠EAB=60° ,∴弧BE的长为=π,
即B点经过的路径长为π.
【点睛】
本题主要考查的是旋转图形的性质以及扇形的弧长计算公式,属于中等难度的题型.明白旋转图形的性质是解决这个问题的关键.
22、(1);(2)2<m<;(1)m=6或m=﹣1.
【解析】
(1)由题意抛物线的顶点C(0,4),A(,0),设抛物线的解析式为,把A(,0)代入可得a=,由此即可解决问题;
(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为,由,消去y得到,由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有,解不等式组即可解决问题;
(1)情形1,四边形PMP′N能成为正方形.作PE⊥x轴于E,MH⊥x轴于H.由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,推出PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,可得M(m+2,m﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),利用待定系数法即可解决问题.
【详解】
(1)由题意抛物线的顶点C(0,4),A(,0),设抛物线的解析式为,把A(,0)代入可得a=,
∴抛物线C的函数表达式为.
(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为,
由,
消去y得到 ,
由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有,
解得2<m<,
∴满足条件的m的取值范围为2<m<.
(1)结论:四边形PMP′N能成为正方形.
理由:1情形1,如图,作PE⊥x轴于E,MH⊥x轴于H.
由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,∴PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),∵点M在上,∴,解得m=﹣1或﹣﹣1(舍弃),∴m=﹣1时,四边形PMP′N是正方形.
情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),
把M(m﹣2,2﹣m)代入中,,解得m=6或0(舍弃),
∴m=6时,四边形PMP′N是正方形.
综上所述:m=6或m=﹣1时,四边形PMP′N是正方形.
23、(1)见解析;(1)3.5;(3)见解析; (4)3.1
【解析】
根据题意作图测量即可.
【详解】
(1)取点、画图、测量,得到数据为3.5
故答案为:3.5
(3)由数据得
(4)当△DEF为等边三角形是,EF=DE,由∠B=45°,射线DE⊥BC于点E,则BE=EF.即y=x
所以,当(1)中图象与直线y=x相交时,交点横坐标即为BE的长,由作图、测量可知x约为3.1.
【点睛】
本题为动点问题的函数图象探究题,解得关键是按照题意画图测量,并将条件转化成函数图象研究.
24、(1)作图见解析 (2)为等腰三角形
【解析】
(1)作角平分线,以B点为圆心,任意长为半径,画圆弧;交直线AB于1点,直线BC于2点,再以2点为圆心,任意长为半径,画圆弧,再以1点为圆心,任意长为半径,画圆弧,相交于3点,连接3点和O点,直线3O即是已知角AOB的对称中心线.
(2)分别求出的三个角,看是否有两个角相等,进而判断是否为等腰三角形.
【详解】
(1)具体如下:
(2)在等腰中,,BD为∠ABC的平分线,故,,那么在中,
∵
∴是否为等腰三角形.
【点睛】
本题考查角平分线的作法,以及判定等腰三角形的方法.熟悉了解角平分线的定义以及等腰三角形的判定方法是解题的关键所在.
上海市浦东区第四教育署2021-2022学年中考数学猜题卷含解析: 这是一份上海市浦东区第四教育署2021-2022学年中考数学猜题卷含解析,共18页。试卷主要包含了下列运算中正确的是,下列命题中错误的有个,﹣18的倒数是等内容,欢迎下载使用。
上海市嘉定区重点中学2021-2022学年中考数学模拟预测题含解析: 这是一份上海市嘉定区重点中学2021-2022学年中考数学模拟预测题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列代数运算正确的是等内容,欢迎下载使用。
2021-2022学年河西成功校中考数学猜题卷含解析: 这是一份2021-2022学年河西成功校中考数学猜题卷含解析,共17页。试卷主要包含了下列计算正确的是,若 ,则括号内的数是等内容,欢迎下载使用。