2021-2022学年四川省乐山市实验中学中考数学最后冲刺模拟试卷含解析
展开这是一份2021-2022学年四川省乐山市实验中学中考数学最后冲刺模拟试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是.( )
A.3,2 B.3,4 C.5,2 D.5,4
2.如图,在中,D、E分别在边AB、AC上,,交AB于F,那么下列比例式中正确的是
A. B. C. D.
3.下列计算正确的是
A. B. C. D.
4.为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%.为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m1),绘制了统计图,如图所示.下面有四个推断:
①年用水量不超过180m1的该市居民家庭按第一档水价交费;
②年用水量不超过240m1的该市居民家庭按第三档水价交费;
③该市居民家庭年用水量的中位数在150~180m1之间;
④该市居民家庭年用水量的众数约为110m1.
其中合理的是( )
A.①③ B.①④ C.②③ D.②④
5.一元二次方程3x2-6x+4=0根的情况是
A.有两个不相等的实数根 B.有两个相等的实数根 C.有两个实数根 D.没有实数根
6.下列选项中,可以用来证明命题“若a2>b2,则a>b“是假命题的反例是( )
A.a=﹣2,b=1 B.a=3,b=﹣2 C.a=0,b=1 D.a=2,b=1
7.绿豆在相同条件下的发芽试验,结果如下表所示:
每批粒数n
100
300
400
600
1000
2000
3000
发芽的粒数m
96
282
382
570
948
1904
2850
发芽的频率
0.960
0.940
0.955
0.950
0.948
0.952
0.950
下面有三个推断:
①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率是0.955;
②根据上表,估计绿豆发芽的概率是0.95;
③若n为4000,估计绿豆发芽的粒数大约为3800粒.
其中推断合理的是( )
A.① B.①② C.①③ D.②③
8.长度单位1纳米米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是( )
A.米 B.米
C.米 D.米
9.下列图形中,不是中心对称图形的是( )
A.平行四边形 B.圆 C.等边三角形 D.正六边形
10.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是( )
A.有两个不相等实数根 B.有两个相等实数根
C.有且只有一个实数根 D.没有实数根
11.如图,若数轴上的点A,B分别与实数﹣1,1对应,用圆规在数轴上画点C,则与点C对应的实数是( )
A.2 B.3 C.4 D.5
12.2017年人口普查显示,河南某市户籍人口约为2536000人,则该市户籍人口数据用科学记数法可表示为( )
A.2.536×104人 B.2.536×105人 C.2.536×106人 D.2.536×107人
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.若分式的值为正数,则x的取值范围_____.
14.化简;÷(﹣1)=______.
15.如图,在△ABC中,AB=AC,AH⊥BC,垂足为点H,如果AH=BC,那么sin∠BAC的值是____.
16.若am=5,an=6,则am+n=________.
17.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(﹣1,0),(﹣4,0),将△ABC沿x轴向左平移,当点C落在直线y=﹣2x﹣6上时,则点C沿x轴向左平移了_____个单位长度.
18.a、b、c是实数,点A(a+1、b)、B(a+2,c)在二次函数y=x2﹣2ax+3的图象上,则b、c的大小关系是b____c(用“>”或“<”号填空)
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A作BC的平行线交CE的延长线与F,且AF=BD,连接BF。求证:D是BC的中点;如果AB=AC,试判断四边形AFBD的形状,并证明你的结论。
20.(6分)小方与同学一起去郊游,看到一棵大树斜靠在一小土坡上,他想知道树有多长,于是他借来测角仪和卷尺.如图,他在点C处测得树AB顶端A的仰角为30°,沿着CB方向向大树行进10米到达点D,测得树AB顶端A的仰角为45°,又测得树AB倾斜角∠1=75°.
(1)求AD的长.
(2)求树长AB.
21.(6分)为迎接“全民阅读日“系列活动,某校围绕学生日人均阅读时间这一问题,对八年级学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:
(1)本次共抽查了八年级学生多少人;
(2)请直接将条形统计图补充完整;
(3)在扇形统计图中,1〜1.5小时对应的圆心角是多少度;
(4)根据本次抽样调查,估计全市50000名八年级学生日人均阅读时间状况,其中在0.5〜1.5小时的有多少人?
22.(8分)某种蔬菜的销售单价y1与销售月份x之间的关系如图(1)所示,成本y2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)
分别求出y1、y2的函数关系式(不写自变量取值范围);通过计算说明:哪个月出售这种蔬菜,每千克的收益最大?
23.(8分)先化简,再求值:,其中x是从-1、0、1、2中选取一个合适的数.
24.(10分)如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.用含m或n的代数式表示拼成矩形的周长;m=7,n=4,求拼成矩形的面积.
25.(10分)先化简再求值:÷(a﹣),其中a=2cos30°+1,b=tan45°.
26.(12分)一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;
(1)搅匀后,从中任意取一个球,标号为正数的概率是 ;
(2) 搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.
27.(12分)先化简,再求值:(﹣2)÷,其中x满足x2﹣x﹣4=0
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.
考点: 平均数;方差.
2、C
【解析】
根据平行线分线段成比例定理和相似三角形的性质找准线段的对应关系,对各选项分析判断.
【详解】
A、∵EF∥CD,DE∥BC,∴,,∵CE≠AC,∴,故本选项错误;
B、∵EF∥CD,DE∥BC,∴,,∴,∵AD≠DF,∴,故本选项错误;
C、∵EF∥CD,DE∥BC,∴,,∴,故本选项正确;
D、∵EF∥CD,DE∥BC,∴,,∴,∵AD≠DF,∴,故本选项错误.
故选C.
【点睛】
本题考查了平行线分线段成比例的运用及平行于三角形一边的直线截其它两边,所得的新三角形与原三角形相似的定理的运用,在解答时寻找对应线段是关健.
3、C
【解析】
根据同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方逐一判断即可.
【详解】
、与不是同类项,不能合并,此选项错误;
、,此选项错误;
、,此选项正确;
、,此选项错误.
故选:.
【点睛】
此题考查的是整式的运算,掌握同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方是解决此题的关键.
4、B
【解析】
利用条形统计图结合中位数和中位数的定义分别分析得出答案.
【详解】
①由条形统计图可得:年用水量不超过180m1的该市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(万),
×100%=80%,故年用水量不超过180m1的该市居民家庭按第一档水价交费,正确;
②∵年用水量超过240m1的该市居民家庭有(0.15+0.15+0.05)=0.15(万),
∴×100%=7%≠5%,故年用水量超过240m1的该市居民家庭按第三档水价交费,故此选项错误;
③∵5万个数据的中间是第25000和25001的平均数,
∴该市居民家庭年用水量的中位数在120-150之间,故此选项错误;
④该市居民家庭年用水量为110m1有1.5万户,户数最多,该市居民家庭年用水量的众数约为110m1,因此正确,
故选B.
【点睛】
此题主要考查了频数分布直方图以及中位数和众数的定义,正确利用条形统计图获取正确信息是解题关键.
5、D
【解析】
根据∆=b2-4ac,求出∆的值,然后根据∆的值与一元二次方程根的关系判断即可.
【详解】
∵a=3,b=-6,c=4,
∴∆=b2-4ac=(-6)2-4×3×4=-12<0,
∴方程3x2-6x+4=0没有实数根.
故选D.
【点睛】
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
6、A
【解析】
根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.由此即可解答.
【详解】
∵当a=﹣2,b=1时,(﹣2)2>12,但是﹣2<1,
∴a=﹣2,b=1是假命题的反例.
故选A.
【点睛】
本题考查了命题与定理,要说明数学命题的错误,只需举出一个反例即可,这是数学中常用的一种方法.
7、D
【解析】
①利用频率估计概率,大量反复试验下频率稳定值即概率,n=400,数值较小,不能近似的看为概率,①错误;②利用频率估计概率,大量反复试验下频率稳定值即概率,可得②正确;③用4000乘以绿豆发芽的的概率即可求得绿豆发芽的粒数,③正确.
【详解】
①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率大约是0.955,此推断错误;
②根据上表当每批粒数足够大时,频率逐渐接近于0.950,所以估计绿豆发芽的概率是0.95,此推断正确;
③若n为4000,估计绿豆发芽的粒数大约为4000×0.950=3800粒,此结论正确.
故选D.
【点睛】
本题考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.
8、D
【解析】
先将25 100用科学记数法表示为2.51×104,再和10-9相乘,等于2.51×10-5米.
故选D
9、C
【解析】
根据中心对称图形的定义依次判断各项即可解答.
【详解】
选项A、平行四边形是中心对称图形;
选项B、圆是中心对称图形;
选项C、等边三角形不是中心对称图形;
选项D、正六边形是中心对称图形;
故选C.
【点睛】
本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.
10、A
【解析】
【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.
【详解】∵a=1,b=1,c=﹣3,
∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,
∴方程x2+x﹣3=0有两个不相等的实数根,
故选A.
【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
11、B
【解析】
由数轴上的点A、B 分别与实数﹣1,1对应,即可求得AB=2,再根据半径相等得到BC=2,由此即求得点C对应的实数.
【详解】
∵数轴上的点 A,B 分别与实数﹣1,1 对应,
∴AB=|1﹣(﹣1)|=2,
∴BC=AB=2,
∴与点 C 对应的实数是:1+2=3.
故选B.
【点睛】
本题考查了实数与数轴,熟记实数与数轴上的点是一一对应的关系是解决本题的关键.
12、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
2536000人=2.536×106人.
故选C.
【点睛】
本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、x>1
【解析】
试题解析:由题意得:
>0,
∵-6<0,
∴1-x<0,
∴x>1.
14、-
【解析】
直接利用分式的混合运算法则即可得出.
【详解】
原式,
,
,
.
故答案为.
【点睛】
此题主要考查了分式的化简,正确掌握运算法则是解题关键.
15、
【解析】
过点B作BD⊥AC于D,设AH=BC=2x,根据等腰三角形三线合一的性质可得BH=CH=BC=x,利用勾股定理列式表示出AC,再根据三角形的面积列方程求出BD,然后根据锐角的正弦=对边:斜边求解即可.
【详解】
如图,过点B作BD⊥AC于D,设AH=BC=2x,
∵AB=AC,AH⊥BC,
∴BH=CH=BC=x,
根据勾股定理得,AC==x,
S△ABC=BC•AH=AC•BD,
即•2x•2x=•x•BD,
解得BC=x,
所以,sin∠BAC=.
故答案为.
16、1.
【解析】
根据同底数幂乘法性质am·an=am+n,即可解题.
【详解】
解:am+n= am·an=5×6=1.
【点睛】
本题考查了同底数幂乘法计算,属于简单题,熟悉法则是解题关键.
17、1
【解析】
先根据勾股定理求得AC的长,从而得到C点坐标,然后根据平移的性质,将C点纵轴代入直线解析式求解即可得到答案.
【详解】
解:在Rt△ABC中,AB=﹣1﹣(﹣1)=3,BC=5,
∴AC==1,
∴点C的坐标为(﹣1,1).
当y=﹣2x﹣6=1时,x=﹣5,
∵﹣1﹣(﹣5)=1,
∴点C沿x轴向左平移1个单位长度才能落在直线y=﹣2x﹣6上.
故答案为1.
【点睛】
本题主要考查平移的性质,解此题的关键在于先利用勾股定理求得相关点的坐标,然后根据平移的性质将其纵坐标代入直线函数式求解即可.
18、<
【解析】
试题分析:将二次函数y=x2-2ax+3转换成y=(x-a)2-a2+3,则它的对称轴是x=a,抛物线开口向上,所以在对称轴右边y随着x的增大而增大,点A点B均在对称轴右边且a+1
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)详见解析;(2)详见解析
【解析】
(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,再根据全等三角形的性质和等量关系即可求解;
(2)由(1)知AF平行等于BD,易证四边形AFBD是平行四边形,而AB=AC,AD是中线,利用等腰三角形三线合一定理,可证AD⊥BC,即∠ADB=90°,那么可证四边形AFBD是矩形.
【详解】
(1)证明:∵AF∥BC,
∴∠AFE=∠DCE,
∵点E为AD的中点,
∴AE=DE,
在△AEF和△DEC中,
,
∴△AEF≌△DEC(AAS),
∴AF=CD,
∵AF=BD,
∴CD=BD,
∴D是BC的中点;
(2)若AB=AC,则四边形AFBD是矩形.理由如下:
∵△AEF≌△DEC,
∴AF=CD,
∵AF=BD,
∴CD=BD;
∵AF∥BD,AF=BD,
∴四边形AFBD是平行四边形,
∵AB=AC,BD=CD,
∴∠ADB=90°,
∴平行四边形AFBD是矩形.
【点睛】
本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.
20、(1);(2).
【解析】
试题分析:(1)过点A作AE⊥CB于点E,设AE=x,分别表示出CE、DE,再由CD=10,可得方程,解出x的值,在Rt△ADE中可求出AD;
(2)过点B作BF⊥AC于点F,设BF=y,分别表示出CF、AF,解出y的值后,在Rt△ABF中可求出AB的长度.
试题解析:(1)如图,过A作AH⊥CB于H,设AH=x,CH=x,DH=x.
∵CH―DH=CD,∴x―x=10,∴x=.
∵∠ADH=45°,∴AD=x=.
(2)如图,过B作BM ⊥AD于M.
∵∠1=75°,∠ADB=45°,∴∠DAB=30°.
设MB=m,∴AB=2m,AM=m,DM=m.
∵AD=AM+DM,∴=m+m.∴m=.∴AB=2m=.
21、(1)本次共抽查了八年级学生是150人;(2)条形统计图补充见解析;(3)108;(4)估计该市12000名七年级学生中日人均阅读时间在0.5~1.5小时的40000人.
【解析】
(1)根据第一组的人数是30,占20%,即可求得总数,即样本容量;
(2)利用总数减去另外两段的人数,即可求得0.5~1小时的人数,从而作出直方图;
(3)利用360°乘以日人均阅读时间在1~1.5小时的所占的比例;
(4)利用总人数12000乘以对应的比例即可.
【详解】
(1)本次共抽查了八年级学生是:30÷20%=150人;
故答案为150;
(2)日人均阅读时间在0.5~1小时的人数是:150﹣30﹣45=1.
(3)人均阅读时间在1~1.5小时对应的圆心角度数是:
故答案为108;
(4) (人),
答:估计该市12000名七年级学生中日人均阅读时间在0.5~1.5小时的40000人.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
22、(1)y1=;y2=x2﹣4x+2;(2)5月出售每千克收益最大,最大为.
【解析】
(1)观察图象找出点的坐标,利用待定系数法即可求出y1和y2的解析式;
(2)由收益W=y1-y2列出W与x的函数关系式,利用配方求出二次函数的最大值.
【详解】
解:(1)设y1=kx+b,将(3,5)和(6,3)代入得,,解得.
∴y1=﹣x+1.
设y2=a(x﹣6)2+1,把(3,4)代入得,
4=a(3﹣6)2+1,解得a=.
∴y2=(x﹣6)2+1,即y2=x2﹣4x+2.
(2)收益W=y1﹣y2,
=﹣x+1﹣(x2﹣4x+2)
=﹣(x﹣5)2+,
∵a=﹣<0,
∴当x=5时,W最大值=.
故5月出售每千克收益最大,最大为元.
【点睛】
本题考查了一次函数和二次函数的应用,熟练掌握待定系数法求解析式是解题关键,掌握配方法是求二次函数最大值常用的方法
23、.
【解析】
先把分子分母因式分解,约分后进行通分化为同分母,再进行同分母的加法运算,然后再约分得到原式=,由于x不能取±1,2,所以把x=0代入计算即可.
【详解】
,
=
=
=
=,
当x=0时,原式=.
24、(1)矩形的周长为4m;(2)矩形的面积为1.
【解析】
(1)根据题意和矩形的周长公式列出代数式解答即可.
(2)根据题意列出矩形的面积,然后把m=7,n=4代入进行计算即可求得.
【详解】
(1)矩形的长为:m﹣n,
矩形的宽为:m+n,
矩形的周长为:2[(m-n)+(m+n)]=4m;
(2)矩形的面积为S=(m+n)(m﹣n)=m2-n2,
当m=7,n=4时,S=72-42=1.
【点睛】
本题考查了矩形的周长与面积、列代数式问题、平方差公式等,解题的关键是根据题意和矩形的性质列出代数式解答.
25、;
【解析】
先根据分式的混合运算顺序和运算法则化简原式,再由特殊锐角的三角函数值得出a和b的值,代入计算可得.
【详解】
原式=÷(﹣)
=
=
=,
当a=2cos30°+1=2×+1=+1,b=tan45°=1时,
原式=.
【点睛】
本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式,也考查了特殊锐角的三角函数值.
26、(1);(2)
【解析】
【分析】(1)直接运用概率的定义求解;(2)根据题意确定k>0,b>0,再通过列表计算概率.
【详解】解:(1)因为1、-1、2三个数中由两个正数,
所以从中任意取一个球,标号为正数的概率是.
(2)因为直线y=kx+b经过一、二、三象限,
所以k>0,b>0,
又因为取情况:
k b
1
-1
2
1
1,1
1,-1
1,2
-1
-1,1
-1,-1
-1.2
2
2,1
2,-1
2,2
共9种情况,符合条件的有4种,
所以直线y=kx+b经过一、二、三象限的概率是.
【点睛】本题考核知识点:求规概率. 解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出 .
27、1
【解析】
首先运用乘法分配律将所求的代数式去括号,然后再合并化简,最后整体代入求解.
【详解】
解:(﹣2)÷
=
=x2﹣3﹣2x+2
=x2﹣2x﹣1,
∵x2﹣x﹣4=0,
∴x2﹣2x=8,
∴原式=8﹣1=1.
【点睛】
分式混合运算要注意先去括号;分子、 分母能因式分解的先因式分解;除法要统一为乘法运算.注意整体代入思想在代数求值计算中的应用.
相关试卷
这是一份重庆市南川中学2021-2022学年中考数学最后冲刺模拟试卷含解析,共21页。试卷主要包含了计算÷的结果是等内容,欢迎下载使用。
这是一份四川省乐山市实验中学2021-2022学年中考数学仿真试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
这是一份南京栖霞中学2021-2022学年中考数学最后冲刺模拟试卷含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,一、单选题等内容,欢迎下载使用。