2021-2022学年四川省广元市剑阁县市级名校中考数学考前最后一卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,要使□ABCD成为矩形,需添加的条件是()
A.AB=BC B.∠ABC=90° C.AC⊥BD D.∠1=∠2
2.计算6m3÷(-3m2)的结果是( )
A.-3m B.-2m C.2m D.3m
3.下列计算正确的是( )
A.a6÷a2=a3 B.(﹣2)﹣1=2
C.(﹣3x2)•2x3=﹣6x6 D.(π﹣3)0=1
4.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于( )
A.4 B.6 C.2 D.8
5.一个几何体的三视图如图所示,这个几何体是( )
A.三菱柱 B.三棱锥 C.长方体 D.圆柱体
6.计算的结果为( )
A.2 B.1 C.0 D.﹣1
7.如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=( )
A.6 B.6 C.3 D.3
8.计算﹣1﹣(﹣4)的结果为( )
A.﹣3 B.3 C.﹣5 D.5
9.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( )
A. B. C. D.
10.甲、乙、丙三家超市为了促销同一种定价为m元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是( )
A.甲 B.乙 C.丙 D.都一样
二、填空题(共7小题,每小题3分,满分21分)
11.在△ABC中,∠ABC<20°,三边长分别为a,b,c,将△ABC沿直线BA翻折,得到△ABC1;然后将△ABC1沿直线BC1翻折,得到△A1BC1;再将△A1BC1沿直线A1B翻折,得到△A1BC2;…,若翻折4次后,得到图形A2BCAC1A1C2的周长为a+c+5b,则翻折11次后,所得图形的周长为_____________.(结果用含有a,b,c的式子表示)
12.若-2amb4与5a2bn+7是同类项,则m+n= .
13.若,则= .
14.如图,P是⊙O的直径AB延长线上一点,PC切⊙O于点C,PC=6,BC:AC=1:2,则AB的长为_____.
15.如图,正比例函数y=kx(k>0)与反比例函数y=的图象相交于A、C两点,过点A 作x轴的垂线交x轴于点B,连结BC,则△ABC的面积等于_____.
16.关于x的不等式组的整数解共有3个,则a的取值范围是_____.
17.计算:________.
三、解答题(共7小题,满分69分)
18.(10分)在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/下降到12月份的11340元/.求11、12两月份平均每月降价的百分率是多少?如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/?请说明理由
19.(5分)现有A、B两种手机上网计费方式,收费标准如下表所示:
计费方式
月使用费/元
包月上网时间/分
超时费/(元/分)
A
30
120
0.20
B
60
320
0.25
设上网时间为x分钟,
(1)若按方式A和方式B的收费金额相等,求x的值;
(2)若上网时间x超过320分钟,选择哪一种方式更省钱?
20.(8分)在数学上,我们把符合一定条件的动点所形成的图形叫做满足该条件的点的轨迹.例如:动点P的坐标满足(m,m﹣1),所有符合该条件的点组成的图象在平面直角坐标系xOy中就是一次函数y=x﹣1的图象.即点P的轨迹就是直线y=x﹣1.
(1)若m、n满足等式mn﹣m=6,则(m,n﹣1)在平面直角坐标系xOy中的轨迹是 ;
(2)若点P(x,y)到点A(0,1)的距离与到直线y=﹣1的距离相等,求点P的轨迹;
(3)若抛物线y=上有两动点M、N满足MN=a(a为常数,且a≥4),设线段MN的中点为Q,求点Q到x轴的最短距离.
21.(10分)如图所示,在中,,
(1)用尺规在边BC上求作一点P,使;(不写作法,保留作图痕迹)
(2)连接AP当为多少度时,AP平分.
22.(10分)如图,四边形AOBC是正方形,点C的坐标是(4,0).正方形AOBC的边长为 ,点A的坐标是 .将正方形AOBC绕点O顺时针旋转45°,点A,B,C旋转后的对应点为A′,B′,C′,求点A′的坐标及旋转后的正方形与原正方形的重叠部分的面积;动点P从点O出发,沿折线OACB方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t秒,当它们相遇时同时停止运动,当△OPQ为等腰三角形时,求出t的值(直接写出结果即可).
23.(12分)解方程:
24.(14分)如图,在平面直角坐标系中,一次函数y=﹣x+3的图象与反比例函数y=(x>0,k是常数)的图象交于A(a,2),B(4,b)两点.求反比例函数的表达式;点C是第一象限内一点,连接AC,BC,使AC∥x轴,BC∥y轴,连接OA,OB.若点P在y轴上,且△OPA的面积与四边形OACB的面积相等,求点P的坐标.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
根据一个角是90度的平行四边形是矩形进行选择即可.
【详解】
解:A、是邻边相等,可判定平行四边形ABCD是菱形;
B、是一内角等于90°,可判断平行四边形ABCD成为矩形;
C、是对角线互相垂直,可判定平行四边形ABCD是菱形;
D、是对角线平分对角,可判断平行四边形ABCD成为菱形;
故选:B.
【点睛】
本题主要应用的知识点为:矩形的判定. ①对角线相等且相互平分的四边形为矩形.②一个角是90度的平行四边形是矩形.
2、B
【解析】
根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算,然后选取答案即可.
【详解】
6m3÷(﹣3m2)=[6÷(﹣3)](m3÷m2)=﹣2m.
故选B.
3、D
【解析】
解:A.a6÷a2=a4,故A错误;
B.(﹣2)﹣1=﹣,故B错误;
C.(﹣3x2)•2x3=﹣6x5,故C错;
D.(π﹣3)0=1,故D正确.
故选D.
4、A
【解析】
解:连接OA,OC,过点O作OD⊥AC于点D,
∵∠AOC=2∠B,且∠AOD=∠COD=∠AOC,
∴∠COD=∠B=60°;
在Rt△COD中,OC=4,∠COD=60°,
∴CD=OC=2,
∴AC=2CD=4.
故选A.
【点睛】
本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.
5、A
【解析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
【详解】
由于左视图和俯视图为长方形可得此几何体为柱体,由主视图为三角形可得为三棱柱.
故选:B.
【点睛】
此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.
6、B
【解析】
按照分式运算规则运算即可,注意结果的化简.
【详解】
解:原式=,故选择B.
【点睛】
本题考查了分式的运算规则.
7、A
【解析】
试题分析:根据垂径定理先求BC一半的长,再求BC的长.
解:如图所示,设OA与BC相交于D点.
∵AB=OA=OB=6,
∴△OAB是等边三角形.
又根据垂径定理可得,OA平分BC,
利用勾股定理可得BD=
所以BC=2BD=.
故选A.
点睛:本题主要考查垂径定理和勾股定理. 解题的关键在于要利用好题中的条件圆O与圆A的半径相等,从而得出△OAB是等边三角形,为后继求解打好基础.
8、B
【解析】
原式利用减法法则变形,计算即可求出值.
【详解】
,
故选:B.
【点睛】
本题主要考查了有理数的加减,熟练掌握有理数加减的运算法则是解决本题的关键.
9、A
【解析】
∵密码的末位数字共有10种可能(0、1、 2、 3、4、 5、 6、 7、 8、 9、 0都有可能),
∴当他忘记了末位数字时,要一次能打开的概率是.
故选A.
10、B
【解析】
根据各超市降价的百分比分别计算出此商品降价后的价格,再进行比较即可得出结论.
【详解】
解:降价后三家超市的售价是:
甲为(1-20%)2m=0.64m,
乙为(1-40%)m=0.6m,
丙为(1-30%)(1-10%)m=0.63m,
∵0.6m<0.63m<0.64m,
∴此时顾客要购买这种商品最划算应到的超市是乙.
故选:B.
【点睛】
此题考查了列代数式,解题的关键是根据题目中的数量关系列出代数式,并对代数式比较大小.
二、填空题(共7小题,每小题3分,满分21分)
11、2a+12b
【解析】
如图2,翻折4次时,左侧边长为c,如图2,翻折5次,左侧边长为a,所以翻折4次后,如图1,由折叠得:AC=A= ==,所以图形的周长为:a+c+5b,
因为∠ABC<20°,所以,
翻折9次后,所得图形的周长为: 2a+10b,故答案为: 2a+10b.
12、-1.
【解析】
试题分析:根据同类项是字母相同且相同字母的指数也相同,可得方程组,根据解方程组,可得m、n的值,根据有理数的加法,可得答案.
试题解析:由-2amb4与5a2bn+7是同类项,得
,
解得.
∴m+n=-1.
考点:同类项.
13、1.
【解析】
试题分析:有意义,必须,,解得:x=3,代入得:y=0+0+2=2,∴==1.故答案为1.
考点:二次根式有意义的条件.
14、1
【解析】
PC切⊙O于点C,则∠PCB=∠A,∠P=∠P,
∴△PCB∽△PAC,
∴,
∵BP=PC=3,
∴PC2=PB•PA,即36=3•PA,
∵PA=12
∴AB=12-3=1.
故答案是:1.
15、1.
【解析】
根据反比例函数的性质可判断点A与点B关于原点对称,则S△BOC=S△AOC,再利用反比例函数k的几何意义得到S△AOC=3,则易得S△ABC=1.
【详解】
∵双曲线y=与正比例函数y=kx的图象交于A,B两点,
∴点A与点B关于原点对称,∴S△BOC=S△AOC,
∵S△AOC=×1=3,∴S△ABC=2S△AOC=1.
故答案为1.
16、
【解析】
首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.
【详解】
解:由不等式①得:x>a,由不等式②得:x<1,所以不等式组的解集是a<x<1.
∵关于x的不等式组的整数解共有3个,∴3个整数解为0,﹣1,﹣2,∴a的取值范围是﹣3≤a<﹣2.
故答案为:﹣3≤a<﹣2.
【点睛】
本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
17、
【解析】
根据二次根式的运算法则先算乘法,再将分母有理化,然后相加即可.
【详解】
解:原式=
=
【点睛】
本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
三、解答题(共7小题,满分69分)
18、(1)10%;(1)会跌破10000元/m1.
【解析】
(1)设11、11两月平均每月降价的百分率是x,那么4月份的房价为14000(1-x),11月份的房价为14000(1-x)1,然后根据11月份的11340元/m1即可列出方程解决问题;
(1)根据(1)的结果可以计算出今年1月份商品房成交均价,然后和10000元/m1进行比较即可作出判断.
【详解】
(1)设11、11两月平均每月降价的百分率是x,
则11月份的成交价是:14000(1-x),
11月份的成交价是:14000(1-x)1,
∴14000(1-x)1=11340,
∴(1-x)1=0.81,
∴x1=0.1=10%,x1=1.9(不合题意,舍去)
答:11、11两月平均每月降价的百分率是10%;
(1)会跌破10000元/m1.
如果按此降价的百分率继续回落,估计今年1月份该市的商品房成交均价为:
11340(1-x)1=11340×0.81=9184.5<10000,
由此可知今年1月份该市的商品房成交均价会跌破10000元/m1.
【点睛】
此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.
19、(1)x=270或x=520;(2)当320
(1)根据收取费用=月使用费+超时单价×超过时间,可找出yA、yB关于x的函数关系式;根据方式A和方式B的收费金额相等,分类讨论,列出方程,求解即可.
(2)列不等式,求解即可得出结论.
【详解】
(1)当时,与x之间的函数关系式为:
当时,与x之间的函数关系式为:
即
当时,与x之间的函数关系式为:
当时, 与x之间的函数关系式为:
即
方式A和方式B的收费金额相等,
当时,
当时, 解得:
当时, 解得:
即x=270或x=520时,方式A和方式B的收费金额相等.
(2) 若上网时间x超过320分钟,
解得320
当x=520时,两种方式花钱一样多;
解得x>520,
当x>520时选择方式A更省钱.
【点睛】
考查一次函数的应用,列出函数关系式是解题的关键.注意分类讨论,不要漏解.
20、(1);(2)y=x2;(3)点Q到x轴的最短距离为1.
【解析】
(1)先判断出m(n﹣1)=6,进而得出结论;
(2)先求出点P到点A的距离和点P到直线y=﹣1的距离建立方程即可得出结论;
(3)设出点M,N的坐标,进而得出点Q的坐标,利用MN=a,得出,即可得出结论.
【详解】
(1)设m=x,n﹣1=y,
∵mn﹣m=6,
∴m(n﹣1)=6,
∴xy=6,
∴
∴(m,n﹣1)在平面直角坐标系xOy中的轨迹是
故答案为:;
(2)∴点P(x,y)到点A(0,1),
∴点P(x,y)到点A(0,1)的距离的平方为x2+(y﹣1)2,
∵点P(x,y)到直线y=﹣1的距离的平方为(y+1)2,
∵点P(x,y)到点A(0,1)的距离与到直线y=﹣1的距离相等,
∴x2+(y﹣1)2=(y+1)2,
∴
(3)设直线MN的解析式为y=kx+b,M(x1,y1),N(x2,y2),
∴线段MN的中点为Q的纵坐标为
∴
∴x2﹣4kx﹣4b=0,
∴x1+x2=4k,x1x2=﹣4b,
∴
∴
∴
∴点Q到x轴的最短距离为1.
【点睛】
此题是二次函数综合题,主要考查了点的轨迹的定义,两点间的距离公式,中点坐标公式公式,根与系数的关系,确定出是解本题的关键.
21、(1)详见解析;(2)30°.
【解析】
(1)根据线段垂直平分线的作法作出AB的垂直平分线即可;
(2)连接PA,根据等腰三角形的性质可得,由角平分线的定义可得,根据直角三角形两锐角互余的性质即可得∠B的度数,可得答案.
【详解】
(1)如图所示:分别以A、B为圆心,大于AB长为半径画弧,两弧相交于点E、F,作直线EF,交BC于点P,
∵EF为AB的垂直平分线,
∴PA=PB,
∴点P即为所求.
(2)如图,连接AP,
∵,
∴,
∵AP是角平分线,
∴,
∴,
∵,
∴∠PAC+∠PAB+∠B=90°,
∴3∠B=90°,
解得:∠B=30°,
∴当时,AP平分.
【点睛】
本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键.
22、(1)4,;(2)旋转后的正方形与原正方形的重叠部分的面积为;(3).
【解析】
(1)连接AB,根据△OCA为等腰三角形可得AD=OD的长,从而得出点A的坐标,则得出正方形AOBC的面积;
(2)根据旋转的性质可得OA′的长,从而得出A′C,A′E,再求出面积即可;
(3)根据P、Q点在不同的线段上运动情况,可分为三种列式①当点P、Q分别在OA、OB时,②当点P在OA上,点Q在BC上时,③当点P、Q在AC上时,可方程得出t.
【详解】
解:(1)连接AB,与OC交于点D,
四边形是正方形,
∴△OCA为等腰Rt△,
∴AD=OD=OC=2,
∴点A的坐标为.
4,.
(2)如图
∵ 四边形是正方形,
∴,.
∵ 将正方形绕点顺时针旋转,
∴ 点落在轴上.
∴.
∴ 点的坐标为.
∵,
∴.
∵ 四边形,是正方形,
∴,.
∴,.
∴.
∴.
∵,
,
∴ .
∴旋转后的正方形与原正方形的重叠部分的面积为.
(3)设t秒后两点相遇,3t=16,∴t=
①当点P、Q分别在OA、OB时,
∵,OP=t,OQ=2t
∴不能为等腰三角形
②当点P在OA上,点Q在BC上时如图2,
当OQ=QP,QM为OP的垂直平分线,
OP=2OM=2BQ,OP=t,BQ=2t-4,
t=2(2t-4),
解得:t=.
③当点P、Q在AC上时,
不能为等腰三角形
综上所述,当时是等腰三角形
【点睛】
此题考查了正方形的性质,等腰三角形的判定以及旋转的性质,是中考压轴题,综合性较强,难度较大.
23、x=-4是方程的解
【解析】
分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
∴x=-4,
当x=-4时,
∴x=-4是方程的解
【点睛】
本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.
24、 (1) 反比例函数的表达式为y=(x>0);(2) 点P的坐标为(0,4)或(0,﹣4)
【解析】
(1)根据点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上求出a、b的值,得出A、B两点的坐标,再运用待定系数法解答即可;
(2)延长CA交y轴于点E,延长CB交x轴于点F,构建矩形OECF,根据S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF,设点P(0,m),根据反比例函数的几何意义解答即可.
【详解】
(1)∵点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上,
∴﹣a+3=2,b=﹣×4+3,
∴a=2,b=1,
∴点A的坐标为(2,2),点B的坐标为(4,1),
又∵点A(2,2)在反比例函数y=的图象上,
∴k=2×2=4,
∴反比例函数的表达式为y=(x>0);
(2)延长CA交y轴于点E,延长CB交x轴于点F,
∵AC∥x轴,BC∥y轴,
则有CE⊥y轴,CF⊥x轴,点C的坐标为(4,2)
∴四边形OECF为矩形,且CE=4,CF=2,
∴S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF
=2×4﹣×2×2﹣×4×1
=4,
设点P的坐标为(0,m),
则S△OAP=×2•|m|=4,
∴m=±4,
∴点P的坐标为(0,4)或(0,﹣4).
【点睛】
此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,直线与坐标轴的交点,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.
宁波市鄞州区市级名校2021-2022学年中考数学考前最后一卷含解析: 这是一份宁波市鄞州区市级名校2021-2022学年中考数学考前最后一卷含解析,共20页。
2022年四川省广元市剑阁县市级名校中考联考数学试卷含解析: 这是一份2022年四川省广元市剑阁县市级名校中考联考数学试卷含解析,共22页。试卷主要包含了的相反数是等内容,欢迎下载使用。
2022届安徽合肥市市级名校中考数学考前最后一卷含解析: 这是一份2022届安徽合肥市市级名校中考数学考前最后一卷含解析,共19页。试卷主要包含了关于x的方程等内容,欢迎下载使用。