2021-2022学年四川省遂宁市安居育才中学中考数学最后冲刺模拟试卷含解析
展开这是一份2021-2022学年四川省遂宁市安居育才中学中考数学最后冲刺模拟试卷含解析,共18页。
2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,在已知的△ ABC中,按以下步骤作图:①分别以B、C为圆心,以大于BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,则下列结论正确的是( )
A.CD+DB=AB B.CD+AD=AB C.CD+AC=AB D.AD+AC=AB
2.如图,在平面直角坐标系中,点A在x轴的正半轴上,点B的坐标为(0,4),将△ABO绕点B逆时针旋转60°后得到△A'BO',若函数y=(x>0)的图象经过点O',则k的值为( )
A.2 B.4 C.4 D.8
3.3的相反数是( )
A.﹣3 B.3 C. D.﹣
4.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积是( )
A. B. C.- D.
5.有下列四种说法:
①半径确定了,圆就确定了;②直径是弦;
③弦是直径;④半圆是弧,但弧不一定是半圆.
其中,错误的说法有( )
A.1种 B.2种 C.3种 D.4种
6.九年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h,则所列方程正确的是( )
A. B.
C. D.
7.如图,矩形纸片中,,,将沿折叠,使点落在点处,交于点,则的长等于( )
A. B. C. D.
8.将抛物线向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )
A. B. C. D.
9.如图,直线y=kx+b与x轴交于点(﹣4,0),则y>0时,x的取值范围是( )
A.x>﹣4 B.x>0 C.x<﹣4 D.x<0
10.某广场上有一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法错误的是( )
A.红花、绿花种植面积一定相等
B.紫花、橙花种植面积一定相等
C.红花、蓝花种植面积一定相等
D.蓝花、黄花种植面积一定相等
二、填空题(共7小题,每小题3分,满分21分)
11.如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB的位置保持不动,将三角板DCE绕其直角顶点C顺时针旋转一周.当△DCE一边与AB平行时,∠ECB的度数为_________________________.
12.的相反数是______,的倒数是______.
13.方程的解是__________.
14.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是___.
15.对于实数a,b,定义运算“*”:a*b=,例如:因为4>2,所以4*2=42﹣4×2=8,则(﹣3)*(﹣2)=___________.
16.如图,⊙O在△ABC三边上截得的弦长相等,∠A=70°,则∠BOC=_____度.
17.计算:cos245°-tan30°sin60°=______.
三、解答题(共7小题,满分69分)
18.(10分)某花卉基地种植了郁金香和玫瑰两种花卉共 30 亩,有关数据如表:
成本
(单位:万元/亩)
销售额
(单位:万元/亩)
郁金香
2.4
3
玫瑰
2
2.5
(1)设种植郁金香 x 亩,两种花卉总收益为 y 万元,求 y 关于 x 的函数关系式.(收益=销售额﹣成本)
(2) 若计划投入的成本的总额不超过 70 万元,要使获得的收益最大,基地应种植郁金香和玫瑰个多少亩?
19.(5分)已知:a+b=4
(1)求代数式(a+1)(b+1)﹣ab值;
(2)若代数式a2﹣2ab+b2+2a+2b的值等于17,求a﹣b的值.
20.(8分)按要求化简:(a﹣1)÷,并选择你喜欢的整数a,b代入求值.
小聪计算这一题的过程如下:
解:原式=(a﹣1)÷…①
=(a﹣1)•…②
=…③
当a=1,b=1时,原式=…④
以上过程有两处关键性错误,第一次出错在第_____步(填序号),原因:_____;
还有第_____步出错(填序号),原因:_____.
请你写出此题的正确解答过程.
21.(10分)某区域平面示意图如图,点O在河的一侧,AC和BC表示两条互相垂直的公路.甲勘测员在A处测得点O位于北偏东45°,乙勘测员在B处测得点O位于南偏西73.7°,测得AC=840m,BC=500m.请求出点O到BC的距离.参考数据:sin73.7°≈,cos73.7°≈,tan73.7°≈
22.(10分)某企业信息部进行市场调研发现:
信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:
x(万元)
1
2
2.5
3
5
yA(万元)
0.4
0.8
1
1.2
2
信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.
(1)求出yB与x的函数关系式;
(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式;
(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?
23.(12分)如图,已知△ABC,以A为圆心AB为半径作圆交AC于E,延长BA交圆A于D连DE并延长交BC于F,
(1)判断△ABC的形状,并证明你的结论;
(2)如图1,若BE=CE=,求⊙A的面积;
(3)如图2,若tan∠CEF=,求cos∠C的值.
24.(14分)为响应学校全面推进书香校园建设的号召,班长李青随机调查了若干同学一周课外阅读的时间(单位:小时),将获得的数据分成四组,绘制了如下统计图(:,:,:,:),根据图中信息,解答下列问题:
(1)这项工作中被调查的总人数是多少?
(2)补全条形统计图,并求出表示组的扇形统计图的圆心角的度数;
(3)如果李青想从组的甲、乙、丙、丁四人中先后随机选择两人做读书心得发言代表,请用列表或画树状图的方法求出选中甲的概率.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
作弧后可知MN⊥CB,且CD=DB.
【详解】
由题意性质可知MN是BC的垂直平分线,则MN⊥CB,且CD=DB,则CD+AD=AB.
【点睛】
了解中垂线的作图规则是解题的关键.
2、C
【解析】
根据题意可以求得点O'的坐标,从而可以求得k的值.
【详解】
∵点B的坐标为(0,4),
∴OB=4,
作O′C⊥OB于点C,
∵△ABO绕点B逆时针旋转60°后得到△A'BO',
∴O′B=OB=4,
∴O′C=4×sin60°=2,BC=4×cos60°=2,
∴OC=2,
∴点O′的坐标为:(2,2),
∵函数y=(x>0)的图象经过点O',
∴2=,得k=4,
故选C.
【点睛】
本题考查了反比例函数图象上点的坐标特征、坐标与图形的变化,解题的关键是利用数形结合的思想和反比例函数的性质解答.
3、A
【解析】
试题分析:根据相反数的概念知:1的相反数是﹣1.
故选A.
【考点】相反数.
4、A
【解析】
先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD.
【详解】
∵∠ACB=90°,AC=BC=1,
∴AB=,
∴S扇形ABD=,
又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,
∴Rt△ADE≌Rt△ACB,
∴S阴影部分=S△ADE+S扇形ABD−S△ABC=S扇形ABD=,
故选A.
【点睛】
本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.
5、B
【解析】
根据弦的定义、弧的定义、以及确定圆的条件即可解决.
【详解】
解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误;
直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;
弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;
④半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确.
其中错误说法的是①③两个.
故选B.
【点睛】
本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆.
6、C
【解析】
试题分析:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得,.故选C.
考点:由实际问题抽象出分式方程.
7、B
【解析】
由折叠的性质得到AE=AB,∠E=∠B=90°,易证Rt△AEF≌Rt△CDF,即可得到结论EF=DF;易得FC=FA,设FA=x,则FC=x,FD=6-x,在Rt△CDF中利用勾股定理得到关于x的方程x2=42+(6-x)2,解方程求出x即可.
【详解】
∵矩形ABCD沿对角线AC对折,使△ABC落在△ACE的位置,
∴AE=AB,∠E=∠B=90°,
又∵四边形ABCD为矩形,
∴AB=CD,
∴AE=DC,
而∠AFE=∠DFC,
∵在△AEF与△CDF中,
,
∴△AEF≌△CDF(AAS),
∴EF=DF;
∵四边形ABCD为矩形,
∴AD=BC=6,CD=AB=4,
∵Rt△AEF≌Rt△CDF,
∴FC=FA,
设FA=x,则FC=x,FD=6-x,
在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6-x)2,解得x=,
则FD=6-x=.
故选B.
【点睛】
考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理.
8、D
【解析】
根据“左加右减、上加下减”的原则,
将抛物线向左平移1个单位所得直线解析式为:;
再向下平移3个单位为:.故选D.
9、A
【解析】
试题分析:充分利用图形,直接从图上得出x的取值范围.
由图可知,当y<1时,x<-4,故选C.
考点:本题考查的是一次函数的图象
点评:解答本题的关键是掌握在x轴下方的部分y<1,在x轴上方的部分y>1.
10、C
【解析】
图中,线段GH和EF将大平行四边形ABCD分割成了四个小平行四边形,平行四边形的对角线平分该平行四边形的面积,据此进行解答即可.
【详解】
解:由已知得题图中几个四边形均是平行四边形.又因为平行四边形的一条对角线将平行四边形分成两个全等的三角形,即面积相等,故红花和绿花种植面积一样大,蓝花和黄花种植面积一样大,紫花和橙花种植面积一样大.
故选择C.
【点睛】
本题考查了平行四边形的定义以及性质,知道对角线平分平行四边形是解题关键.
二、填空题(共7小题,每小题3分,满分21分)
11、15°、30°、60°、120°、150°、165°
【解析】
分析:根据CD∥AB,CE∥AB和DE∥AB三种情况分别画出图形,然后根据每种情况分别进行计算得出答案,每种情况都会出现锐角和钝角两种情况.
详解:①、∵CD∥AB, ∴∠ACD=∠A=30°, ∵∠ACD+∠ACE=∠DCE=90°,
∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;
CD∥AB时,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°
②如图1,CE∥AB,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;
CE∥AB时,∠ECB=∠B=60°.
③如图2,DE∥AB时,延长CD交AB于F, 则∠BFC=∠D=45°,
在△BCF中,∠BCF=180°-∠B-∠BFC,=180°-60°-45°=75°,
∴ECB=∠BCF+∠ECF=75°+90°=165°或∠ECB=90°-75°=15°.
点睛:本题主要考查的是平行线的性质与判定,属于中等难度的题型.解决这个问题的关键就是根据题意得出图形,然后分两种情况得出角的度数.
12、2,
【解析】
试题分析:根据相反数和倒数的定义分别进行求解,﹣2的相反数是2,
﹣2的倒数是.
考点:倒数;相反数.
13、.
【解析】
根据解分式方程的步骤依次计算可得.
【详解】
解:去分母,得:,
解得:,
当时,,
所以是原分式方程的解,
故答案为:.
【点睛】
本题主要考查解分式方程,解题的关键是熟练掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.
14、50°
【解析】
先根据三角形外角的性质求出∠BEF的度数,再根据平行线的性质得到∠2的度数.
【详解】
如图所示:
∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,
∴∠BEF=∠1+∠F=50°,
∵AB∥CD,
∴∠2=∠BEF=50°,
故答案是:50°.
【点睛】
考查了平行线的性质,解题的关键是掌握、运用三角形外角的性质(三角形的一个外角等于与它不相邻的两个内角的和).
15、-1.
【解析】
解:∵-3<-2,∴(-3)*(-2)=(-3)-(-2)=-1.故答案为-1.
16、125
【解析】
解:过O作OM⊥AB,ON⊥AC,OP⊥BC,垂足分别为M,N,P
∵∠A=70°,∠B+∠C=180∘−∠A=110°
∵O在△ABC三边上截得的弦长相等,
∴OM=ON=OP,
∴O是∠B,∠C平分线的交点
∴∠BOC=180°−12(∠B+∠C)=180°−12×110°=125°.
故答案为:125°
【点睛】
本题考查了圆心角、弧、弦的关系, 三角形内角和定理, 角平分线的性质,解题的关键是掌握它们的性质和定理.
17、0
【解析】
直接利用特殊角的三角函数值代入进而得出答案.
【详解】
= .
故答案为0.
【点睛】
此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.
三、解答题(共7小题,满分69分)
18、(1)y = 0.1x + 15,(2)郁金香 25 亩,玫瑰 5 亩
【解析】
(1)根据题意和表格中的数据可得到y关于x的函数;
(2)根据题意可列出相应的不等式,再根据(1)中的函数关系式即可求解.
【详解】
(1)由题意得y=(3-2.4)x-(2.5-2)(30-x)=0.1x+15
即y关于x的函数关系式为y=0.1x+15
(2)由题意得2.4x+2(30-x)≤70
解得x≤25,
∵y=0.1x+15
∴当x=25时,y最大=17.5
30-x=5,
∴要使获得的收益最大,基地应种植郁金香25亩和玫瑰5亩.
【点睛】
此题主要考查一次函数的应用,解题的关键是根据题意进行列出关系式与不等式进行求解.
19、(1)5;(2)1或﹣1.
【解析】
(1)将原式展开、合并同类项化简得a+b+1,再代入计算可得;
(2)由原式=(a-b)2+2(a+b)可得(a-b)2+2×4=17,据此进一步计算可得.
【详解】
(1)原式=ab+a+b+1﹣ab=a+b+1,
当a+b=4时,原式=4+1=5;
(2)∵a2﹣2ab+b2+2a+2b=(a﹣b)2+2(a+b),
∴(a﹣b)2+2×4=17,
∴(a﹣b)2=9,
则a﹣b=1或﹣1.
【点睛】
本题主要考查代数式的求值,解题的关键是掌握多项式乘多项式的运算法则及整体思想的运用.
20、①, 运算顺序错误; ④, a等于1时,原式无意义.
【解析】
由于乘法和除法是同级运算,应当按照从左向右的顺序计算,①运算顺序错误;④当a=1时,等于0,原式无意义.
【详解】
①运算顺序错误;
故答案为①,运算顺序错误;
④当a=1时,等于0,原式无意义.
故答案为a等于1时,原式无意义.
当时,原式
【点睛】
本题考查了分式的化简求值,注意运算顺序和分式有意义的条件.
21、点O到BC的距离为480m.
【解析】
作OM⊥BC于M,ON⊥AC于N,设OM=x,根据矩形的性质用x表示出OM、MC,根据正切的定义用x表示出BM,根据题意列式计算即可.
【详解】
作OM⊥BC于M,ON⊥AC于N,
则四边形ONCM为矩形,
∴ON=MC,OM=NC,
设OM=x,则NC=x,AN=840﹣x,
在Rt△ANO中,∠OAN=45°,
∴ON=AN=840﹣x,则MC=ON=840﹣x,
在Rt△BOM中,BM==x,
由题意得,840﹣x+x=500,
解得,x=480,
答:点O到BC的距离为480m.
【点睛】
本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键.
22、 (1)yB=-0.2x2+1.6x(2)一次函数,yA=0.4x(3)该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元
【解析】
(1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式yB=ax2+bx求解即可;
(2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;
(3)根据等量关系“总利润=投资A产品所获利润+投资B产品所获利润”列出函数关系式求得最大值
【详解】
解:(1)yB=-0.2x2+1.6x,
(2)一次函数,yA=0.4x,
(3)设投资B产品x万元,投资A产品(15-x)万元,投资两种产品共获利W万元, 则W=(-0.2x2+1.6x)+0.4(15-x)=-0.2x2+1.2x+6=-0.2(x-3)2+7.8,
∴当x=3时,W最大值=7.8,
答:该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元.
23、 (1) △ABC为直角三角形,证明见解析;(2)12π;(3).
【解析】
(1)由,得△CEF∽△CBE,∴∠CBE=∠CEF,由BD为直径,得∠ADE+∠ABE=90°,即可得∠DBC=90°故△ABC为直角三角形.(2)设∠EBC=∠ECB=x,根据等腰三角形的性质与直角三角形的性质易得 x=30°,则∠ABE=60°故AB=BE=,则可求出求⊙A的面积;(3)由(1)知∠D=∠CFE=∠CBE,故tan∠CBE=,设EF=a,BE=2a,利用勾股定理求出 BD=2BF=,得AD=AB=,DE=2BE=4a,过F作FK∥BD交CE于K,利用平行线分线段成比例得,求得 , 即可求出tan∠C= 再求出cos∠C即可.
【详解】
解:∵,
∴,
∴△CEF∽△CBE,
∴∠CBE=∠CEF,
∵AE=AD,
∴∠ADE=∠AED=∠FEC=∠CBE,
∵BD为直径,
∴∠ADE+∠ABE=90°,
∴∠CBE+∠ABE=90°,
∴∠DBC=90°△ABC为直角三角形.
(2)∵BE=CE
∴设∠EBC=∠ECB=x,
∴∠BDE=∠EBC=x,
∵AE=AD
∴∠AED=∠ADE=x,
∴∠CEF=∠AED=x
∴∠BFE=2x
在△BDF中由△内角和可知:
3x=90°
∴x=30°
∴∠ABE=60°
∴AB=BE=
∴
(3)由(1)知:∠D=∠CFE=∠CBE,
∴tan∠CBE=,
设EF=a,BE=2a,
∴BF=,BD=2BF=,
∴AD=AB=,
∴,DE=2BE=4a,过F作FK∥BD交CE于K,
∴,
∵,
∴
∴,
∴tan∠C=
∴cos∠C=.
【点睛】
此题主要考查圆内的三角形综合问题,解题的关键是熟知圆的切线定理,等腰三角形的性质,及相似三角形的性质.
24、(1)50人;(2)补全图形见解析,表示A组的扇形统计图的圆心角的度数为108°;(3).
【解析】
分析:(1)、根据B的人数和百分比得出样本容量;(2)、根据总人数求出C组的人数,根据A组的人数占总人数的百分比得出扇形的圆心角度数;(3)、根据题意列出树状图,从而得出概率.
详解:(1)被调查的总人数为19÷38%=50人;
(2)C组的人数为50﹣(15+19+4)=12(人),
补全图形如下:
表示A组的扇形统计图的圆心角的度数为360°×=108°;
(3)画树状图如下,
共有12个可能的结果,恰好选中甲的结果有6个, ∴P(恰好选中甲)=.
点睛:本题主要考查的是条形统计图和扇形统计图以及概率的计算法则,属于基础题型.理解频数、频率与样本容量之间的关系是解题的关键.
相关试卷
这是一份重庆市南川中学2021-2022学年中考数学最后冲刺模拟试卷含解析,共21页。试卷主要包含了计算÷的结果是等内容,欢迎下载使用。
这是一份南京栖霞中学2021-2022学年中考数学最后冲刺模拟试卷含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,一、单选题等内容,欢迎下载使用。
这是一份2022年四川省成都市锦江区七中学育才校中考数学最后冲刺模拟试卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,如图所示的几何体的主视图是,如图,与∠1是内错角的是,估计+1的值在等内容,欢迎下载使用。