年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年新疆昌吉州奇台县重点达标名校十校联考最后数学试题含解析

    2021-2022学年新疆昌吉州奇台县重点达标名校十校联考最后数学试题含解析第1页
    2021-2022学年新疆昌吉州奇台县重点达标名校十校联考最后数学试题含解析第2页
    2021-2022学年新疆昌吉州奇台县重点达标名校十校联考最后数学试题含解析第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年新疆昌吉州奇台县重点达标名校十校联考最后数学试题含解析

    展开

    这是一份2021-2022学年新疆昌吉州奇台县重点达标名校十校联考最后数学试题含解析,共27页。试卷主要包含了不等式组的正整数解的个数是,下列函数中,二次函数是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图所示,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则BD两点间的距离为( )

    A.2 B. C. D.
    2.的平方根是( )
    A.2 B. C.±2 D.±
    3.计算36÷(﹣6)的结果等于(  )
    A.﹣6 B.﹣9 C.﹣30 D.6
    4.不等式组的正整数解的个数是(  )
    A.5 B.4 C.3 D.2
    5.在下列四个图案中既是轴对称图形,又是中心对称图形的是( )
    A. B. C.. D.
    6.下列函数中,二次函数是( )
    A.y=﹣4x+5 B.y=x(2x﹣3)
    C.y=(x+4)2﹣x2 D.y=
    7.等腰三角形的两边长分别为5和11,则它的周长为( )
    A.21 B.21或27 C.27 D.25
    8.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为( )

    A.40° B.45° C.50° D.55°
    9.把抛物线y=﹣2x2向上平移1个单位,得到的抛物线是(  )
    A.y=﹣2x2+1 B.y=﹣2x2﹣1 C.y=﹣2(x+1)2 D.y=﹣2(x﹣1)2
    10.如果关于的不等式组的整数解仅有、,那么适合这个不等式组的整数、组成的有序数对共有()
    A.个 B.个 C.个 D.个
    11.如图,一艘海轮位于灯塔P的南偏东70°方向的M处, 它以每小时40海里的速度向正北方向航行,2小时后到 达位于灯塔P的北偏东40°的N处,则N处与灯塔P的 距离为

    A.40海里 B.60海里 C.70海里 D.80海里
    12. “保护水资源,节约用水”应成为每个公民的自觉行为.下表是某个小区随机抽查到的10户家庭的月用水情况,则下列关于这10户家庭的月用水量说法错误的是(  )
    月用水量(吨)
    4
    5
    6
    9
    户数(户)
    3
    4
    2
    1
    A.中位数是5吨 B.众数是5吨 C.极差是3吨 D.平均数是5.3吨
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.⊙O的半径为10cm,AB,CD是⊙O的两条弦,且AB∥CD,AB=16cm,CD=12cm.则AB与CD之间的距离是 cm.
    14.关于x的方程kx2﹣(2k+1)x+k+2=0有实数根,则k的取值范围是_____.
    15.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为____________________.

    16.如图,在△ABC中,DE∥BC,EF∥AB.若AD=2BD,则的值等于_____

    17.若a是方程的解,计算:=______.
    18.已知△ABC中,BC=4,AB=2AC,则△ABC面积的最大值为_______.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为.求袋子中白球的个数;(请通过列式或列方程解答)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)
    20.(6分)解不等式组,
    请结合题意填空,完成本题的解答.
    (1)解不等式①,得_____;
    (2)解不等式②,得_____;
    (3)把不等式①和②的解集在数轴上表示出来;
    (4)原不等式组的解集为_____.

    21.(6分)如图,已知,,.求证:.

    22.(8分)观察与思考:阅读下列材料,并解决后面的问题
    在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c,过A作AD⊥BC于D(如图(1)),则sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即,同理有:,,所以.
    即:在一个三角形中,各边和它所对角的正弦的比相等在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.
    根据上述材料,完成下列各题.

    (1)如图(2),△ABC中,∠B=45°,∠C=75°,BC=60,则∠A=   ;AC=   ;
    (2)自从去年日本政府自主自导“钓鱼岛国有化”闹剧以来,我国政府灵活应对,现如今已对钓鱼岛执行常态化巡逻.某次巡逻中,如图(3),我渔政204船在C处测得A在我渔政船的北偏西30°的方向上,随后以40海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在的北偏西75°的方向上,求此时渔政204船距钓鱼岛A的距离AB.(结果精确到0.01,≈2.449)
    23.(8分)如图所示,平面直角坐标系中,O为坐标原点,二次函数的图象与x轴交于、B两点,与y轴交于点C;
    (1)求c与b的函数关系式;
    (2)点D为抛物线顶点,作抛物线对称轴DE交x轴于点E,连接BC交DE于F,若AE=DF,求此二次函数解析式;
    (3)在(2)的条件下,点P为第四象限抛物线上一点,过P作DE的垂线交抛物线于点M,交DE于H,点Q为第三象限抛物线上一点,作于N,连接MN,且,当时,连接PC,求的值.

    24.(10分)如图,二次函数y=ax2+2x+c的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,3).
    (1)求该二次函数的表达式;
    (2)过点A的直线AD∥BC且交抛物线于另一点D,求直线AD的函数表达式;
    (3)在(2)的条件下,请解答下列问题:
    ①在x轴上是否存在一点P,使得以B、C、P为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由;
    ②动点M以每秒1个单位的速度沿线段AD从点A向点D运动,同时,动点N以每秒个单位的速度沿线段DB从点D向点B运动,问:在运动过程中,当运动时间t为何值时,△DMN的面积最大,并求出这个最大值.

    25.(10分)如图,在⊙O的内接四边形ABCD中,∠BCD=120°,CA平分∠BCD.
    (1)求证:△ABD是等边三角形;
    (2)若BD=3,求⊙O的半径.

    26.(12分)如图,在中,,,点D是BC上任意一点,将线段AD绕点A逆时针方向旋转,得到线段AE,连结EC.
    依题意补全图形;
    求的度数;
    若,,将射线DA绕点D顺时针旋转交EC的延长线于点F,请写出求AF长的思路.

    27.(12分)如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.

    (1)求证:AE=BF;
    (2)连接GB,EF,求证:GB∥EF;
    (3)若AE=1,EB=2,求DG的长.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    解:连接BD.在△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=2.∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=2.在Rt△BED中,BD=.故选C.

    点睛:本题考查了勾股定理和旋转的基本性质,解决此类问题的关键是掌握旋转的基本性质,特别是线段之间的关系.题目整体较为简单,适合随堂训练.
    2、D
    【解析】
    先化简,然后再根据平方根的定义求解即可.
    【详解】
    ∵=2,2的平方根是±,
    ∴的平方根是±.
    故选D.
    【点睛】
    本题考查了平方根的定义以及算术平方根,先把正确化简是解题的关键,本题比较容易出错.
    3、A
    【解析】
    分析:根据有理数的除法法则计算可得.
    详解:31÷(﹣1)=﹣(31÷1)=﹣1.
    故选A.
    点睛:本题主要考查了有理数的除法,解题的关键是掌握有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.2除以任何一个不等于2的数,都得2.
    4、C
    【解析】
    先解不等式组得到-1<x≤3,再找出此范围内的正整数.
    【详解】
    解不等式1-2x<3,得:x>-1,
    解不等式≤2,得:x≤3,
    则不等式组的解集为-1<x≤3,
    所以不等式组的正整数解有1、2、3这3个,
    故选C.
    【点睛】
    本题考查了一元一次不等式组的整数解,解题的关键是正确得出 一元一次不等式组的解集.
    5、B
    【解析】
    试题分析:根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,因此:
    A、不是轴对称图形,是中心对称图形,不符合题意;
    B、是轴对称图形,也是中心对称图形,符合题意;
    C、不是轴对称图形,也不是中心对称图形,不符合题意;
    D、是轴对称图形,不是中心对称图形,不符合题意.
    故选B.
    考点:轴对称图形和中心对称图形
    6、B
    【解析】
    A. y=-4x+5是一次函数,故此选项错误;
    B. y= x(2x-3)=2x2-3x,是二次函数,故此选项正确;
    C. y=(x+4)2−x2=8x+16,为一次函数,故此选项错误;
    D. y=是组合函数,故此选项错误.
    故选B.
    7、C
    【解析】
    试题分析:分类讨论:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系;当腰取11,则底边为5,根据等腰三角形的性质得到另外一边为11,然后计算周长.
    解:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在;
    当腰取11,则底边为5,则三角形的周长=11+11+5=1.
    故选C.
    考点:等腰三角形的性质;三角形三边关系.
    8、D
    【解析】
    试题分析:如图,

    连接OC,
    ∵AO∥DC,
    ∴∠ODC=∠AOD=70°,
    ∵OD=OC,
    ∴∠ODC=∠OCD=70°,
    ∴∠COD=40°,
    ∴∠AOC=110°,
    ∴∠B=∠AOC=55°.
    故选D.
    考点:1、平行线的性质;2、圆周角定理;3等腰三角形的性质
    9、A
    【解析】
    根据“上加下减”的原则进行解答即可.
    【详解】
    解:由“上加下减”的原则可知,把抛物线y=﹣2x2向上平移1个单位,得到的抛物线是:y=﹣2x2+1.
    故选A.
    【点睛】
    本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.
    10、D
    【解析】
    求出不等式组的解集,根据已知求出1<≤2、3≤<4,求出2<a≤4、9≤b<12,即可得出答案.
    【详解】
    解不等式2x−a≥0,得:x≥,
    解不等式3x−b≤0,得:x≤,
    ∵不等式组的整数解仅有x=2、x=3,
    则1<≤2、3≤<4,
    解得:2<a≤4、9≤b<12,
    则a=3时,b=9、10、11;
    当a=4时,b=9、10、11;
    所以适合这个不等式组的整数a、b组成的有序数对(a,b)共有6个,
    故选:D.
    【点睛】
    本题考查了解一元一次不等式组,不等式组的整数解,有序实数对的应用,解此题的根据是求出a、b的值.
    11、D
    【解析】
    分析:依题意,知MN=40海里/小时×2小时=80海里,
    ∵根据方向角的意义和平行的性质,∠M=70°,∠N=40°,
    ∴根据三角形内角和定理得∠MPN=70°.∴∠M=∠MPN=70°.
    ∴NP=NM=80海里.故选D.
    12、C
    【解析】
    根据中位数、众数、极差和平均数的概念,对选项一一分析,即可选择正确答案.
    【详解】
    解:A、中位数=(5+5)÷2=5(吨),正确,故选项错误;
    B、数据5吨出现4次,次数最多,所以5吨是众数,正确,故选项错误;
    C、极差为9﹣4=5(吨),错误,故选项正确;
    D、平均数=(4×3+5×4+6×2+9×1)÷10=5.3,正确,故选项错误.
    故选:C.
    【点睛】
    此题主要考查了平均数、中位数、众数和极差的概念.要掌握这些基本概念才能熟练解题.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、2或14
    【解析】
    分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.
    【详解】
    ①当弦AB和CD在圆心同侧时,如图,

    ∵AB=16cm,CD=12cm,
    ∴AE=8cm,CF=6cm,
    ∵OA=OC=10cm,
    ∴EO=6cm,OF=8cm,
    ∴EF=OF−OE=2cm;
    ②当弦AB和CD在圆心异侧时,如图,

    ∵AB=16cm,CD=12cm,
    ∴AF=8cm,CE=6cm,
    ∵OA=OC=10cm,
    ∴OF=6cm,OE=8cm,
    ∴EF=OF+OE=14cm.
    ∴AB与CD之间的距离为14cm或2cm.
    故答案为:2或14.
    14、k≤.
    【解析】
    分k=1及k≠1两种情况考虑:当k=1时,通过解一元一次方程可得出原方程有解,即k=1符合题意;等k≠1时,由△≥1即可得出关于k的一元一次不等式,解之即可得出k的取值范围.综上此题得解.
    【详解】
    当k=1时,原方程为-x+2=1,
    解得:x=2,
    ∴k=1符合题意;
    当k≠1时,有△=[-(2k+1)]2-4k(k+2)≥1,
    解得:k≤且k≠1.
    综上:k的取值范围是k≤.
    故答案为:k≤.
    【点睛】
    本题考查了根的判别式以及一元二次方程的定义,分k=1及k≠1两种情况考虑是解题的关键.
    15、(6053,2).
    【解析】
    根据前四次的坐标变化总结规律,从而得解.
    【详解】
    第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,1),第五次P5(17,2),…
    发现点P的位置4次一个循环,
    ∵2017÷4=504余1,
    P2017的纵坐标与P1相同为2,横坐标为5+3×2016=6053,
    ∴P2017(6053,2),
    故答案为(6053,2).
    考点:坐标与图形变化﹣旋转;规律型:点的坐标.
    16、
    【解析】
    根据平行线分线段成比例定理解答即可.
    【详解】
    解:∵DE∥BC,AD=2BD,
    ∴,
    ∵EF∥AB,
    ∴,
    故答案为.
    【点睛】
    本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.
    17、1
    【解析】
    根据一元二次方程的解的定义得a2﹣3a+1=1,即a2﹣3a=﹣1,再代入,然后利用整体思想进行计算即可.
    【详解】
    ∵a是方程x2﹣3x+1=1的一根,
    ∴a2﹣3a+1=1,即a2﹣3a=﹣1,a2+1=3a

    故答案为1.
    【点睛】
    本题考查了一元二次方程的解:使一元二次方程两边成立的未知数的值叫一元二次方程的解.也考查了整体思想的运用.
    18、
    【解析】
    设AC=x,则AB=2x,根据面积公式得S△ABC=2x ,由余弦定理求得 cosC代入化简S△ABC= ,由三角形三边关系求得 ,由二次函数的性质求得S△ABC取得最大值.
    【详解】
    设AC=x,则AB=2x,根据面积公式得:c= =2x.由余弦定理可得: ,
    ∴S△ABC=2x=2x=
    由三角形三边关系有 ,解得,
    故当时, 取得最大值,
    故答案为: .
    【点睛】
    本题主要考查了余弦定理和面积公式在解三角形中的应用,考查了二次函数的性质,考查了计算能力,当涉及最值问题时,可考虑用函数的单调性和定义域等问题,属于中档题.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)袋子中白球有2个;(2)见解析, .
    【解析】
    (1)首先设袋子中白球有x个,利用概率公式求即可得方程:,解此方程即可求得答案;
    (2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.
    【详解】
    解:(1)设袋子中白球有x个,
    根据题意得:,
    解得:x=2,
    经检验,x=2是原分式方程的解,
    ∴袋子中白球有2个;
    (2)画树状图得:

    ∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,
    ∴两次都摸到相同颜色的小球的概率为:.
    【点睛】
    此题考查了列表法或树状图法求概率.注意掌握方程思想的应用.注意概率=所求情况数与总情况数之比.
    20、(1)x>1;(1)x≤1;(3)答案见解析;(4)1<x≤1.
    【解析】
    根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.
    【详解】
    解:(1)解不等式①,得x>1;
    (1)解不等式②,得 x≤1;
    (3)把不等式①和②的解集在数轴上表示出来:

    (4)原不等式组的解集为:1<x≤1.
    【点睛】
    本题考查了一元一次不等式组的解法,掌握确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.
    21、证明见解析.
    【解析】
    根据等式的基本性质可得,然后利用SAS即可证出,从而证出结论.
    【详解】
    证明:,

    即,
    在和中,



    【点睛】
    此题考查的是全等三角形的判定及性质,掌握利用SAS判定两个三角形全等和全等三角形的对应边相等是解决此题的关键.
    22、(1)60,20;(2)渔政船距海岛A的距离AB约为24.49海里.
    【解析】
    (1)利用题目总结的正弦定理,将有关数据代入求解即可;
    (2)在△ABC中,分别求得BC的长和三个内角的度数,利用题目中总结的正弦定理求AC的长即可.
    【详解】
    (1)由正玄定理得:∠A=60°,AC=20;
    故答案为60°,20;
    (2)如图:

    依题意,得BC=40×0.5=20(海里).
    ∵CD∥BE,
    ∴∠DCB+∠CBE=180°.
    ∵∠DCB=30°,∴∠CBE=150°.
    ∵∠ABE=75°,∴∠ABC=75°,
    ∴∠A=45°.
    在△ABC中,,
    即,
    解得AB=10≈24.49(海里).
    答:渔政船距海岛A的距离AB约为24.49海里.
    【点睛】
    本题考查了方向角的知识,更重要的是考查了同学们的阅读理解能力,通过材料总结出学生们没有接触的知识,并根据此知识点解决相关的问题,是近几年中考的高频考点.
    23、(1);(2);(3)
    【解析】
    (1)把A(-1,0)代入y=x2-bx+c,即可得到结论;
    (2)由(1)得,y=x2-bx-1-b,求得EO=,AE=+1=BE,于是得到OB=EO+BE=++1=b+1,当x=0时,得到y=-b-1,根据等腰直角三角形的性质得到D(,-b-2),将D(,-b-2)代入y=x2-bx-1-b解方程即可得到结论;
    (3)连接QM,DM,根据平行线的判定得到QN∥MH,根据平行线的性质得到∠NMH=∠QNM,根据已知条件得到∠QMN=∠MQN,设QN=MN=t,求得Q(1-t,t2-4),得到DN=t2-4-(-4)=t2,同理,设MH=s,求得NH=t2-s2,根据勾股定理得到NH=1,根据三角函数的定义得到∠NMH=∠MDH推出∠NMD=90°;根据三角函数的定义列方程得到t1=,t2=-(舍去),求得MN=,根据三角函数的定义即可得到结论.
    【详解】
    (1)把A(﹣1,0)代入,
    ∴,
    ∴;
    (2)由(1)得,,
    ∵点D为抛物线顶点,
    ∴,
    ∴,
    当时,,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    将代入得,,
    解得:,(舍去),
    ∴二次函数解析式为:;
    (3)连接QM,DM,

    ∵,,
    ∴,∴,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,设,则,
    ∴,同理,
    设,则,∴,
    在中,,
    ∴,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴;
    ∵,
    ∴,,
    ∵,
    ∴,即,
    解得:,(舍去),
    ∴,
    ∵,
    ∴,
    ∴,
    当时,,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,,,
    过P作于T,
    ∴,
    ∴,
    ∴.
    【点睛】
    本题考查了待定系数法求二次函数的解析式,平行线的性质,三角函数的定义,勾股定理,正确的作出辅助线构造直角三角形是解题的关键.
    24、(1)y=﹣x2+2x+3;(2)y=﹣x﹣1;(3)P()或P(﹣4.5,0);当t=时,S△MDN的最大值为.
    【解析】
    (1)把A(-1,0),C(0,3)代入y=ax2+2x+c即可得到结果;
    (2)在y=-x2+2x+3中,令y=0,则-x2+2x+3=0,得到B(3,0),由已知条件得直线BC的解析式为y=-x+3,由于AD∥BC,设直线AD的解析式为y=-x+b,即可得到结论;
    (3)①由BC∥AD,得到∠DAB=∠CBA,全等只要当或时,△PBC∽△ABD,解方程组得D(4,−5),求得
    设P的坐标为(x,0),代入比例式解得或x=−4.5,即可得到或P(−4.5,0);
    ②过点B作BF⊥AD于F,过点N作NE⊥AD于E,在Rt△AFB中,∠BAF=45°,于是得到sin∠BAF 求得求得 由于于是得到即可得到结果.
    【详解】
    (1)由题意知:
    解得
    ∴二次函数的表达式为
    (2)在 中,令y=0,则
    解得:
    ∴B(3,0),
    由已知条件得直线BC的解析式为y=−x+3,
    ∵AD∥BC,
    ∴设直线AD的解析式为y=−x+b,
    ∴0=1+b,
    ∴b=−1,
    ∴直线AD的解析式为y=−x−1;
    (3)①∵BC∥AD,
    ∴∠DAB=∠CBA,
    ∴只要当:或时,△PBC∽△ABD,
    解得D(4,−5),

    设P的坐标为(x,0),
    即或
    解得或x=−4.5,
    ∴或P(−4.5,0),
    ②过点B作BF⊥AD于F,过点N作NE⊥AD于E,

    在Rt△AFB中,
    ∴sin∠BAF



    又∵





    ∴当时,的最大值为
    【点睛】
    属于二次函数的综合题,考查待定系数法求二次函数解析式,锐角三角形函数,相似三角形的判定与性质,二次函数的最值等,综合性比较强,难度较大.
    25、(1)详见解析;(2).
    【解析】
    (1)因为AC平分∠BCD,∠BCD=120°,根据角平分线的定义得:∠ACD=∠ACB=60°,根据同弧所对的圆周角相等,得∠ACD=∠ABD,∠ACB=∠ADB,∠ABD=∠ADB=60°.根据三个角是60°的三角形是等边三角形得△ABD是等边三角形.(2)作直径DE,连结BE,由于△ABD是等边三角形,则∠BAD=60°,由同弧所对的圆周角相等,得∠BED=∠BAD=60°.根据直径所对的圆周角是直角得,∠EBD=90°,则∠EDB=30°,进而得到DE=2BE.设EB=x,则ED=2x,根据勾股定理列方程求解即可.
    【详解】
    解:(1)∵∠BCD=120°,CA平分∠BCD,
    ∴∠ACD=∠ACB=60°,
    由圆周角定理得,∠ADB=∠ACB=60°,∠ABD=∠ACD=60°,
    ∴△ABD是等边三角形;
    (2)连接OB、OD,作OH⊥BD于H,
    则DH=BD=,
    ∠BOD=2∠BAD=120°,
    ∴∠DOH=60°,
    在Rt△ODH中,OD==,
    ∴⊙O的半径为.

    【点睛】
    本题是一道圆的简单证明题,以圆的内接四边形为背景,圆的内接四边形的对角互补,在圆中往往通过连结直径构造直角三角形,再通过三角函数或勾股定理来求解线段的长度.
    26、(1)见解析;(2)90°;(3)解题思路见解析.
    【解析】
    (1)将线段AD绕点A逆时针方向旋转90°,得到线段AE,连结EC.
    (2)先判定△ABD≌△ACE,即可得到,再根据,即可得出;
    (3)连接DE,由于△ADE为等腰直角三角形,所以可求;由, ,可求的度数和的度数,从而可知DF的长;过点A作于点H,在Rt△ADH中,由,AD=1可求AH、DH的长;由DF、DH的长可求HF的长;在Rt△AHF中,由AH和HF,利用勾股定理可求AF的长.
    【详解】
    解:如图,

    线段AD绕点A逆时针方向旋转,得到线段AE.
    ,,




    在和中

    ≌.

    中,,,


    Ⅰ连接DE,由于为等腰直角三角形,所以可求;
    Ⅱ由,,可求的度数和的度数,从而可知DF的长;
    Ⅲ过点A作于点H,在中,由,可求AH、DH的长;
    Ⅳ由DF、DH的长可求HF的长;
    Ⅴ在中,由AH和HF,利用勾股定理可求AF的长.
    故答案为(1)见解析;(2)90°;(3)解题思路见解析.
    【点睛】
    本题主要考查旋转的性质,等腰直角三角形的性质的运用,解题的关键是要注意对应点与旋转中心所连线段的夹角等于旋转角.
    27、(1)详见解析;(2)详见解析;(3).
    【解析】
    (1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;
    (2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行即可得证;
    (3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长即可.
    (1)证明:连接BD,
    在Rt△ABC中,∠ABC=90°,AB=BC,
    ∴∠A=∠C=45°,
    ∵AB为圆O的直径,
    ∴∠ADB=90°,即BD⊥AC,
    ∴AD=DC=BD=AC,∠CBD=∠C=45°,
    ∴∠A=∠FBD,
    ∵DF⊥DG,
    ∴∠FDG=90°,
    ∴∠FDB+∠BDG=90°,
    ∵∠EDA+∠BDG=90°,
    ∴∠EDA=∠FDB,
    在△AED和△BFD中,
    ∠A=∠FBD,AD=BD,∠EDA=∠FDB,
    ∴△AED≌△BFD(ASA),
    ∴AE=BF;
    (2)证明:连接EF,BG,

    ∵△AED≌△BFD,
    ∴DE=DF,
    ∵∠EDF=90°,
    ∴△EDF是等腰直角三角形,
    ∴∠DEF=45°,
    ∵∠G=∠A=45°,
    ∴∠G=∠DEF,
    ∴GB∥EF;
    (3)∵AE=BF,AE=1,
    ∴BF=1,
    在Rt△EBF中,∠EBF=90°,
    ∴根据勾股定理得:EF2=EB2+BF2,
    ∵EB=2,BF=1,
    ∴EF=,
    ∵△DEF为等腰直角三角形,∠EDF=90°,
    ∴cos∠DEF=,
    ∵EF=,
    ∴DE=×,
    ∵∠G=∠A,∠GEB=∠AED,
    ∴△GEB∽△AED,
    ∴,即GE•ED=AE•EB,
    ∴•GE=2,即GE=,
    则GD=GE+ED=.

    相关试卷

    新疆昌吉州奇台县重点达标名校2022年毕业升学考试模拟卷数学卷含解析:

    这是一份新疆昌吉州奇台县重点达标名校2022年毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了的绝对值是等内容,欢迎下载使用。

    达标名校2021-2022学年十校联考最后数学试题含解析:

    这是一份达标名校2021-2022学年十校联考最后数学试题含解析,共22页。试卷主要包含了在数轴上表示不等式2等内容,欢迎下载使用。

    贵州省遵义地区重点达标名校2021-2022学年十校联考最后数学试题含解析:

    这是一份贵州省遵义地区重点达标名校2021-2022学年十校联考最后数学试题含解析,共18页。试卷主要包含了下列运算结果是无理数的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map