|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年四川省眉山外国语校中考冲刺卷数学试题含解析
    立即下载
    加入资料篮
    2021-2022学年四川省眉山外国语校中考冲刺卷数学试题含解析01
    2021-2022学年四川省眉山外国语校中考冲刺卷数学试题含解析02
    2021-2022学年四川省眉山外国语校中考冲刺卷数学试题含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年四川省眉山外国语校中考冲刺卷数学试题含解析

    展开
    这是一份2021-2022学年四川省眉山外国语校中考冲刺卷数学试题含解析,共19页。试卷主要包含了下列判断错误的是,运用乘法公式计算,﹣3的绝对值是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.下列计算正确的是(  )
    A.a+a=2a B.b3•b3=2b3 C.a3÷a=a3 D.(a5)2=a7
    2.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( )
    A. B. C. D.
    3.函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,则m的值为(  )
    A.0 B.0或2 C.0或2或﹣2 D.2或﹣2
    4.下列判断错误的是(  )
    A.两组对边分别相等的四边形是平行四边形 B.四个内角都相等的四边形是矩形
    C.两条对角线垂直且平分的四边形是正方形 D.四条边都相等的四边形是菱形
    5.由一些大小相同的小正方形搭成的几何体的左视图和俯视图,如图所示,则搭成该几何体的小正方形的个数最少是( )

    A.4 B.5 C.6 D.7
    6.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:
    ①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,
    其中正确的是( )

    A.①②③ B.①③④ C.①③⑤ D.②④⑤
    7.运用乘法公式计算(4+x)(4﹣x)的结果是(  )
    A.x2﹣16 B.16﹣x2 C.16﹣8x+x2 D.8﹣x2
    8.下列关于x的方程一定有实数解的是( )
    A. B.
    C. D.
    9.﹣3的绝对值是(  )
    A.﹣3 B.3 C.- D.
    10.由6个大小相同的正方体搭成的几何体如图所示,比较它的正视图、左视图和俯视图的面积,则(  )

    A.三个视图的面积一样大 B.主视图的面积最小
    C.左视图的面积最小 D.俯视图的面积最小
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.已知一粒米的质量是1.111121千克,这个数字用科学记数法表示为__________.
    12.已知代数式2x﹣y的值是,则代数式﹣6x+3y﹣1的值是_____.
    13.如图,直线a∥b,∠P=75°,∠2=30°,则∠1=_____.

    14.下面是用棋子摆成的“上”字:

    如果按照以上规律继续摆下去,那么通过观察,可以发现:第n个“上”字需用_____枚棋子.
    15.同一个圆的内接正方形和正三角形的边心距的比为_____.
    16.如图,路灯距离地面6,身高1.5的小明站在距离灯的底部(点)15的处,则小明的影子的长为________.

    三、解答题(共8题,共72分)
    17.(8分)如图,已知抛物线y=ax2﹣2ax+b与x轴交于A、B(3,0)两点,与y轴交于点C,且OC=3OA,设抛物线的顶点为D.
    (1)求抛物线的解析式;
    (2)在抛物线对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;
    (3)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.

    18.(8分)已知是关于的方程的一个根,则__
    19.(8分)如图1在正方形ABCD的外侧作两个等边三角形ADE和DCF,连接AF,BE.
    请判断:AF与BE的数量关系是 ,位置关系 ;如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明;若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.
    20.(8分)关于x的一元二次方程x2﹣x﹣(m+2)=0有两个不相等的实数根.求m的取值范围;若m为符合条件的最小整数,求此方程的根.
    21.(8分)用你发现的规律解答下列问题.



    ┅┅计算 .探究 .(用含有的式子表示)若的值为,求的值.
    22.(10分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:
    x/元

    15
    20
    25

    y/件

    25
    20
    15

    已知日销售量y是销售价x的一次函数.求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;当每件产品的销售价定为35元时,此时每日的销售利润是多少元?
    23.(12分)如图,足球场上守门员在处开出一高球,球从离地面1米的处飞出(在轴上),运动员乙在距点6米的处发现球在自己头的正上方达到最高点,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
    求足球开始飞出到第一次落地时,该抛物线的表达式.足球第一次落地点距守门员多少米?(取)运动员乙要抢到第二个落点,他应再向前跑多少米?
    24.如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.求证:△ADE≌△CBF;若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解.
    【详解】
    A.a+a=2a,故本选项正确;
    B.,故本选项错误;
    C. ,故本选项错误;
    D.,故本选项错误.
    故选:A.
    【点睛】
    考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方,比较基础,掌握运算法则是解题的关键.
    2、B
    【解析】
    首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.
    【详解】
    画树状图如下:

    由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,
    所以佳佳和琪琪恰好从同一个入口进入该公园的概率为,
    故选B.
    【点睛】
    本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
    3、C
    【解析】
    根据函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,利用分类讨论的方法可以求得m的值,本题得以解决.
    【详解】
    解:∵函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,
    ∴当m=0时,y=2x+1,此时y=0时,x=﹣0.5,该函数与x轴有一个交点,
    当m≠0时,函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,
    则△=(m+2)2﹣4m(m+1)=0,解得,m1=2,m2=﹣2,
    由上可得,m的值为0或2或﹣2,
    故选:C.
    【点睛】
    本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用分类讨论的数学思想解答.
    4、C
    【解析】
    根据平行四边形的判定,矩形的判定,菱形的判定,正方形的判定,对选项进行判断即可
    【详解】
    解:A、两组对边分别相等的四边形是平行四边形,故本选项正确;
    B、四个内角都相等的四边形是矩形,故本选项正确;
    C、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误;
    D、四条边都相等的四边形是菱形,故本选项正确.
    故选C
    【点睛】
    此题综合考查了平行四边形的判定,矩形的判定,菱形的判定,正方形的判定,熟练掌握判定法则才是解题关键
    5、C
    【解析】
    试题分析:由题中所给出的左视图知物体共两层,每一层都是两个小正方体;从俯视图可以可以看出最底层的个数
    所以图中的小正方体最少2+4=1.故选C.
    6、C
    【解析】
    试题解析:∵抛物线的顶点坐标A(1,3),
    ∴抛物线的对称轴为直线x=-=1,
    ∴2a+b=0,所以①正确;
    ∵抛物线开口向下,
    ∴a<0,
    ∴b=-2a>0,
    ∵抛物线与y轴的交点在x轴上方,
    ∴c>0,
    ∴abc<0,所以②错误;
    ∵抛物线的顶点坐标A(1,3),
    ∴x=1时,二次函数有最大值,
    ∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;
    ∵抛物线与x轴的一个交点为(4,0)
    而抛物线的对称轴为直线x=1,
    ∴抛物线与x轴的另一个交点为(-2,0),所以④错误;
    ∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)
    ∴当1<x<4时,y2<y1,所以⑤正确.
    故选C.
    考点:1.二次函数图象与系数的关系;2.抛物线与x轴的交点.
    7、B
    【解析】
    根据平方差公式计算即可得解.
    【详解】

    故选:B.
    【点睛】
    本题主要考查了整式的乘法公式,熟练掌握平方差公式的运算是解决本题的关键.
    8、A
    【解析】
    根据一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根逐一判断即可得.
    【详解】
    A.x2-mx-1=0中△=m2+4>0,一定有两个不相等的实数根,符合题意;
    B.ax=3中当a=0时,方程无解,不符合题意;
    C.由可解得不等式组无解,不符合题意;
    D.有增根x=1,此方程无解,不符合题意;
    故选A.
    【点睛】
    本题主要考查方程的解,解题的关键是掌握一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根.
    9、B
    【解析】
    根据负数的绝对值是它的相反数,可得出答案.
    【详解】
    根据绝对值的性质得:|-1|=1.
    故选B.
    【点睛】
    本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.
    10、C
    【解析】
    试题分析:根据三视图的意义,可知正视图由5个面,左视图有3个面,俯视图有4个面,故可知主视图的面积最大.
    故选C
    考点:三视图

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×11-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的1的个数所决定.
    【详解】
    解:1.111121=2.1×11-2.
    故答案为:2.1×11-2.
    【点睛】
    本题考查用科学记数法表示较小的数,一般形式为a×11-n,其中1≤|a|<11,n由原数左边起第一个不为零的数字前面的1的个数所决定.
    12、
    【解析】
    由题意可知:2x-y=,然后等式两边同时乘以-3得到-6x+3y=-,然后代入计算即可.
    【详解】
    ∵2x-y=,
    ∴-6x+3y=-.
    ∴原式=--1=-.
    故答案为-.
    【点睛】
    本题主要考查的是求代数式的值,利用等式的性质求得-6x+3y=-是解题的关键.
    13、45°
    【解析】
    过P作PM∥直线a,根据平行线的性质,由直线a∥b,可得直线a∥b∥PM,然后根据平行线的性质,由∠P=75°,∠2=30°,可得∠1=∠P-∠2=45°.
    故答案为45°.

    点睛:本题考查了平行线的性质的应用,能正确根据平行线的性质进行推理是解此题的关键,注意:两直线平行,内错角相等.
    14、4n+2
    【解析】
    ∵第1个有:6=4×1+2;
    第2个有:10=4×2+2;
    第3个有:14=4×3+2;
    ……
    ∴第1个有: 4n+2;
    故答案为4n+2
    15、
    【解析】
    先画出同一个圆的内接正方形和内接正三角形,设⊙O的半径为R,求出正方形的边心距和正三角形的边心距,再求出比值即可.
    【详解】
    设⊙O的半径为r,⊙O的内接正方形ABCD,如图,

    过O作OQ⊥BC于Q,连接OB、OC,即OQ为正方形ABCD的边心距,
    ∵四边形BACD是正方形,⊙O是正方形ABCD的外接圆,
    ∴O为正方形ABCD的中心,
    ∴∠BOC=90°,
    ∵OQ⊥BC,OB=CO,
    ∴QC=BQ,∠COQ=∠BOQ=45°,
    ∴OQ=OC×cos45°=R;
    设⊙O的内接正△EFG,如图,

    过O作OH⊥FG于H,连接OG,即OH为正△EFG的边心距,
    ∵正△EFG是⊙O的外接圆,
    ∴∠OGF=∠EGF=30°,
    ∴OH=OG×sin30°=R,
    ∴OQ:OH=(R):(R)=:1,
    故答案为:1.
    【点睛】
    本题考查了正多边形与圆、解直角三角形,等边三角形的性质、正方形的性质等知识点,能综合运用知识点进行推理和计算是解此题的关键.
    16、1.
    【解析】
    易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影长.
    【详解】

    解:根据题意,易得△MBA∽△MCO,
    根据相似三角形的性质可知

    即,
    解得AM=1m.则小明的影长为1米.
    故答案是:1.
    【点睛】
    本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比可得出小明的影长.

    三、解答题(共8题,共72分)
    17、(1)y=﹣x2+2x+1;(2)P(2,1)或(,);(1)存在,且Q1(1,0),Q2(2﹣,0),Q1(2+,0),Q4(﹣,0),Q5(,0).
    【解析】
    (1)根据抛物线的解析式,可得到它的对称轴方程,进而可根据点B的坐标来确定点A的坐标,已知OC=1OA,即可得到点C的坐标,利用待定系数法即可求得该抛物线的解析式.
    (2)求出点C关于对称轴的对称点,求出两点间的距离与CD相比较可知,PC不可能与CD相等,因此要分两种情况讨论:
    ①CD=PD,根据抛物线的对称性可知,C点关于抛物线对称轴的对称点满足P点的要求,坐标易求得;②PD=PC,可设出点P的坐标,然后表示出PC、PD的长,根据它们的等量关系列式求出点P的坐标.
    (1)此题要分三种情况讨论:①点Q是直角顶点,那么点Q必为抛物线对称轴与x轴的交点,由此求得点Q的坐标;②M、N在x轴上方,且以N为直角顶点时,可设出点N的坐标,根据抛物线的对称性可知MN正好等于抛物线对称轴到N点距离的2倍,而△MNQ是等腰直角三角形,则QN=MN,由此可表示出点N的纵坐标,联立抛物线的解析式,即可得到关于N点横坐标的方程,从而求得点Q的坐标;根据抛物线的对称性知:Q关于抛物线的对称点也符合题意;③M、N在x轴下方,且以N为直角顶点时,方法同②.
    【详解】
    解:(1)由y=ax2﹣2ax+b可得抛物线对称轴为x=1,由B(1,0)可得A(﹣1,0);
    ∵OC=1OA,
    ∴C(0,1);
    依题意有:,
    解得;
    ∴y=﹣x2+2x+1.
    (2)存在.①DC=DP时,由C点(0,1)和x=1可得对称点为P(2,1);
    设P2(x,y),
    ∵C(0,1),P(2,1),
    ∴CP=2,
    ∵D(1,4),
    ∴CD=<2,
    ②由①此时CD⊥PD,
    根据垂线段最短可得,PC不可能与CD相等;
    ②PC=PD时,∵CP22=(1﹣y)2+x2,DP22=(x﹣1)2+(4﹣y)2
    ∴(1﹣y)2+x2=(x﹣1)2+(4﹣y)2
    将y=﹣x2+2x+1代入可得:,
    ∴ ;
    ∴P2(,).
    综上所述,P(2,1)或(,).
    (1)存在,且Q1(1,0),Q2(2﹣,0),Q1(2+,0),Q4(﹣,0),Q5(,0);
    ①若Q是直角顶点,由对称性可直接得Q1(1,0);
    ②若N是直角顶点,且M、N在x轴上方时;
    设Q2(x,0)(x<1),
    ∴MN=2Q1O2=2(1﹣x),
    ∵△Q2MN为等腰直角三角形;
    ∴y=2(1﹣x)即﹣x2+2x+1=2(1﹣x);
    ∵x<1,
    ∴Q2(,0);
    由对称性可得Q1(,0);
    ③若N是直角顶点,且M、N在x轴下方时;
    同理设Q4(x,y),(x<1)
    ∴Q1Q4=1﹣x,而Q4N=2(Q1Q4),
    ∵y为负,
    ∴﹣y=2(1﹣x),
    ∴﹣(﹣x2+2x+1)=2(1﹣x),
    ∵x<1,
    ∴x=﹣,
    ∴Q4(-,0);
    由对称性可得Q5(+2,0).
    【点睛】
    本题考查了二次函数的知识点,解题的关键是熟练的掌握二次函数相关知识点.
    18、10
    【解析】
    利用一元二次方程的解的定义得到,再把 变形为,然后利用整体代入的方法计算 .
    【详解】
    解:是关于的方程的一个根,



    故答案为 10 .
    【点睛】
    本题考查了一元二次方程的解: 能使一元二次方程左右两边相等的未知数的值是一元二次方程的解 .
    19、(1)AF=BE,AF⊥BE;(2)证明见解析;(3)结论仍然成立
    【解析】
    试题分析:(1)根据正方形和等边三角形可证明△ABE≌△DAF,然后可得BE=AF,∠ABE=∠DAF,进而通过直角可证得BE⊥AF;
    (2)类似(1)的证法,证明△ABE≌△DAF,然后可得AF=BE,AF⊥BE,因此结论还成立;
    (3)类似(1)(2)证法,先证△AED≌△DFC,然后再证△ABE≌△DAF,因此可得证结论.
    试题解析:解:(1)AF=BE,AF⊥BE.
    (2)结论成立.

    证明:∵四边形ABCD是正方形,
    ∴BA="AD" =DC,∠BAD =∠ADC = 90°.
    在△EAD和△FDC中,

    ∴△EAD≌△FDC.
    ∴∠EAD=∠FDC.
    ∴∠EAD+∠DAB=∠FDC+∠CDA,
    即∠BAE=∠ADF.
    在△BAE和△ADF中,

    ∴△BAE≌△ADF.
    ∴BE = AF,∠ABE=∠DAF.
    ∵∠DAF +∠BAF=90°,
    ∴∠ABE +∠BAF=90°,
    ∴AF⊥BE.
    (3)结论都能成立.
    考点:正方形,等边三角形,三角形全等
    20、(1)m>;(2)x1=0,x2=1.
    【解析】
    解答本题的关键是是掌握好一元二次方程的根的判别式.
    (1)求出△=5+4m>0即可求出m的取值范围;
    (2)因为m=﹣1为符合条件的最小整数,把m=﹣1代入原方程求解即可.
    【详解】
    解:(1)△=1+4(m+2)
    =9+4m>0
    ∴.
    (2)∵为符合条件的最小整数,
    ∴m=﹣2.
    ∴原方程变为
    ∴x1=0,x2=1.
    考点:1.解一元二次方程;2.根的判别式.
    21、解:(1);(2);(3)n=17.
    【解析】
    (1)、根据给出的式子将各式进行拆开,然后得出答案;(2)、根据给出的式子得出规律,然后根据规律进行计算;(3)、根据题意将式子进行展开,然后列出关于n的一元一次方程,从而得出n的值.
    【详解】
    (1)原式=1−+−+−+−+−=1−=.
    故答案为;
    (2)原式=1−+−+−+…+−=1−=
    故答案为;
    (3) +++…+
    = (1−+−+−+…+−)
    =(1−)
    =
    =
    解得:n=17.
    考点:规律题.
    22、();()此时每天利润为元.
    【解析】
    试题分析:(1) 根据题意用待定系数法即可得解;
    (2)把x=35代入(1)中的解析式,得到销量,然后再乘以每件的利润即可得.
    试题解析:()设,将,和,代入,得:,解得:,
    ∴;
    ()将代入()中函数表达式得:

    ∴利润(元),
    答:此时每天利润为元.
    23、(1)(或)(2)足球第一次落地距守门员约13米.(3)他应再向前跑17米.
    【解析】
    (1)依题意代入x的值可得抛物线的表达式.
    (2)令y=0可求出x的两个值,再按实际情况筛选.
    (3)本题有多种解法.如图可得第二次足球弹出后的距离为CD,相当于将抛物线AEMFC向下平移了2个单位可得解得x的值即可知道CD、BD.
    【详解】
    解:(1)如图,设第一次落地时,
    抛物线的表达式为
    由已知:当时 

    表达式为(或)

    (2)令
    (舍去).
    足球第一次落地距守门员约13米.
    (3)解法一:如图,第二次足球弹出后的距离为
    根据题意:(即相当于将抛物线向下平移了2个单位)
    解得

    (米).
    答:他应再向前跑17米.
    24、(1)证明见解析;(2)若∠ADB是直角,则四边形BEDF是菱形,理由见解析.
    【解析】
    (1)由四边形ABCD是平行四边形,即可得AD=BC,AB=CD,∠A=∠C,又由E、F分别为边AB、CD的中点,可证得AE=CF,然后由SAS,即可判定△ADE≌△CBF;
    (2)先证明BE与DF平行且相等,然后根据一组对边平行且相等的四边形是平行四边形证明四边形BEDF是平行四边形,再连接EF,可以证明四边形AEFD是平行四边形,所以AD∥EF,又AD⊥BD,所以BD⊥EF,根据菱形的判定可以得到四边形是菱形.
    【详解】
    (1)证明:∵四边形ABCD是平行四边形,
    ∴AD=BC,AB=CD,∠A=∠C,
    ∵E、F分别为边AB、CD的中点,
    ∴AE=AB,CF=CD,
    ∴AE=CF,
    在△ADE和△CBF中,

    ∴△ADE≌△CBF(SAS);
    (2)若∠ADB是直角,则四边形BEDF是菱形,理由如下:
    解:由(1)可得BE=DF,
    又∵AB∥CD,
    ∴BE∥DF,BE=DF,
    ∴四边形BEDF是平行四边形,
    连接EF,在▱ABCD中,E、F分别为边AB、CD的中点,
    ∴DF∥AE,DF=AE,
    ∴四边形AEFD是平行四边形,
    ∴EF∥AD,
    ∵∠ADB是直角,
    ∴AD⊥BD,
    ∴EF⊥BD,
    又∵四边形BFDE是平行四边形,
    ∴四边形BFDE是菱形.

    【点睛】
    1、平行四边形的性质;2、全等三角形的判定与性质;3、菱形的判定

    相关试卷

    吉林省通化市外国语校2021-2022学年中考数学最后冲刺浓缩精华卷含解析: 这是一份吉林省通化市外国语校2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共18页。试卷主要包含了关于x的方程x2+,点A等内容,欢迎下载使用。

    2021-2022学年浙江省杭州市英特外国语学校中考冲刺卷数学试题含解析: 这是一份2021-2022学年浙江省杭州市英特外国语学校中考冲刺卷数学试题含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,下列交通标志是中心对称图形的为,|﹣3|=等内容,欢迎下载使用。

    2021-2022学年四川省乐山外国语校中考押题数学预测卷含解析: 这是一份2021-2022学年四川省乐山外国语校中考押题数学预测卷含解析,共18页。试卷主要包含了下列计算正确的是,对于函数y=,下列说法正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map