|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年铁岭市重点中学中考试题猜想数学试卷含解析
    立即下载
    加入资料篮
    2021-2022学年铁岭市重点中学中考试题猜想数学试卷含解析01
    2021-2022学年铁岭市重点中学中考试题猜想数学试卷含解析02
    2021-2022学年铁岭市重点中学中考试题猜想数学试卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年铁岭市重点中学中考试题猜想数学试卷含解析

    展开
    这是一份2021-2022学年铁岭市重点中学中考试题猜想数学试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,这个数是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,在平面直角坐标系中,以A(-1,0),B(2,0),C(0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是(  )

    A.(3,1) B.(-4,1) C.(1,-1) D.(-3,1)
    2.如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为(   )

    A. B. C. D.
    3.如图,在直角坐标系中,等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),直角顶点B在第二象限,等腰直角△BCD的C点在y轴上移动,我们发现直角顶点D点随之在一条直线上移动,这条直线的解析式是(  )

    A.y=﹣2x+1 B.y=﹣x+2 C.y=﹣3x﹣2 D.y=﹣x+2
    4.如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是( )

    A. B. C. D.
    5.这个数是( )
    A.整数 B.分数 C.有理数 D.无理数
    6.自1993年起,联合国将每年的3月11日定为“世界水日”,宗旨是唤起公众的节水意识,加强水资源保护.某校在开展“节约每一滴水”的活动中,从初三年级随机选出10名学生统计出各自家庭一个月的节约用水量,有关数据整理如下表.
    节约用水量(单位:吨)
    1
    1.1
    1.4
    1
    1.5
    家庭数
    4
    6
    5
    3
    1
    这组数据的中位数和众数分别是( )
    A.1.1,1.1; B.1.4,1.1; C.1.3,1.4; D.1.3,1.1.
    7.如图,AB⊥BD,CD⊥BD,垂足分别为B、D,AC和BD相交于点E,EF⊥BD垂足为F.则下列结论错误的是(  )

    A. B. C. D.
    8.利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简单图形,其中是轴对称但不是中心对称的图形是(  )
    A. B. C. D.
    9.据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是( )
    A.55×106 B.0.55×108 C.5.5×106 D.5.5×107
    10.下列二次函数的图象,不能通过函数y=3x2的图象平移得到的是(   )
    A.y=3x2+2 B.y=3(x﹣1)2 C.y=3(x﹣1)2+2 D.y=2x2
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.某商品原售价为100元,经连续两次涨价后售价为121元,设平均每次涨价的百分率为x,则依题意所列的方程是_____________.
    12.如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=_____

    13.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是_____.
    14.计算:sin30°﹣(﹣3)0=_____.
    15.如图所示,数轴上点A所表示的数为a,则a的值是____.

    16.如图,四边形ABCD为矩形,H、F分别为AD、BC边的中点,四边形EFGH为矩形,E、G分别在AB、CD边上,则图中四个直角三角形面积之和与矩形EFGH的面积之比为_____.

    三、解答题(共8题,共72分)
    17.(8分)如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,4).
    (1)求抛物线解析式及顶点坐标;
    (2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;
    (3)①当四边形OEAF的面积为24时,请判断OEAF是否为菱形?
    ②是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.

    18.(8分)对于方程=1,某同学解法如下:
    解:方程两边同乘6,得3x﹣2(x﹣1)=1 ①
    去括号,得3x﹣2x﹣2=1 ②
    合并同类项,得x﹣2=1 ③
    解得x=3 ④
    ∴原方程的解为x=3 ⑤上述解答过程中的错误步骤有   (填序号);请写出正确的解答过程.
    19.(8分)观察下列等式:
    ①1×5+4=32;
    ②2×6+4=42;
    ③3×7+4=52;

    (1)按照上面的规律,写出第⑥个等式:_____;
    (2)模仿上面的方法,写出下面等式的左边:_____=502;
    (3)按照上面的规律,写出第n个等式,并证明其成立.
    20.(8分)如图,AB是的直径,AF是切线,CD是垂直于AB的弦,垂足为点E,过点C作DA的平行线与AF相交于点F,已知,.
    求AD的长;
    求证:FC是的切线.

    21.(8分)定义:若某抛物线上有两点A、B关于原点对称,则称该抛物线为“完美抛物线”.已知二次函数y=ax2-2mx+c(a,m,c均为常数且ac≠0)是“完美抛物线”:
    (1)试判断ac的符号;
    (2)若c=-1,该二次函数图象与y轴交于点C,且S△ABC=1.
    ①求a的值;
    ②当该二次函数图象与端点为M(-1,1)、N(3,4)的线段有且只有一个交点时,求m的取值范围.
    22.(10分)请根据图中提供的信息,回答下列问题:

    (1)一个水瓶与一个水杯分别是多少元?
    (2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n>10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)
    23.(12分)某学校为弘扬中国传统诗词文化,在九年级随机抽查了若干名学生进行测试,然后把测试结果分为4个等级;A、B、C、D,对应的成绩分别是9分、8分、7分、6分,并将统计结果绘制成两幅如图所示的统计图.请结合图中的信息解答下列问题:

    (1)本次抽查测试的学生人数为   ,图①中的a的值为   ;
    (2)求统计所抽查测试学生成绩数据的平均数、众数和中位数.
    24.解方程:3x2﹣2x﹣2=1.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    作出图形,结合图形进行分析可得.
    【详解】
    如图所示:

    ①以AC为对角线,可以画出▱AFCB,F(-3,1);
    ②以AB为对角线,可以画出▱ACBE,E(1,-1);
    ③以BC为对角线,可以画出▱ACDB,D(3,1),
    故选B.
    2、A
    【解析】
    试题解析:∵一个斜坡长130m,坡顶离水平地面的距离为50m,
    ∴这个斜坡的水平距离为:=10m,
    ∴这个斜坡的坡度为:50:10=5:1.
    故选A.
    点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.
    3、D
    【解析】
    抓住两个特殊位置:当BC与x轴平行时,求出D的坐标;C与原点重合时,D在y轴上,求出此时D的坐标,设所求直线解析式为y=kx+b,将两位置D坐标代入得到关于k与b的方程组,求出方程组的解得到k与b的值,即可确定出所求直线解析式.
    【详解】
    当BC与x轴平行时,过B作BE⊥x轴,过D作DF⊥x轴,交BC于点G,如图1所示.
    ∵等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=OA=1,OF=DG=BG=CG=BC=1,DF=DG+GF=3,∴D坐标为(﹣1,3);
    当C与原点O重合时,D在y轴上,此时OD=BE=1,即D(0,1),设所求直线解析式为y=kx+b(k≠0),将两点坐标代入得:,解得:.
    则这条直线解析式为y=﹣x+1.
    故选D.

    【点睛】
    本题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,等腰直角三角形的性质,坐标与图形性质,熟练运用待定系数法是解答本题的关键.
    4、A
    【解析】
    ∵△DEF是△AEF翻折而成,
    ∴△DEF≌△AEF,∠A=∠EDF,
    ∵△ABC是等腰直角三角形,
    ∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,
    ∴∠BED=∠CDF,
    设CD=1,CF=x,则CA=CB=2,
    ∴DF=FA=2-x,
    ∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,
    解得x=,
    ∴sin∠BED=sin∠CDF=.
    故选:A.
    5、D
    【解析】
    由于圆周率π是一个无限不循环的小数,由此即可求解.
    【详解】
    解:实数π是一个无限不循环的小数.所以是无理数.
    故选D.
    【点睛】
    本题主要考查无理数的概念,π是常见的一种无理数的形式,比较简单.
    6、D
    【解析】
    分析:中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
    详解:这组数据的中位数是;
    这组数据的众数是1.1.
    故选D.
    点睛:本题属于基础题,考查了确定一组数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
    7、A
    【解析】
    利用平行线的性质以及相似三角形的性质一一判断即可.
    【详解】
    解:∵AB⊥BD,CD⊥BD,EF⊥BD,
    ∴AB∥CD∥EF
    ∴△ABE∽△DCE,
    ∴,故选项B正确,
    ∵EF∥AB,
    ∴,
    ∴,故选项C,D正确,
    故选:A.
    【点睛】
    考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    8、A
    【解析】
    根据:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.逐个按要求分析即可.
    【详解】
    选项A,是轴对称图形,不是中心对称图形,故可以选;
    选项B,是轴对称图形,也是中心对称图形,故不可以选;
    选项C,不是轴对称图形,是中心对称图形,故不可以选;
    选项D,是轴对称图形,也是中心对称图形,故不可以选.
    故选A
    【点睛】
    本题考核知识点:轴对称图形和中心对称图形.解题关键点:理解轴对称图形和中心对称图形定义.
    错因分析 容易题.失分的原因是:没有掌握轴对称图形和中心对称图形的定义.

    9、D
    【解析】
    试题解析:55000000=5.5×107,
    故选D.
    考点:科学记数法—表示较大的数
    10、D
    【解析】
    分析:根据平移变换只改变图形的位置不改变图形的形状与大小对各选项分析判断后利用排除法求解:
    A、y=3x2的图象向上平移2个单位得到y=3x2+2,故本选项错误;
    B、y=3x2的图象向右平移1个单位得到y=3(x﹣1)2,故本选项错误;
    C、y=3x2的图象向右平移1个单位,向上平移2个单位得到y=3(x﹣1)2+2,故本选项错误;
    D、y=3x2的图象平移不能得到y=2x2,故本选项正确.
    故选D.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、100(1+x)2=121
    【解析】
    根据题意给出的等量关系即可求出答案.
    【详解】
    由题意可知:100(1+x)2=121
    故答案为:100(1+x)2=121
    【点睛】
    本题考查一元二次方程的应用,解题的关键是正确找出等量关系,本题属于基础题型.
    12、.
    【解析】
    解:令AE=4x,BE=3x,
    ∴AB=7x.
    ∵四边形ABCD为平行四边形,
    ∴CD=AB=7x,CD∥AB,
    ∴△BEF∽△DCF.
    ∴,
    ∴DF=
    【点睛】
    本题考查平行四边形的性质及相似三角形的判定与性质,掌握定理正确推理论证是本题的解题关键.
    13、2
    【解析】
    试题分析:当x+3≥﹣x+1,
    即:x≥﹣1时,y=x+3,
    ∴当x=﹣1时,ymin=2,
    当x+3<﹣x+1,
    即:x<﹣1时,y=﹣x+1,
    ∵x<﹣1,
    ∴﹣x>1,
    ∴﹣x+1>2,
    ∴y>2,
    ∴ymin=2,
    14、-
    【解析】
    sin30°=,a0=1(a≠0)
    【详解】
    解:原式=-1
    =-
    故答案为:-.
    【点睛】
    本题考查了30°的角的正弦值和非零数的零次幂.熟记是关键.
    15、
    【解析】
    根据数轴上点的特点和相关线段的长,利用勾股定理求出斜边的长,即知表示0的点和A之间的线段的长,进而可推出A的坐标.
    【详解】
    ∵直角三角形的两直角边为1,2,
    ∴斜边长为,
    那么a的值是:﹣.
    故答案为.
    【点睛】
    此题主要考查了实数与数轴之间的对应关系,其中主要利用了:已知两点间的距离,求较大的数,就用较小的数加上两点间的距离.
    16、1:1
    【解析】
    根据矩形性质得出AD=BC,AD∥BC,∠D=90°,求出四边形HFCD是矩形,得出△HFG的面积是CD×DH=S矩形HFCD,推出S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,即可得出答案.
    【详解】
    连接HF,

    ∵四边形ABCD为矩形,
    ∴AD=BC,AD∥BC,∠D=90°
    ∵H、F分别为AD、BC边的中点,
    ∴DH=CF,DH∥CF,
    ∵∠D=90°,
    ∴四边形HFCD是矩形,
    ∴△HFG的面积是CD×DH=S矩形HFCD,
    即S△HFG=S△DHG+S△CFG,
    同理S△HEF=S△BEF+S△AEH,
    ∴图中四个直角三角形面积之和与矩形EFGH的面积之比是1:1,
    故答案为1:1.
    【点睛】
    本题考查了矩形的性质和判定,三角形的面积,主要考查学生的推理能力.

    三、解答题(共8题,共72分)
    17、(1)抛物线解析式为,顶点为;(2),1<<1;(3)①四边形是菱形;②不存在,理由见解析
    【解析】
    (1)已知了抛物线的对称轴解析式,可用顶点式二次函数通式来设抛物线,然后将A、B两点坐标代入求解即可.
    (2)平行四边形的面积为三角形OEA面积的2倍,因此可根据E点的横坐标,用抛物线的解析式求出E点的纵坐标,那么E点纵坐标的绝对值即为△OAE的高,由此可根据三角形的面积公式得出△AOE的面积与x的函数关系式进而可得出S与x的函数关系式.
    (3)①将S=24代入S,x的函数关系式中求出x的值,即可得出E点的坐标和OE,OA的长;如果平行四边形OEAF是菱形,则需满足平行四边形相邻两边的长相等,据此可判断出四边形OEAF是否为菱形.
    ②如果四边形OEAF是正方形,那么三角形OEA应该是等腰直角三角形,即E点的坐标为(3,﹣3)将其代入抛物线的解析式中即可判断出是否存在符合条件的E点.
    【详解】
    (1)由抛物线的对称轴是,可设解析式为.
    把A、B两点坐标代入上式,得
    解之,得
    故抛物线解析式为,顶点为
    (2)∵点在抛物线上,位于第四象限,且坐标适合

    ∴y<0,即-y>0,-y表示点E到OA的距离.
    ∵OA是的对角线,
    ∴.
    因为抛物线与轴的两个交点是(1,0)的(1,0),所以,自变量的
    取值范围是1<<1.
    (3)①根据题意,当S = 24时,即.
    化简,得解之,得
    故所求的点E有两个,分别为E1(3,-4),E2(4,-4).
    点E1(3,-4)满足OE = AE,所以是菱形;
    点E2(4,-4)不满足OE = AE,所以不是菱形.
    ②当OA⊥EF,且OA = EF时,是正方形,
    此时点E的坐标只能是(3,-3).
    而坐标为(3,-3)的点不在抛物线上,
    故不存在这样的点E,使为正方形.
    18、(1)错误步骤在第①②步.(2)x=4.
    【解析】
    (1)第①步在去分母的时候,两边同乘以6,但是方程右边没有乘,另外在去括号时没有注意到符号的变化,所以出现错误;
    (2)注重改正错误,按以上步骤进行即可.
    【详解】
    解:(1)方程两边同乘6,得3x﹣2(x﹣1)=6 ①
    去括号,得3x﹣2x+2=6 ②
    ∴错误步骤在第①②步.
    (2)方程两边同乘6,得3x﹣2(x﹣1)=6
    去括号,得3x﹣2x+2=6
    合并同类项,得x+2=6
    解得x=4
    ∴原方程的解为x=4
    【点睛】
    本题考查的解一元一次方程,注意去分母与去括号中常见错误,符号也经常是出现错误的原因.
    19、6×10+4=82 48×52+4
    【解析】
    (1)根据题目中的式子的变化规律可以解答本题;
    (2)根据题目中的式子的变化规律可以解答本题;
    (3)根据题目中的式子的变化规律可以写出第n个等式,并加以证明.
    【详解】
    解:(1)由题目中的式子可得,
    第⑥个等式:6×10+4=82,
    故答案为6×10+4=82;
    (2)由题意可得,
    48×52+4=502,
    故答案为48×52+4;
    (3)第n个等式是:n×(n+4)+4=(n+2)2,
    证明:∵n×(n+4)+4
    =n2+4n+4
    =(n+2)2,
    ∴n×(n+4)+4=(n+2)2成立.
    【点睛】
    本题考查有理数的混合运算、数字的变化类,解答本题的关键是明确有理数的混合运算的计算方法.
    20、(1);(2)证明见解析.
    【解析】
    (1)首先连接OD,由垂径定理,可求得DE的长,又由勾股定理,可求得半径OD的长,然后由勾股定理求得AD的长;
    (2)连接OF、OC,先证明四边形AFCD是菱形,易证得△AFO≌△CFO,继而可证得FC是⊙O的切线.
    【详解】
    证明:连接OD,

    是的直径,,

    设,


    在中,,

    解得:,
    ,,

    在中,;
    连接OF、OC,
    是切线,




    四边形FADC是平行四边形,



    平行四边形FADC是菱形





    即,
    即,
    点C在上,
    是的切线.
    【点睛】
    此题考查了切线的判定与性质、菱形的判定与性质、垂径定理、勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
    21、 (1) ac<3;(3)①a=1;②m>或m<.
    【解析】
    (1)设A (p,q).则B (-p,-q),把A、B坐标代入解析式可得方程组即可得到结论;
    (3)由c=-1,得到p3=,a>3,且C(3,-1),求得p=±,①根据三角形的面积公式列方程即可得到结果;②由①可知:抛物线解析式为y=x3-3mx-1,根据M(-1,1)、N(3,4).得到这些MN的解析式y=x+(-1≤x≤3),联立方程组得到x3-3mx-1=x+,故问题转化为:方程x3-(3m+)x-=3在-1≤x≤3内只有一个解,建立新的二次函数:y=x3-(3m+)x-,根据题意得到(Ⅰ)若-1≤x1<3且x3>3,(Ⅱ)若x1<-1且-1<x3≤3:列方程组即可得到结论.
    【详解】
    (1)设A (p,q).则B (-p,-q),
    把A、B坐标代入解析式可得:

    ∴3ap3+3c=3.即p3=−,
    ∴−≥3,
    ∵ac≠3,
    ∴−>3,
    ∴ac<3;
    (3)∵c=-1,
    ∴p3=,a>3,且C(3,-1),
    ∴p=±,
    ①S△ABC=×3×1=1,
    ∴a=1;
    ②由①可知:抛物线解析式为y=x3-3mx-1,
    ∵M(-1,1)、N(3,4).
    ∴MN:y=x+(-1≤x≤3),
    依题,只需联立在-1≤x≤3内只有一个解即可,
    ∴x3-3mx-1=x+,
    故问题转化为:方程x3-(3m+)x-=3在-1≤x≤3内只有一个解,
    建立新的二次函数:y=x3-(3m+)x-,
    ∵△=(3m+)3+11>3且c=-<3,
    ∴抛物线y=x3−(3m+)x−与x轴有两个交点,且交y轴于负半轴.
    不妨设方程x3−(3m+)x−=3的两根分别为x1,x3.(x1<x3)
    则x1+x3=3m+,x1x3=−
    ∵方程x3−(3m+)x−=3在-1≤x≤3内只有一个解.
    故分两种情况讨论:
    (Ⅰ)若-1≤x1<3且x3>3:则
    .即:,
    可得:m>.
    (Ⅱ)若x1<-1且-1<x3≤3:则
    .即:,
    可得:m<,
    综上所述,m>或m<.
    【点睛】
    本题考查了待定系数法求二次函数的解析式,一元二次方程根与系数的关系,三角形面积公式,正确的理解题意是解题的关键.
    22、(1)一个水瓶40元,一个水杯是8元;(2)当10<n<25时,选择乙商场购买更合算.当n>25时,选择甲商场购买更合算.
    【解析】
    (1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意列出方程,求出方程的解即可得到结果;
    (2)计算出两商场得费用,比较即可得到结果.
    【详解】
    解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,
    根据题意得:3x+4(48﹣x)=152,
    解得:x=40,
    则一个水瓶40元,一个水杯是8元;
    (2)甲商场所需费用为(40×5+8n)×80%=160+6.4n
    乙商场所需费用为5×40+(n﹣5×2)×8=120+8n
    则∵n>10,且n为整数,
    ∴160+6.4n﹣(120+8n)=40﹣1.6n
    讨论:当10<n<25时,40﹣1.6n>0,160+0.64n>120+8n,
    ∴选择乙商场购买更合算.
    当n>25时,40﹣1.6n<0,即 160+0.64n<120+8n,
    ∴选择甲商场购买更合算.
    【点睛】
    此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解.
    23、(1)50、2;(2)平均数是7.11;众数是1;中位数是1.
    【解析】
    (1)根据A等级人数及其百分比可得总人数,用C等级人数除以总人数可得a的值;
    (2)根据平均数、众数、中位数的定义计算可得.
    【详解】
    (1)本次抽查测试的学生人数为14÷21%=50人,a%=×100%=2%,即a=2.
    故答案为50、2;
    (2)观察条形统计图,平均数为=7.11.
    ∵在这组数据中,1出现了20次,出现的次数最多,∴这组数据的众数是1.
    ∵将这组数据从小到大的顺序排列,其中处于中间的两个数都是1,∴=1,∴这组数据的中位数是1.
    【点睛】
    本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.
    24、
    【解析】
    先找出a,b,c,再求出b2-4ac=28,根据公式即可求出答案.
    【详解】
    解:x= =

    ∴原方程的解为.
    【点睛】
    本题考查对解一元二次方程-提公因式法、公式法,因式分解法等知识点的理解和掌握,能熟练地运用公式法解一元二次方程是解此题的关键.

    相关试卷

    潍坊市重点中学2021-2022学年中考试题猜想数学试卷含解析: 这是一份潍坊市重点中学2021-2022学年中考试题猜想数学试卷含解析,共22页。试卷主要包含了如图,点A,B在双曲线y=等内容,欢迎下载使用。

    四川省凉山重点中学2021-2022学年中考试题猜想数学试卷含解析: 这是一份四川省凉山重点中学2021-2022学年中考试题猜想数学试卷含解析,共18页。

    乐山市重点中学2021-2022学年中考试题猜想数学试卷含解析: 这是一份乐山市重点中学2021-2022学年中考试题猜想数学试卷含解析,共19页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map