2021-2022学年浙江省金华市婺城区中考数学押题卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.在中国集邮总公司设计的2017年纪特邮票首日纪念截图案中,可以看作中心对称图形的是( )
A.千里江山图
B.京津冀协同发展
C.内蒙古自治区成立七十周年
D.河北雄安新区建立纪念
2.实数4的倒数是( )
A.4 B. C.﹣4 D.﹣
3.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,…,第n次碰到正方形的边时的点为Pn,则点P2018的坐标是( )
A.(1,4) B.(4,3) C.(2,4) D.(4,1)
4.一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数.从左面看到的这个几何体的形状图的是( )
A. B. C. D.
5.下列运算正确的是( )
A.a2+a2=a4 B.(a+b)2=a2+b2 C.a6÷a2=a3 D.(﹣2a3)2=4a6
6.的值是( )
A.1 B.﹣1 C.3 D.﹣3
7.向某一容器中注水,注满为止,表示注水量与水深的函数关系的图象大致如图所示,则该容器可能是( )
A. B.
C. D.
8.在平面直角坐标系中,有两条抛物线关于x轴对称,且他们的顶点相距10个单位长度,若其中一条抛物线的函数表达式为y=+6x+m,则m的值是 ( )
A.-4或-14 B.-4或14 C.4或-14 D.4或14
9.若式子在实数范围内有意义,则 x的取值范围是( )
A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣1
10.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.在中,::1:2:3,于点D,若,则______
12.如图,已知反比例函数y=(x>0)的图象经过Rt△OAB斜边OB的中点C,且与直角边AB交于点D,连接OD,若点B的坐标为(2,3),则△OAD的面积为_____.
13.如图,□ABCD中,E是BA的中点,连接DE,将△DAE沿DE折叠,使点A落在□ABCD内部的点F处.若∠CBF=25°,则∠FDA的度数为_________.
14.已知,,,是成比例的线段,其中,,,则_______.
15.因式分解______.
16.满足的整数x的值是_____.
17.如图:图象①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依此规律,P0P2018=_____个单位长度.
三、解答题(共7小题,满分69分)
18.(10分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.
19.(5分)如图,已知△ABC中,AB=AC=5,cosA=.求底边BC的长.
20.(8分)如图,点A、B在⊙O上,点O是⊙O的圆心,请你只用无刻度的直尺,分别画出图①和图②中∠A的余角.
(1)图①中,点C在⊙O上;
(2)图②中,点C在⊙O内;
21.(10分)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.
22.(10分)如图1,点和矩形的边都在直线上,以点为圆心,以24为半径作半圆,分别交直线于两点.已知: ,,矩形自右向左在直线上平移,当点到达点时,矩形停止运动.在平移过程中,设矩形对角线与半圆的交点为 (点为半圆上远离点的交点).如图2,若与半圆相切,求的值;如图3,当与半圆有两个交点时,求线段的取值范围;若线段的长为20,直接写出此时的值.
23.(12分)如图,一次函数的图象与反比例函数的图象交于C,D两点,与x,y轴交于B,A两点,且,,,作轴于E点.
求一次函数的解析式和反比例函数的解析式;
求的面积;
根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围.
24.(14分)如图,将连续的奇数1,3,5,7…按如图中的方式排成一个数,用一个十字框框住5个数,这样框出的任意5个数中,四个分支上的数分别用a,b,c,d表示,如图所示.
(1)计算:若十字框的中间数为17,则a+b+c+d=______.
(2)发现:移动十字框,比较a+b+c+d与中间的数.猜想:十字框中a、b、c、d的和是中间的数的______;
(3)验证:设中间的数为x,写出a、b、c、d的和,验证猜想的正确性;
(4)应用:设M=a+b+c+d+x,判断M的值能否等于2020,请说明理由.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
根据中心对称图形的概念求解.
【详解】
解:A选项是轴对称图形,不是中心对称图形,故本选项错误;
B选项不是中心对称图形,故本选项错误;
C选项为中心对称图形,故本选项正确;
D选项不是中心对称图形,故本选项错误.
故选C.
【点睛】
本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合.
2、B
【解析】
根据互为倒数的两个数的乘积是1,求出实数4的倒数是多少即可.
【详解】
解:实数4的倒数是:
1÷4=.
故选:B.
【点睛】
此题主要考查了一个数的倒数的求法,要熟练掌握,解答此题的关键是要明确:互为倒数的两个数的乘积是1.
3、D
【解析】
先根据反射角等于入射角先找出前几个点,直至出现规律,然后再根据规律进行求解.
【详解】
由分析可得p(0,1)、、、、、、等,故该坐标的循环周期为7则有则有,故是第2018次碰到正方形的点的坐标为(4,1).
【点睛】
本题主要考察规律的探索,注意观察规律是解题的关键.
4、B
【解析】
分析:由已知条件可知,从正面看有1列,每列小正方数形数目分别为4,1,2;从左面看有1列,每列小正方形数目分别为1,4,1.据此可画出图形.
详解:由俯视图及其小正方体的分布情况知,
该几何体的主视图为:
该几何体的左视图为:
故选:B.
点睛:此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.
5、D
【解析】
根据完全平方公式、合并同类项、同底数幂的除法、积的乘方,即可解答.
【详解】
A、a2+a2=2a2,故错误;
B、(a+b)2=a2+2ab+b2,故错误;
C、a6÷a2=a4,故错误;
D、(-2a3)2=4a6,正确;
故选D.
【点睛】
本题考查了完全平方公式、同底数幂的除法、积的乘方以及合并同类项,解决本题的关键是熟记公式和法则.
6、B
【解析】
直接利用立方根的定义化简得出答案.
【详解】
因为(-1)3=-1,
=﹣1.
故选:B.
【点睛】
此题主要考查了立方根,正确把握立方根的定义是解题关键.,
7、D
【解析】
根据函数的图象和所给出的图形分别对每一项进行判断即可.
【详解】
由函数图象知: 随高度h的增加, y也增加,但随h变大, 每单位高度的增加, 注水量h的增加量变小, 图象上升趋势变缓, 其原因只能是水瓶平行于底面的截面的半径由底到顶逐渐变小, 故D项正确.
故选: D.
【点睛】
本题主要考查函数模型及其应用.
8、D
【解析】
根据顶点公式求得已知抛物线的顶点坐标,然后根据轴对称的性质求得另一条抛物线的顶点,根据题意得出关于m的方程,解方程即可求得.
【详解】
∵一条抛物线的函数表达式为y=x2+6x+m,
∴这条抛物线的顶点为(-3,m-9),
∴关于x轴对称的抛物线的顶点(-3,9-m),
∵它们的顶点相距10个单位长度.
∴|m-9-(9-m)|=10,
∴2m-18=±10,
当2m-18=10时,m=1,
当2m-18=-10时,m=4,
∴m的值是4或1.
故选D.
【点睛】
本题考查了二次函数图象与几何变换,解答本题的关键是掌握二次函数的顶点坐标公式,坐标和线段长度之间的转换,关于x轴对称的点和抛物线的关系.
9、A
【解析】
直接利用二次根式有意义的条件分析得出答案.
【详解】
∵式子在实数范围内有意义,
∴ x﹣1>0, 解得:x>1.
故选:A.
【点睛】
此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.
10、C
【解析】
试题分析:由题意可得BQ=x.
①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=BP•BQ,解y=•3x•x=;故A选项错误;
②1<x≤2时,P点在CD边上,则△BPQ的面积=BQ•BC,解y=•x•3=;故B选项错误;
③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=AP•BQ,解y=•(9﹣3x)•x=;故D选项错误.
故选C.
考点:动点问题的函数图象.
二、填空题(共7小题,每小题3分,满分21分)
11、2.1
【解析】
先求出△ABC是∠A等于30°的直角三角形,再根据30°角所对的直角边等于斜边的一半求解.
【详解】
解:根据题意,设∠A、∠B、∠C为k、2k、3k,
则k+2k+3k=180°,
解得k=30°,
2k=60°,
3k=90°,
∵AB=10,
∴BC=AB=1,
∵CD⊥AB,
∴∠BCD=∠A=30°,
∴BD=BC=2.1.
故答案为2.1.
【点睛】
本题主要考查含30度角的直角三角形的性质和三角形内角和定理,掌握30°角所对的直角边等于斜边的一半、求出△ABC是直角三角形是解本题的关键.
12、.
【解析】
由点B的坐标为(2,3),而点C为OB的中点,则C点坐标为(1,1.5),利用待定系数法可得到k=1.5,然后利用k的几何意义即可得到△OAD的面积.
【详解】
∵点B的坐标为(2,3),点C为OB的中点,
∴C点坐标为(1,1.5),
∴k=1×1.5=1.5,即反比例函数解析式为y=,
∴S△OAD=×1.5=.
故答案为:.
【点睛】
本题考查了反比例函数的几何意义,一般的,从反比例函数(k为常数,k≠0)图像上任一点P,向x轴和y轴作垂线你,以点P及点P的两个垂足和坐标原点为顶点的矩形的面积等于常数,以点P及点P的一个垂足和坐标原点为顶点的三角形的面积等于 .
13、50°
【解析】
延长BF交CD于G,根据折叠的性质和平行四边形的性质,证明△BCG≌△DAE,从而∠7=∠6=25°,进而可求∠FDA得度数.
【详解】
延长BF交CD于G
由折叠知,
BE=CF, ∠1=∠2, ∠7=∠8,
∴∠3=∠4.
∵∠1+∠2=∠3+∠4,
∴∠1=∠2=∠3=∠4,
∵CD∥AB,
∴∠3=∠5,
∴∠1=∠5,
在△BCG和△DAE中
∵∠1=∠5,
∠C=∠A,
BC=AD,
∴△BCG≌△DAE,
∴∠7=∠6=25°,
∴∠8=∠7=25°,
∴FDA=50°.
故答案为50°.
【点睛】
本题考查了折叠的性质,平行四边形的性质,全等三角形的判定与性质. 证明△BCG≌△DAE是解答本题的关键.
14、
【解析】
如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad=cb,将a,b及c的值代入即可求得d.
【详解】
已知a,b,c,d是成比例线段,
根据比例线段的定义得:ad=cb,
代入a=3,b=2,c=6,
解得:d=4,
则d=4cm.
故答案为:4
【点睛】
本题主要考查比例线段的定义.要注意考虑问题要全面.
15、a(3a+1)
【解析】
3a2+a=a(3a+1),
故答案为a(3a+1).
16、3,1
【解析】
直接得出2<<3,1<<5,进而得出答案.
【详解】
解:∵2<<3,1<<5,
∴的整数x的值是:3,1.
故答案为:3,1.
【点睛】
此题主要考查了估算无理数的大小,正确得出接近的有理数是解题关键.
17、1
【解析】
根据P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;可知每移动一次,圆心离中心的距离增加1个单位,依据2018=3×672+2,即可得到点P2018在正南方向上,P0P2018=672+1=1.
【详解】
由图可得,P0P1=1,P0P2=1,P0P3=1;
P0P4=2,P0P5=2,P0P6=2;
P0P7=3,P0P8=3,P0P9=3;
∵2018=3×672+2,
∴点P2018在正南方向上,
∴P0P2018=672+1=1,
故答案为1.
【点睛】
本题主要考查了坐标与图形变化,应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.
三、解答题(共7小题,满分69分)
18、1
【解析】
先提取公因式ab,再根据完全平方公式进行二次分解,然后代入数据进行计算即可得解.
【详解】
解:a3b+2a2b2+ab3
=ab(a2+2ab+b2)
=ab(a+b)2,
将a+b=3,ab=2代入得,ab(a+b)2=2×32=1.
故代数式a3b+2a2b2+ab3的值是1.
19、
【解析】
过点B作BD⊥AC,在△ABD中由cosA=可计算出AD的值,进而求出BD的值,再由勾股定理求出BC的值.
【详解】
解:
过点B作BD⊥AC,垂足为点D,
在Rt△ABD中,,
∵,AB=5,
∴AD=AB·cosA=5×=3,
∴BD=4,
∵AC=5,
∴DC=2,
∴BC=.
【点睛】
本题考查了锐角的三角函数和勾股定理的运用.
20、图形见解析
【解析】试题分析:(1)根据同弧所对的圆周角相等和直径所对的圆周角为直角画图即可;(2)延长AC交⊙O于点E ,利用(1)的方法画图即可.
试题解析:
如图①∠DBC就是所求的角;
如图②∠FBE就是所求的角
21、证明见解析.
【解析】
试题分析:根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.
试题解析:证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM.
∵M是BC的中点,∴BM=CM.
在△BDM和△CEM中,∵,
∴△BDM≌△CEM(SAS).∴MD=ME.
考点:1.等腰三角形的性质;2.全等三角形的判定与性质.
22、(1);(2);(3)或
【解析】
(1)如图2,连接OP,则DF与半圆相切,利用△OPD≌△FCD(AAS),可得:OD=DF=30;
(2)利用,求出,则;DF与半圆相切,由(1)知:PD=CD=18,即可求解;
(3)设PG=GH=m,则:,求出,利用,即可求解.
【详解】
(1)如图,连接
∵与半圆相切,∴,∴,
在矩形中,,
∵,根据勾股定理,得
在和中,
∴
∴
(2)如图,
当点与点重合时,
过点作与点,则
∵
且,由(1)知:
∴,∴,
∴
当与半圆相切时,由(1)知:,
∴
(3)设半圆与矩形对角线交于点P、H,过点O作OG⊥DF,
则PG=GH,
,则,
设:PG=GH=m,则:,
,
整理得:25m2-640m+1216=0,
解得:,
.
【点睛】
本题考查的是圆的基本知识综合运用,涉及到直线与圆的位置关系、解直角三角形等知识,其中(3),正确画图,作等腰三角形OPH的高OG,是本题的关键.
23、(1),;(2)8;(3)或.
【解析】
试题分析:(1)根据已知条件求出A、B、C点坐标,用待定系数法求出直线AB和反比例函数的解析式;
(2)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解;
(3)根据函数的图象和交点坐标即可求解.
试题解析:解:(1)∵OB=4,OE=2,∴BE=2+4=1.
∵CE⊥x轴于点E,tan∠ABO==,∴OA=2,CE=3,∴点A的坐标为(0,2)、点B的坐标为C(4,0)、点C的坐标为(﹣2,3).
∵一次函数y=ax+b的图象与x,y轴交于B,A两点,∴,解得:.
故直线AB的解析式为.
∵反比例函数的图象过C,∴3=,∴k=﹣1,∴该反比例函数的解析式为;
(2)联立反比例函数的解析式和直线AB的解析式可得:,可得交点D的坐标为(1,﹣1),则△BOD的面积=4×1÷2=2,△BOC的面积=4×3÷2=1,故△OCD的面积为2+1=8;
(3)由图象得,一次函数的值大于反比例函数的值时x的取值范围:x<﹣2或0<x<1.
点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
24、(1)68 ;(2)4倍;(3)4x,猜想正确,见解析;(4)M的值不能等于1,见解析.
【解析】
(1)直接相加即得到答案;
(2)根据(1)猜想a+b+c+d=4x;
(3)用x表示a、b、c、d,相加后即等于4x;
(4)得到方程5x=1,求出的x不符合数表里数的特征,故不能等于1.
【详解】
(1)5+15+19+29=68,
故答案为68;
(2)根据(1)猜想a+b+c+d=4x,
答案为:4倍;
(3)a=x-12,b=x-2,c=x+2,d=x+12,
∴a+b+c+d=x-12+x-2+x+2+x+12=4x,
∴猜想正确;
(4)M=a+b+c+d+x=4x+x=5x,
若M=5x=1,解得:x=404,
但整个数表所有的数都为奇数,故不成立,
∴M的值不能等于1.
【点睛】
本题考查了一元一次方程的应用.当解得方程的解后,要观察是否满足题目和实际要求再进行取舍.
2023年浙江省金华市婺城区中考数学模拟试卷(一)(含解析): 这是一份2023年浙江省金华市婺城区中考数学模拟试卷(一)(含解析),共26页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2023年浙江省金华市婺城区中考数学模拟试卷(二)(含解析): 这是一份2023年浙江省金华市婺城区中考数学模拟试卷(二)(含解析),共25页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2023年浙江省金华市婺城区中考数学调研试卷(含解析): 这是一份2023年浙江省金华市婺城区中考数学调研试卷(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。