![2021-2022学年浙江省宁波市李兴贵中学中考考前最后一卷数学试卷含解析01](http://www.enxinlong.com/img-preview/2/3/13314070/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年浙江省宁波市李兴贵中学中考考前最后一卷数学试卷含解析02](http://www.enxinlong.com/img-preview/2/3/13314070/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年浙江省宁波市李兴贵中学中考考前最后一卷数学试卷含解析03](http://www.enxinlong.com/img-preview/2/3/13314070/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021-2022学年浙江省宁波市李兴贵中学中考考前最后一卷数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列计算正确的是( )
A.()2=±8 B.+=6 C.(﹣)0=0 D.(x﹣2y)﹣3=
2.如图,正六边形ABCDEF中,P、Q两点分别为△ACF、△CEF的内心.若AF=2,则PQ的长度为何?( )
A.1 B.2 C.2﹣2 D.4﹣2
3.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为( )
A.14 B.7 C.﹣2 D.2
4.在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为( )
A.485×105 B.48.5×106 C.4.85×107 D.0.485×108
5.为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有( )
A.12 B.48 C.72 D.96
6.已知,则的值是
A.60 B.64 C.66 D.72
7.如图,一张半径为的圆形纸片在边长为的正方形内任意移动,则在该正方形内,这张圆形纸片“能接触到的部分”的面积是( )
A. B. C. D.
8.已知一组数据1、2、3、x、5,它们的平均数是3,则这一组数据的方差为( )
A.1 B.2 C.3 D.4
9.已知点A(1﹣2x,x﹣1)在第二象限,则x的取值范围在数轴上表示正确的是( )
A. B.
C. D.
10.下列运算正确的是( )
A.a6÷a3=a2 B.3a2•2a=6a3 C.(3a)2=3a2 D.2x2﹣x2=1
二、填空题(共7小题,每小题3分,满分21分)
11.若两个相似三角形的面积比为1∶4,则这两个相似三角形的周长比是__________.
12.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,-3),动点P在抛物线上. b =_________,c =_________,点B的坐标为_____________;(直接填写结果)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.
13.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC=5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图2所示的“数学风车”,若△BCD的周长是30,则这个风车的外围周长是_____.
14.函数中自变量x的取值范围是___________.
15.若不等式组的解集为,则________.
16.如图,等边△ABC的边长为6,∠ABC,∠ACB的角平分线交于点D,过点D作EF∥BC,交AB、CD于点E、F,则EF的长度为_____.
17.关于x的方程(m﹣5)x2﹣3x﹣1=0有两个实数根,则m满足_____.
三、解答题(共7小题,满分69分)
18.(10分)学校决定在学生中开设:A、实心球;B、立定跳远;C、跳绳;D、跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图,请结合图中的信息解答下列问题:
(1)在这项调查中,共调查了多少名学生?
(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整.
(3)若调查到喜欢“跳绳”的5名学生中有2名男生,3名女生,现从这5名学生中任意抽取2名学生,请用画树状图或列表法求出刚好抽到不同性别学生的概率.
19.(5分)综合与探究:
如图,已知在△ABC 中,AB=AC,∠BAC=90°,点 A 在 x 轴上,点 B 在 y 轴上,点在二次函数的图像上.
(1)求二次函数的表达式;
(2)求点 A,B 的坐标;
(3)把△ABC 沿 x 轴正方向平移, 当点 B 落在抛物线上时, 求△ABC 扫过区域的面积.
20.(8分)先化简,再求代数式()÷的值,其中x=sin60°,y=tan30°.
21.(10分)如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=10t﹣5t1.小球飞行时间是多少时,小球最高?最大高度是多少?小球飞行时间t在什么范围时,飞行高度不低于15m?
22.(10分). 在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.
(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为 ;
(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.
23.(12分)一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;
(1)搅匀后,从中任意取一个球,标号为正数的概率是 ;
(2) 搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.
24.(14分)如图,二次函数y=﹣+mx+4﹣m的图象与x轴交于A、B两点(A在B的左侧),与),轴交于点C.抛物线的对称轴是直线x=﹣2,D是抛物线的顶点.
(1)求二次函数的表达式;
(2)当﹣<x<1时,请求出y的取值范围;
(3)连接AD,线段OC上有一点E,点E关于直线x=﹣2的对称点E'恰好在线段AD上,求点E的坐标.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
各项中每项计算得到结果,即可作出判断.
【详解】
解:A.原式=8,错误;
B.原式=2+4,错误;
C.原式=1,错误;
D.原式=x6y﹣3= ,正确.
故选D.
【点睛】
此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
2、C
【解析】
先判断出PQ⊥CF,再求出AC=2,AF=2,CF=2AF=4,利用△ACF的面积的两种算法即可求出PG,然后计算出PQ即可.
【详解】
解:如图,连接PF,QF,PC,QC
∵P、Q两点分别为△ACF、△CEF的内心,
∴PF是∠AFC的角平分线,FQ是∠CFE的角平分线,
∴∠PFC=∠AFC=30°,∠QFC=∠CFE=30°,
∴∠PFC=∠QFC=30°,
同理,∠PCF=∠QCF
∴PQ⊥CF,
∴△PQF是等边三角形,
∴PQ=2PG;
易得△ACF≌△ECF,且内角是30º,60º,90º的三角形,
∴AC=2,AF=2,CF=2AF=4,
∴S△ACF=AF×AC=×2×2=2,
过点P作PM⊥AF,PN⊥AC,PQ交CF于G,
∵点P是△ACF的内心,
∴PM=PN=PG,
∴S△ACF=S△PAF+S△PAC+S△PCF
=AF×PM+AC×PN+CF×PG
=×2×PG+×2×PG+×4×PG
=(1++2)PG
=(3+)PG
=2,
∴PG==,
∴PQ=2PG=2()=2-2.
故选C.
【点睛】
本题是三角形的内切圆与内心,主要考查了三角形的内心的特点,三角形的全等,解本题的关键是知道三角形的内心的意义.
3、D
【解析】
解不等式得到x≥m+3,再列出关于m的不等式求解.
【详解】
≤﹣1,
m﹣1x≤﹣6,
﹣1x≤﹣m﹣6,
x≥m+3,
∵关于x的一元一次不等式≤﹣1的解集为x≥4,
∴m+3=4,解得m=1.
故选D.
考点:不等式的解集
4、C
【解析】
依据科学记数法的含义即可判断.
【详解】
解:48511111=4.85×117,故本题选择C.
【点睛】
把一个数M记成a×11n(1≤|a|<11,n为整数)的形式,这种记数的方法叫做科学记数法.规律:
(1)当|a|≥1时,n的值为a的整数位数减1;
(2)当|a|<1时,n的值是第一个不是1的数字前1的个数,包括整数位上的1.
5、C
【解析】
解:根据图形,
身高在169.5cm~174.5cm之间的人数的百分比为:,
∴该校男生的身高在169.5cm~174.5cm之间的人数有300×24%=72(人).
故选C.
6、A
【解析】
将代入原式,计算可得.
【详解】
解:当时,
原式
,
故选A.
【点睛】
本题主要考查分式的加减法,解题的关键是熟练掌握完全平方公式.
7、C
【解析】
这张圆形纸片减去“不能接触到的部分”的面积是就是这张圆形纸片“能接触到的部分”的面积.
【详解】
解:如图:
∵正方形的面积是:4×4=16;
扇形BAO的面积是:,
∴则这张圆形纸片“不能接触到的部分”的面积是4×1-4×=4-π,
∴这张圆形纸片“能接触到的部分”的面积是16-(4-π)=12+π,
故选C.
【点睛】
本题主要考查了正方形和扇形的面积的计算公式,正确记忆公式是解题的关键.
8、B
【解析】
先由平均数是3可得x的值,再结合方差公式计算.
【详解】
∵数据1、2、3、x、5的平均数是3,
∴=3,
解得:x=4,
则数据为1、2、3、4、5,
∴方差为×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,
故选B.
【点睛】
本题主要考查算术平均数和方差,解题的关键是熟练掌握平均数和方差的定义.
9、B
【解析】
先分别求出每一个不等式的解集,再根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【详解】
解:根据题意,得: ,
解不等式①,得:x>,
解不等式②,得:x>1,
∴不等式组的解集为x>1,
故选:B.
【点睛】
本题主要考查解一元一次不等式组,关键要掌握解一元一次不等式的方法,牢记确定不等式组解集方法.
10、B
【解析】
A、根据同底数幂的除法法则计算;
B、根据同底数幂的乘法法则计算;
C、根据积的乘方法则进行计算;
D、根据合并同类项法则进行计算.
【详解】
解:A、a6÷a3=a3,故原题错误;
B、3a2•2a=6a3,故原题正确;
C、(3a)2=9a2,故原题错误;
D、2x2﹣x2=x2,故原题错误;
故选B.
【点睛】
考查同底数幂的除法,合并同类项,同底数幂的乘法,积的乘方,熟记它们的运算法则是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
试题分析:∵两个相似三角形的面积比为1:4,∴这两个相似三角形的相似比为1:1,∴这两个相似三角形的周长比是1:1,故答案为1:1.
考点:相似三角形的性质.
12、(1),,(-1,0);(2)存在P的坐标是或;(1)当EF最短时,点P的坐标是:(,)或(,)
【解析】
(1)将点A和点C的坐标代入抛物线的解析式可求得b、c的值,然后令y=0可求得点B的坐标;
(2)分别过点C和点A作AC的垂线,将抛物线与P1,P2两点先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A与抛物线的交点坐标即可;
(1)连接OD.先证明四边形OEDF为矩形,从而得到OD=EF,然后根据垂线段最短可求得点D的纵坐标,从而得到点P的纵坐标,然后由抛物线的解析式可求得点P的坐标.
【详解】
解:(1)∵将点A和点C的坐标代入抛物线的解析式得:,
解得:b=﹣2,c=﹣1,
∴抛物线的解析式为.
∵令,解得:,,
∴点B的坐标为(﹣1,0).
故答案为﹣2;﹣1;(﹣1,0).
(2)存在.理由:如图所示:
①当∠ACP1=90°.由(1)可知点A的坐标为(1,0).
设AC的解析式为y=kx﹣1.
∵将点A的坐标代入得1k﹣1=0,解得k=1,
∴直线AC的解析式为y=x﹣1,
∴直线CP1的解析式为y=﹣x﹣1.
∵将y=﹣x﹣1与联立解得,(舍去),
∴点P1的坐标为(1,﹣4).
②当∠P2AC=90°时.设AP2的解析式为y=﹣x+b.
∵将x=1,y=0代入得:﹣1+b=0,解得b=1,
∴直线AP2的解析式为y=﹣x+1.
∵将y=﹣x+1与联立解得=﹣2,=1(舍去),
∴点P2的坐标为(﹣2,5).
综上所述,P的坐标是(1,﹣4)或(﹣2,5).
(1)如图2所示:连接OD.
由题意可知,四边形OFDE是矩形,则OD=EF.根据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短.
由(1)可知,在Rt△AOC中,∵OC=OA=1,OD⊥AC,
∴D是AC的中点.
又∵DF∥OC,
∴DF=OC=,
∴点P的纵坐标是,
∴,解得:x=,
∴当EF最短时,点P的坐标是:(,)或(,).
13、71
【解析】
分析:由题意∠ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个.
详解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,AC=y,则
x2=4y2+52,
∵△BCD的周长是30,
∴x+2y+5=30
则x=13,y=1.
∴这个风车的外围周长是:4(x+y)=4×19=71.
故答案是:71.
点睛:本题考查了勾股定理在实际情况中的应用,注意隐含的已知条件来解答此类题.
14、x≤2
【解析】
试题解析:根据题意得:
解得:.
15、-1
【解析】
分析:解出不等式组的解集,与已知解集-1<x<1比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案.
详解:由不等式得x>a+2,x<b,
∵-1<x<1,
∴a+2=-1,b=1
∴a=-3,b=2,
∴(a+b)2009=(-1)2009=-1.
故答案为-1.
点睛:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.
16、4
【解析】
试题分析:根据BD和CD分别平分∠ABC和∠ACB,和EF∥BC,利用两直线平行,内错角相等和等量代换,求证出BE=DE,DF=FC.然后即可得出答案.
解:∵在△ABC中,BD和CD分别平分∠ABC和∠ACB,
∴∠EBD=∠DBC,∠FCD=∠DCB,
∵EF∥BC,
∴∠EBD=∠DBC=∠EDB,∠FCD=∠DCB=∠FDC,
∴BE=DE,DF=EC,
∵EF=DE+DF,
∴EF=EB+CF=2BE,
∵等边△ABC的边长为6,
∵EF∥BC,
∴△ADE是等边三角形,
∴EF=AE=2BE,
∴EF==,
故答案为4
考点:等边三角形的判定与性质;平行线的性质.
17、m≥且m≠1.
【解析】
根据一元二次方程的定义和判别式的意义得到m﹣1≠0且 然后求出两个不等式的公共部分即可.
【详解】
解:根据题意得m﹣1≠0且
解得且m≠1.
故答案为: 且m≠1.
【点睛】
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
三、解答题(共7小题,满分69分)
18、(1)150;(2)详见解析;(3).
【解析】
(1)用A类人数除以它所占的百分比得到调查的总人数;
(2)用总人数分别减去A、C、D得到B类人数,再计算出它所占的百分比,然后补全两个统计图;
(3)画树状图展示所有20种等可能的结果数,再找出刚好抽到不同性别学生的结果数,然后利用概率公式求解.
【详解】
解:(1)15÷10%=150,
所以共调查了150名学生;
(2)喜欢“立定跳远”学生的人数为150﹣15﹣60﹣30=45,
喜欢“立定跳远”的学生所占百分比为1﹣20%﹣40%﹣10%=30%,
两个统计图补充为:
(3)画树状图为:
共有20种等可能的结果数,其中刚好抽到不同性别学生的结果数为12,
所以刚好抽到不同性别学生的概率
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.
19、(1);(2);(3).
【解析】
(1)将点代入二次函数解析式即可;
(2)过点作轴,证明即可得到即可得出点 A,B 的坐标;
(3)设点的坐标为,解方程得出四边形为平行四边形,求出AC,AB的值,通过扫过区域的面积=代入计算即可.
【详解】
解:(1)∵点在二次函数的图象上,
.
解方程,得
∴二次函数的表达式为.
(2)如图1,过点作轴,垂足为.
.
,
.
在和中,
∵,
.
∵点的坐标为 ,
.
.
(3)如图2,把沿轴正方向平移,
当点落在抛物线上点处时,设点的坐标为.
解方程得:(舍去)或
由平移的性质知,且,
∴四边形为平行四边形,
.
扫过区域的面积== .
【点睛】
本题考查了二次函数与几何综合问题,涉及全等三角形的判定与性质,平行四边形的性质与判定,勾股定理解直角三角形,解题的关键是灵活运用二次函数的性质与几何的性质.
20、
【解析】
先根据分式混合运算的法则把原式进行化简,再计算x和y的值并代入进行计算即可
【详解】
原式
∴原式
【点睛】
考查分式的混合运算,掌握运算顺序是解题的关键.
21、(1)小球飞行时间是1s时,小球最高为10m;(1) 1≤t≤3.
【解析】
(1)将函数解析式配方成顶点式可得最值;
(1)画图象可得t的取值.
【详解】
(1)∵h=﹣5t1+10t=﹣5(t﹣1)1+10,
∴当t=1时,h取得最大值10米;
答:小球飞行时间是1s时,小球最高为10m;
(1)如图,
由题意得:15=10t﹣5t1,
解得:t1=1,t1=3,
由图象得:当1≤t≤3时,h≥15,
则小球飞行时间1≤t≤3时,飞行高度不低于15m.
【点睛】
本题考查了二次函数的应用,主要考查了二次函数的最值问题,以及利用二次函数图象求不等式,并熟练掌握二次函数的性质是解题的关键.
22、(1);(2)列表见解析,.
【解析】
试题分析:(1)一共有3种等可能的结果总数,摸出标有数字2的小球有1种可能,因此摸出的球为标有数字2的小球的概率为;(2)利用列表得出共有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,可求得结果.
试题解析:(1)P(摸出的球为标有数字2的小球)=;(2)列表如下:
小华
小丽
-1
0
2
-1
(-1,-1)
(-1,0)
(-1,2)
0
(0,-1)
(0,0)
(0,2)
2
(2,-1)
(2,0)
(2,2)
共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,
∴P(点M落在如图所示的正方形网格内)==.
考点:1列表或树状图求概率;2平面直角坐标系.
23、(1);(2)
【解析】
【分析】(1)直接运用概率的定义求解;(2)根据题意确定k>0,b>0,再通过列表计算概率.
【详解】解:(1)因为1、-1、2三个数中由两个正数,
所以从中任意取一个球,标号为正数的概率是.
(2)因为直线y=kx+b经过一、二、三象限,
所以k>0,b>0,
又因为取情况:
k b
1
-1
2
1
1,1
1,-1
1,2
-1
-1,1
-1,-1
-1.2
2
2,1
2,-1
2,2
共9种情况,符合条件的有4种,
所以直线y=kx+b经过一、二、三象限的概率是.
【点睛】本题考核知识点:求规概率. 解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出 .
24、(1)y=﹣x1﹣1x+6;(1)<y<;(3)(0,4).
【解析】
(1)利用对称轴公式求出m的值,即可确定出解析式;
(1)根据x的范围,利用二次函数的增减性确定出y的范围即可;
(3)根据题意确定出D与A坐标,进而求出直线AD解析式,设出E坐标,利用对称性确定出E坐标即可.
【详解】
(1)∵抛物线对称轴为直线x=﹣1,∴﹣=﹣1,即m=﹣1,则二次函数解析式为y=﹣x1﹣1x+6;
(1)当x=﹣时,y=;当x=1时,y=.
∵﹣<x<1位于对称轴右侧,y随x的增大而减小,∴<y<;
(3)当x=﹣1时,y=8,∴顶点D的坐标是(﹣1,8),令y=0,得到:﹣x1﹣1x+6=0,解得:x=﹣6或x=1.
∵点A在点B的左侧,∴点A坐标为(﹣6,0).
设直线AD解析式为y=kx+b,可得:,解得:,即直线AD解析式为y=1x+11.
设E(0,n),则有E′(﹣4,n),代入y=1x+11中得:n=4,则点E坐标为(0,4).
【点睛】
本题考查了抛物线与x轴的交点,以及二次函数的性质,熟练掌握二次函数的性质是解答本题的关键.
浙江省宁波市北仑区重点达标名校2021-2022学年中考数学考前最后一卷含解析: 这是一份浙江省宁波市北仑区重点达标名校2021-2022学年中考数学考前最后一卷含解析,共19页。试卷主要包含了若a与5互为倒数,则a=等内容,欢迎下载使用。
浙江省宁波市李兴贵中学2021-2022学年中考数学模拟预测题含解析: 这是一份浙江省宁波市李兴贵中学2021-2022学年中考数学模拟预测题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,计算的结果是,已知二次函数y=3等内容,欢迎下载使用。
浙江省宁波市李兴贵中学2022年中考五模数学试题含解析: 这是一份浙江省宁波市李兴贵中学2022年中考五模数学试题含解析,共25页。试卷主要包含了估算的值是在,剪纸是我国传统的民间艺术,下列运算正确的是,下列各式计算正确的是等内容,欢迎下载使用。