2021-2022学年浙江省杭州市萧山区重点达标名校十校联考最后数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )
A.16个 B.15个 C.13个 D.12个
2.下列判断错误的是( )
A.两组对边分别相等的四边形是平行四边形 B.四个内角都相等的四边形是矩形
C.两条对角线垂直且平分的四边形是正方形 D.四条边都相等的四边形是菱形
3.﹣2的绝对值是( )
A.2 B. C. D.
4.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是( )
A.(―1,2)
B.(―9,18)
C.(―9,18)或(9,―18)
D.(―1,2)或(1,―2)
5.下列计算正确的是( )
A.2m+3n=5mn B.m2•m3=m6 C.m8÷m6=m2 D.(﹣m)3=m3
6.等式成立的x的取值范围在数轴上可表示为( )
A. B. C. D.
7.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形外,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B逆时针旋转,使ON边与BC边重合,完成第一次旋转;再绕点C逆时针旋转,使MN边与CD边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,O间的距离不可能是( )
A.0 B.0.8 C.2.5 D.3.4
8.下列方程中,是一元二次方程的是( )
A.2x﹣y=3 B.x2+=2 C.x2+1=x2﹣1 D.x(x﹣1)=0
9.小明将某圆锥形的冰淇淋纸套沿它的一条母线展开若不考虑接缝,它是一个半径为12cm,圆心角为的扇形,则
A.圆锥形冰淇淋纸套的底面半径为4cm
B.圆锥形冰淇淋纸套的底面半径为6cm
C.圆锥形冰淇淋纸套的高为
D.圆锥形冰淇淋纸套的高为
10.据史料记载,雎水太平桥建于清嘉庆年间,已有200余年历史.桥身为一巨型单孔圆弧,既没有用钢筋,也没有用水泥,全部由石块砌成,犹如一道彩虹横卧河面上,桥拱半径OC为13m,河面宽AB为24m,则桥高CD为( )
A.15m B.17m C.18m D.20m
11.如图是一个由4个相同的正方体组成的立体图形,它的左视图为( )
A. B. C. D.
12.如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有( )
A.2个 B.3个 C.4个 D.5个
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=x-3与x轴、y轴分别交于点A、B,点M是直线AB上的一个动点,则PM的最小值为________.
14.在中,,,点分别是边的中点,则的周长是__________.
15.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的正弦值为__.
16.在Rt△ABC中,∠C=90°,AB=6,cosB=,则BC的长为_____.
17.解不等式组,则该不等式组的最大整数解是_____.
18.如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为_________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,AB为⊙O直径,C为⊙O上一点,点D是的中点,DE⊥AC于E,DF⊥AB于F.
(1)判断DE与⊙O的位置关系,并证明你的结论;
(2)若OF=4,求AC的长度.
20.(6分)如图,AB为圆O的直径,点C为圆O上一点,若∠BAC=∠CAM,过点C作直线l垂直于射线AM,垂足为点D.
(1)试判断CD与圆O的位置关系,并说明理由;
(2)若直线l与AB的延长线相交于点E,圆O的半径为3,并且∠CAB=30°,求AD的长.
21.(6分)如图所示,在中,,
(1)用尺规在边BC上求作一点P,使;(不写作法,保留作图痕迹)
(2)连接AP当为多少度时,AP平分.
22.(8分)如图,用细线悬挂一个小球,小球在竖直平面内的A、C两点间来回摆动,A点与地面距离AN=14cm,小球在最低点B时,与地面距离BM=5cm,∠AOB=66°,求细线OB的长度.(参考数据:sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)
23.(8分)如图,⊙O的直径DF与弦AB交于点E,C为⊙O外一点,CB⊥AB,G是直线CD上一点,∠ADG=∠ABD.
求证:AD•CE=DE•DF;
说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路过程写出来(要求至少写3步);
(2)在你经历说明(1)的过程之后,可以从下列①、②、③中选取一个补充或更换已知条件,完成你的证明.
①∠CDB=∠CEB;
②AD∥EC;
③∠DEC=∠ADF,且∠CDE=90°.
24.(10分)矩形AOBC中,OB=4,OA=1.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E。当点F运动到边BC的中点时,求点E的坐标;连接EF,求∠EFC的正切值;如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.
25.(10分)一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.
26.(12分)先化简,再求值:,其中x为方程的根.
27.(12分)水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.
【详解】
解:设白球个数为:x个,
∵摸到红色球的频率稳定在25%左右,
∴口袋中得到红色球的概率为25%,
∴ ,
解得:x=12,
经检验x=12是原方程的根,
故白球的个数为12个.
故选:D.
【点睛】
本题考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题的关键.
2、C
【解析】
根据平行四边形的判定,矩形的判定,菱形的判定,正方形的判定,对选项进行判断即可
【详解】
解:A、两组对边分别相等的四边形是平行四边形,故本选项正确;
B、四个内角都相等的四边形是矩形,故本选项正确;
C、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误;
D、四条边都相等的四边形是菱形,故本选项正确.
故选C
【点睛】
此题综合考查了平行四边形的判定,矩形的判定,菱形的判定,正方形的判定,熟练掌握判定法则才是解题关键
3、A
【解析】
分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.
4、D
【解析】
试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ ABO∽△A′B′O且= .∴==.∴A′E=AD=2,OE=OD=1.∴A′(-1,2).同理可得A′′(1,―2).
方法二:∵点A(―3,6)且相似比为,∴点A的对应点A′的坐标是(―3×,6×),∴A′(-1,2).
∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2).
故答案选D.
考点:位似变换.
5、C
【解析】
根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.
【详解】
解:A、2m与3n不是同类项,不能合并,故错误;
B、m2•m3=m5,故错误;
C、正确;
D、(-m)3=-m3,故错误;
故选:C.
【点睛】
本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.
6、B
【解析】
根据二次根式有意义的条件即可求出的范围.
【详解】
由题意可知: ,
解得:,
故选:.
【点睛】
考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件.
7、D
【解析】
如图,点O的运动轨迹是图在黄线,点B,O间的距离d的最小值为0,最大值为线段BK=,可得0≤d≤,即0≤d≤3.1,由此即可判断;
【详解】
如图,点O的运动轨迹是图在黄线,
作CH⊥BD于点H,
∵六边形ABCDE是正六边形,
∴∠BCD=120º,
∴∠CBH=30º,
∴BH=cos30 º·BC=,
∴BD=.
∵DK=,
∴BK=,
点B,O间的距离d的最小值为0,最大值为线段BK=,
∴0≤d≤,即0≤d≤3.1,
故点B,O间的距离不可能是3.4,
故选:D.
【点睛】
本题考查正多边形与圆、旋转变换等知识,解题的关键是正确作出点O的运动轨迹,求出点B,O间的距离的最小值以及最大值是解答本题的关键.
8、D
【解析】
试题解析:含有两个未知数,不是整式方程,C没有二次项.
故选D.
点睛:一元二次方程需要满足三个条件:含有一个未知数,未知数的最高次数是2,整式方程.
9、C
【解析】
根据圆锥的底面周长等于侧面展开图的扇形弧长,列出方程求出圆锥的底面半径,再利用勾股定理求出圆锥的高.
【详解】
解:半径为12cm,圆心角为的扇形弧长是:,
设圆锥的底面半径是rcm,
则,
解得:.
即这个圆锥形冰淇淋纸套的底面半径是2cm.
圆锥形冰淇淋纸套的高为.
故选:C.
【点睛】
本题综合考查有关扇形和圆锥的相关计算解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:
圆锥的母线长等于侧面展开图的扇形半径;
圆锥的底面周长等于侧面展开图的扇形弧长正确对这两个关系的记忆是解题的关键.
10、C
【解析】
连结OA,如图所示:
∵CD⊥AB,
∴AD=BD=AB=12m.
在Rt△OAD中,OA=13,OD=,
所以CD=OC+OD=13+5=18m.
故选C.
11、B
【解析】
根据左视图的定义,从左侧会发现两个正方形摞在一起.
【详解】
从左边看上下各一个小正方形,如图
故选B.
12、C
【解析】
分为三种情况:①AP=OP,②AP=OA,③OA=OP,分别画出即可.
【详解】
如图,
分OP=AP(1点),OA=AP(1点),OA=OP(2点)三种情况讨论.
∴以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有4个.
故选C.
【点睛】
本题考查了等腰三角形的判定和坐标与图形的性质,主要考查学生的动手操作能力和理解能力,注意不要漏解.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案
【详解】
解:如图,过点P作PM⊥AB,则:∠PMB=90°,
当PM⊥AB时,PM最短,
因为直线y=x﹣3与x轴、y轴分别交于点A,B,
可得点A的坐标为(4,0),点B的坐标为(0,﹣3),
在Rt△AOB中,AO=4,BO=3,AB=,
∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,
∴△PBM∽△ABO,
∴,
即:,
所以可得:PM=.
14、
【解析】
首先利用勾股定理求得斜边长,然后利用三角形中位线定理求得答案即可.
【详解】
解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,
∴AB===5,
∵点D、E、F分别是边AB、AC、BC的中点,
∴DE=BC,DF=AC,EF=AB,
∴C△DEF=DE+DF+EF=BC +AC +AB = (BC+AC+AB)=(4+3+5)=6.
故答案为:6.
【点睛】
本题考查了勾股定理和三角形中位线定理.
15、
【解析】
首先利用勾股定理计算出AB2,BC2,AC2,再根据勾股定理逆定理可证明∠BCA=90°,然后得到∠ABC的度数,再利用特殊角的三角函数可得∠ABC的正弦值.
【详解】
解:
连接AC
AB2=32+12=10,BC2=22+12=5,AC2=22+12=5,
∴AC=CB,BC2+AC2=AB2,
∴∠BCA=90°,
∴∠ABC=45°,
∴∠ABC的正弦值为.
故答案为:.
【点睛】
此题主要考查了锐角三角函数,以及勾股定理逆定理,关键是掌握特殊角的三角函数.
16、4
【解析】
根据锐角的余弦值等于邻边比对边列式求解即可.
【详解】
∵∠C=90°,AB=6,
∴,
∴BC=4.
【点睛】
本题考查了勾股定理和锐角三角函数的概念,熟练掌握锐角三角函数的定义是解答本题的关键.在Rt△ABC中, , ,.
17、x=1.
【解析】
先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.
【详解】
,
由不等式①得x≤1,
由不等式②得x>-1,
其解集是-1<x≤1,
所以整数解为0,1,2,1,
则该不等式组的最大整数解是x=1.
故答案为:x=1.
【点睛】
考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
18、1.
【解析】
设P(0,b),
∵直线APB∥x轴,
∴A,B两点的纵坐标都为b,
而点A在反比例函数y=的图象上,
∴当y=b,x=-,即A点坐标为(-,b),
又∵点B在反比例函数y=的图象上,
∴当y=b,x=,即B点坐标为(,b),
∴AB=-(-)=,
∴S△ABC=•AB•OP=••b=1.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)DE与⊙O相切,证明见解析;(2)AC=8.
【解析】
(1)解:(1)DE与⊙O相切.
证明:连接OD、AD,
∵点D是的中点,
∴=,
∴∠DAO=∠DAC,
∵OA=OD,
∴∠DAO=∠ODA,
∴∠DAC=∠ODA,
∴OD∥AE,
∵DE⊥AC,
∴DE⊥OD,
∴DE与⊙O相切.
(2) 连接BC,根据△ODF与△ABC相似,求得AC的长.AC=8
20、(1)CD与圆O的位置关系是相切,理由详见解析;(2) AD=.
【解析】
(1)连接OC,求出OC和AD平行,求出OC⊥CD,根据切线的判定得出即可;
(2)连接BC,解直角三角形求出BC和AC,求出△BCA∽△CDA,得出比例式,代入求出即可.
【详解】
(1)CD与圆O的位置关系是相切,
理由是:连接OC,
∵OA=OC,
∴∠OCA=∠CAB,
∵∠CAB=∠CAD,
∴∠OCA=∠CAD,
∴OC∥AD,
∵CD⊥AD,
∴OC⊥CD,
∵OC为半径,
∴CD与圆O的位置关系是相切;
(2)连接BC,
∵AB是⊙O的直径,
∴∠BCA=90°,
∵圆O的半径为3,
∴AB=6,
∵∠CAB=30°,
∴
∵∠BCA=∠CDA=90°,∠CAB=∠CAD,
∴△CAB∽△DAC,
∴
∴
∴
【点睛】
本题考查了切线的性质和判定,圆周角定理,相似三角形的性质和判定,解直角三角形等知识点,能综合运用知识点进行推理是解此题的关键.
21、(1)详见解析;(2)30°.
【解析】
(1)根据线段垂直平分线的作法作出AB的垂直平分线即可;
(2)连接PA,根据等腰三角形的性质可得,由角平分线的定义可得,根据直角三角形两锐角互余的性质即可得∠B的度数,可得答案.
【详解】
(1)如图所示:分别以A、B为圆心,大于AB长为半径画弧,两弧相交于点E、F,作直线EF,交BC于点P,
∵EF为AB的垂直平分线,
∴PA=PB,
∴点P即为所求.
(2)如图,连接AP,
∵,
∴,
∵AP是角平分线,
∴,
∴,
∵,
∴∠PAC+∠PAB+∠B=90°,
∴3∠B=90°,
解得:∠B=30°,
∴当时,AP平分.
【点睛】
本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键.
22、15cm
【解析】
试题分析:设细线OB的长度为xcm,作AD⊥OB于D,证出四边形ANMD是矩形,得出AN=DM=14cm,求出OD=x-9,在Rt△AOD中,由三角函数得出方程,解方程即可.
试题解析:设细线OB的长度为xcm,作AD⊥OB于D,如图所示:
∴∠ADM=90°,
∵∠ANM=∠DMN=90°,
∴四边形ANMD是矩形,
∴AN=DM=14cm,
∴DB=14﹣5=9cm,
∴OD=x﹣9,
在Rt△AOD中,cos∠AOD=,
∴cos66°==0.40,
解得:x=15,
∴OB=15cm.
23、 (1)见解析;(2)见解析.
【解析】
连接AF,由直径所对的圆周角是直角、同弧所对的圆周角相等的性质,证得直线CD是⊙O的切线,若证AD•CE=DE•DF,只要征得△ADF∽△DEC即可.在第一问中只能证得∠EDC=∠DAF=90°,所以在第二问中只要证得∠DEC=∠ADF即可解答此题.
【详解】
(1)连接AF,
∵DF是⊙O的直径,
∴∠DAF=90°,
∴∠F+∠ADF=90°,
∵∠F=∠ABD,∠ADG=∠ABD,
∴∠F=∠ADG,
∴∠ADF+∠ADG=90°
∴直线CD是⊙O的切线
∴∠EDC=90°,
∴∠EDC=∠DAF=90°;
(2)选取①完成证明
∵直线CD是⊙O的切线,
∴∠CDB=∠A.
∵∠CDB=∠CEB,
∴∠A=∠CEB.
∴AD∥EC.
∴∠DEC=∠ADF.
∵∠EDC=∠DAF=90°,
∴△ADF∽△DEC.
∴AD:DE=DF:EC.
∴AD•CE=DE•DF.
【点睛】
此题考查了切线的性质与判定、弦切角定理、相似三角形的判定与性质等知识.注意乘积的形式可以转化为比例的形式,通过证明三角形相似得出.还要注意构造直径所对的圆周角是圆中的常见辅助线.
24、(1)E(2,1);(2);(1).
【解析】
(1)先确定出点C坐标,进而得出点F坐标,即可得出结论;
(2)先确定出点F的横坐标,进而表示出点F的坐标,得出CF,同理表示出CE,即可得出结论;
(1)先判断出△EHG∽△GBF,即可求出BG,最后用勾股定理求出k,即可得出结论.
【详解】
(1)∵OA=1,OB=4,
∴B(4,0),C(4,1),
∵F是BC的中点,
∴F(4,),
∵F在反比例y=函数图象上,
∴k=4×=6,
∴反比例函数的解析式为y=,
∵E点的坐标为1,
∴E(2,1);
(2)∵F点的横坐标为4,
∴F(4,),
∴CF=BC﹣BF=1﹣=
∵E的纵坐标为1,
∴E(,1),
∴CE=AC﹣AE=4﹣=,
在Rt△CEF中,tan∠EFC=,
(1)如图,由(2)知,CF=,CE=,,
过点E作EH⊥OB于H,
∴EH=OA=1,∠EHG=∠GBF=90°,
∴∠EGH+∠HEG=90°,
由折叠知,EG=CE,FG=CF,∠EGF=∠C=90°,
∴∠EGH+∠BGF=90°,
∴∠HEG=∠BGF,
∵∠EHG=∠GBF=90°,
∴△EHG∽△GBF,
∴,
∴,
∴BG=,
在Rt△FBG中,FG2﹣BF2=BG2,
∴()2﹣()2=,
∴k=,
∴反比例函数解析式为y=.
点睛:此题是反比例函数综合题,主要考查了待定系数法,中点坐标公式,相似三角形的判定和性质,锐角三角函数,求出CE:CF是解本题的关键.
25、
【解析】
分析:列表得出所有等可能的情况数,找出两次都摸到红球的情况数,即可求出所求的概率.
详解:列表如下:
红
红
白
黑
红
﹣﹣﹣
(红,红)
(白,红)
(黑,红)
红
(红,红)
﹣﹣﹣
(白,红)
(黑,红)
白
(红,白)
(红,白)
﹣﹣﹣
(黑,白)
黑
(红,黑)
(红,黑)
(白,黑)
﹣﹣﹣
所有等可能的情况有12种,其中两次都摸到红球有2种可能,
则P(两次摸到红球)==.
点睛:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
26、1
【解析】
先将除式括号里面的通分后,将除法转换成乘法,约分化简.然后解一元二次方程,根据分式有意义的条件选择合适的x值,代入求值.
【详解】
解:原式=.
解得,
,
∵时,无意义,
∴取.
当时,原式=.
27、120
【解析】
设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,根据用1250元所购件数是第一批的2倍,列方程求解.
【详解】
解:设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,
由题意得,×2=,
解得:x=120,
经检验:x=120是原分式方程的解,且符合题意.
答:第一批水果每件进价为120元.
【点睛】
本题考查了分式方程的应用,解题的关键是熟练的掌握分式方程的应用.
浙江省杭州市上城区达标名校2021-2022学年十校联考最后数学试题含解析: 这是一份浙江省杭州市上城区达标名校2021-2022学年十校联考最后数学试题含解析,共21页。试卷主要包含了答题时请按要求用笔,的相反数是等内容,欢迎下载使用。
达标名校2021-2022学年十校联考最后数学试题含解析: 这是一份达标名校2021-2022学年十校联考最后数学试题含解析,共22页。试卷主要包含了在数轴上表示不等式2等内容,欢迎下载使用。
贵州省遵义地区重点达标名校2021-2022学年十校联考最后数学试题含解析: 这是一份贵州省遵义地区重点达标名校2021-2022学年十校联考最后数学试题含解析,共18页。试卷主要包含了下列运算结果是无理数的是等内容,欢迎下载使用。