|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年浙江省杭州江干区六校联考中考押题数学预测卷含解析
    立即下载
    加入资料篮
    2021-2022学年浙江省杭州江干区六校联考中考押题数学预测卷含解析01
    2021-2022学年浙江省杭州江干区六校联考中考押题数学预测卷含解析02
    2021-2022学年浙江省杭州江干区六校联考中考押题数学预测卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年浙江省杭州江干区六校联考中考押题数学预测卷含解析

    展开
    这是一份2021-2022学年浙江省杭州江干区六校联考中考押题数学预测卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,如图,点P等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种正五边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相垂直.其中假命题的个数有(  )
    A.1个 B.2个 C.3个 D.4个
    2.如图,⊙O的直径AB垂直于弦CD,垂足为E.若,AC=3,则CD的长为

    A.6 B. C. D.3
    3.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是(  )

    A. B. C. D.
    4.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为(  )
    A.﹣=100 B.﹣=100
    C.﹣=100 D.﹣=100
    5.如图,点F是ABCD的边AD上的三等分点,BF交AC于点E,如果△AEF的面积为2,那么四边形CDFE的面积等于( )

    A.18 B.22 C.24 D.46
    6.已知⊙O的半径为5,若OP=6,则点P与⊙O的位置关系是(  )
    A.点P在⊙O内 B.点P在⊙O外 C.点P在⊙O上 D.无法判断
    7.实数a,b在数轴上对应的点的位置如图所示,则正确的结论是(  )

    A.a+b<0 B.a>|﹣2| C.b>π D.
    8.钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是( )
    A. B. C. D.
    9.如图,点P(x,y)(x>0)是反比例函数y=(k>0)的图象上的一个动点,以点P为圆心,OP为半径的圆与x轴的正半轴交于点A,若△OPA的面积为S,则当x增大时,S的变化情况是(  )

    A.S的值增大 B.S的值减小
    C.S的值先增大,后减小 D.S的值不变
    10.a、b互为相反数,则下列成立的是(  )
    A.ab=1 B.a+b=0 C.a=b D.=-1
    11.不解方程,判别方程2x2﹣3x=3的根的情况(  )
    A.有两个相等的实数根 B.有两个不相等的实数根
    C.有一个实数根 D.无实数根
    12.已知A、B两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A市到B市乘动车比乘火车少用40分钟,设动车速度为每小时x千米,则可列方程为(  )
    A. B.
    C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.若n边形的内角和是它的外角和的2倍,则n= .
    14.如图,一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从点A到点B经过的路径长为_____.

    15.27的立方根为 .
    16.计算: 7+(-5)=______.
    17.如图,与是以点为位似中心的位似图形,相似比为,,,若点的坐标是,则点的坐标是__________.

    18.已知一组数据x1,x2,x3,x4,x5的平均数是3,则另一组新数据x1+1,x2+2,x3+3,x4+4,x5+5的平均数是_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:
    血型
    A
    B
    AB
    O
    人数
       
    10
    5
       
    (1)这次随机抽取的献血者人数为   人,m=   ;补全上表中的数据;若这次活动中该市有3000人义务献血,请你根据抽样结果回答:
    从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?

    20.(6分)已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.
    (1)如图1,求证:KE=GE;
    (2)如图2,连接CABG,若∠FGB=∠ACH,求证:CA∥FE;
    (3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE=,AK=,求CN的长.

    21.(6分)在平面直角坐标系xOy中,函数(x>0)的图象与直线l1:y=x+b交于点A(3,a-2).
    (1)求a,b的值;
    (2)直线l2:y=-x+m与x轴交于点B,与直线l1交于点C,若S△ABC≥6,求m的取值范围.
    22.(8分)如图,直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.
    (1)请直接写出⊙M的直径,并求证BD平分∠ABO;
    (2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E的坐标.

    23.(8分)一道选择题有四个选项.
    (1)若正确答案是,从中任意选出一项,求选中的恰好是正确答案的概率;
    (2)若正确答案是,从中任意选择两项,求选中的恰好是正确答案的概率.
    24.(10分)如图,直线y=2x+6与反比例函数y=(k>0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图像于点M,交AB于点N,连接BM.求m的值和反比例函数的表达式;直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?

    25.(10分)△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.
    如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的时,求线段EF的长.
    26.(12分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.
    求甲、乙两种商品的每件进价;
    该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?
    27.(12分)探究:
    在一次聚会上,规定每两个人见面必须握手,且只握手1次若参加聚会的人数为3,则共握手   次:;若参加聚会的人数为5,则共握手   次;若参加聚会的人数为n(n为正整数),则共握手   次;若参加聚会的人共握手28次,请求出参加聚会的人数.
    拓展:
    嘉嘉给琪琪出题:
    “若线段AB上共有m个点(含端点A,B),线段总数为30,求m的值.”
    琪琪的思考:“在这个问题上,线段总数不可能为30”
    琪琪的思考对吗?为什么?



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    根据对顶角的定义,平行线的性质以及正五边形的内角及镶嵌的知识,逐一判断.
    【详解】
    解:①对顶角有位置及大小关系的要求,相等的角不一定是对顶角,故为假命题;
    ②只有当两条平行直线被第三条直线所截,同位角相等,故为假命题;
    ③正五边形的内角和为540°,则其内角为108°,而360°并不是108°的整数倍,不能进行平面镶嵌,故为假命题;
    ④在同一平面内,垂直于同一条直线的两条直线平行,故为假命题.
    故选:D.
    【点睛】
    本题考查了命题与证明.对顶角,垂线,同位角,镶嵌的相关概念.关键是熟悉这些概念,正确判断.
    2、D
    【解析】
    解:因为AB是⊙O的直径,所以∠ACB=90°,又⊙O的直径AB垂直于弦CD,,所以在Rt△AEC 中,∠A=30°,又AC=3,所以CE=AB=,所以CD=2CE=3,
    故选D.
    【点睛】
    本题考查圆的基本性质;垂经定理及解直角三角形,综合性较强,难度不大.
    3、B
    【解析】
    解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:.故选B.

    4、B
    【解析】
    【分析】直接利用购买科普书的数量比购买文学书的数量少100本得出等式进而得出答案.
    【详解】科普类图书平均每本的价格是x元,则可列方程为:
    ﹣=100,
    故选B.
    【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
    5、B
    【解析】
    连接FC,先证明△AEF∽△BEC,得出AE∶EC=1∶3,所以S△EFC=3S△AEF,在根据点F是□ABCD的边AD上的三等分点得出S△FCD=2S△AFC,四边形CDFE的面积=S△FCD+ S△EFC,再代入△AEF的面积为2即可求出四边形CDFE的面积.
    【详解】
    解:∵AD∥BC,
    ∴∠EAF=∠ACB,∠AFE=∠FBC;
    ∵∠AEF=∠BEC,
    ∴△AEF∽△BEC,
    ∴==,
    ∵△AEF与△EFC高相等,
    ∴S△EFC=3S△AEF,
    ∵点F是□ABCD的边AD上的三等分点,
    ∴S△FCD=2S△AFC,
    ∵△AEF的面积为2,
    ∴四边形CDFE的面积=S△FCD+ S△EFC=16+6=22.
    故选B.
    【点睛】
    本题考查了相似三角形的应用与三角形的面积,解题的关键是熟练的掌握相似三角形的应用与三角形的面积的相关知识点.
    6、B
    【解析】
    比较OP与半径的大小即可判断.
    【详解】
    ,,

    点P在外,
    故选B.
    【点睛】
    本题考查点与圆的位置关系,记住:点与圆的位置关系有3种设的半径为r,点P到圆心的距离,则有:点P在圆外;点P在圆上;点P在圆内.
    7、D
    【解析】
    根据数轴上点的位置,可得a,b,根据有理数的运算,可得答案.
    【详解】
    a=﹣2,2<b<1.
    A.a+b<0,故A不符合题意;
    B.a<|﹣2|,故B不符合题意;
    C.b<1<π,故C不符合题意;
    D.<0,故D符合题意;
    故选D.
    【点睛】
    本题考查了实数与数轴,利用有理数的运算是解题关键.
    8、A
    【解析】
    根据轴对称图形的概念求解.
    解:根据轴对称图形的概念可知:B,C,D是轴对称图形,A不是轴对称图形,
    故选A.
    “点睛”本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
    9、D
    【解析】
    作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=|k|,所以S=2k,为定值.
    【详解】
    作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.
    ∵S△POB=|k|,∴S=2k,∴S的值为定值.
    故选D.

    【点睛】
    本题考查了反比例函数系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
    10、B
    【解析】
    依据相反数的概念及性质即可得.
    【详解】
    因为a、b互为相反数,
    所以a+b=1,
    故选B.
    【点睛】
    此题主要考查相反数的概念及性质.相反数的定义:只有符号不同的两个数互为相反数,1的相反数是1.
    11、B
    【解析】
    一元二次方程的根的情况与根的判别式有关,
    ,方程有两个不相等的实数根,故选B
    12、D
    【解析】
    解:设动车速度为每小时x千米,则可列方程为:﹣=.故选D.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、6
    【解析】
    此题涉及多边形内角和和外角和定理
    多边形内角和=180(n-2), 外角和=360º
    所以,由题意可得180(n-2)=2×360º
    解得:n=6
    14、2
    【解析】
    延长AC交x轴于B′.根据光的反射原理,点B、B′关于y轴对称,CB=CB′.路径长就是AB′的长度.结合A点坐标,运用勾股定理求解.
    【详解】
    解:如图所示,

    延长AC交x轴于B′.则点B、B′关于y轴对称,CB=CB′.作AD⊥x轴于D点.则AD=3,DB′=3+1=1.
    由勾股定理AB′=2
    ∴AC+CB = AC+CB′= AB′=2.即光线从点A到点B经过的路径长为2.
    考点:解直角三角形的应用
    点评:本题考查了直角三角形的有关知识,同时渗透光学中反射原理,构造直角三角形是解决本题关键
    15、1
    【解析】
    找到立方等于27的数即可.
    解:∵11=27,
    ∴27的立方根是1,
    故答案为1.
    考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算
    16、2
    【解析】
    根据有理数的加法法则计算即可.
    【详解】
    .
    故答案为:2.
    【点睛】
    本题考查有理数的加法计算,熟练掌握加法法则是关键.
    17、(2,2)
    【解析】
    分析:首先解直角三角形得出A点坐标,再利用位似是特殊的相似,若两个图形与是以点为位似中心的位似图形,相似比是k,上一点的坐标是 则在中,它的对应点的坐标是或,进而求出即可.
    详解:与是以点为位似中心的位似图形,,

    ,若点的坐标是,

    过点作交于点E.

    点的坐标为:
    与的相似比为,
    点的坐标为:即点的坐标为:
    故答案为:

    点睛:考查位似图形的性质,熟练掌握位似图形的性质是解题的关键.
    18、1
    【解析】
    根据平均数的性质知,要求x1+1,x2+2,x3+3,x4+4、x5+5的平均数,只要把数x1、x2、x3、x4、x5的和表示出即可.
    【详解】
    ∵数据x1,x2,x3,x4,x5的平均数是3,
    ∴x1+x2+x3+x4+x5=15,
    则新数据的平均数为=1,
    故答案为:1.
    【点睛】
    本题考查的是样本平均数的求法.解决本题的关键是用一组数据的平均数表示另一组数据的平均数.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)50,20;(2)12,23;见图;(3)大约有720人是A型血.
    【解析】
    【分析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后用B型的人数除以抽取的总人数即可求得m的值;
    (2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;
    (3)用样本中A型的人数除以50得到血型是A型的概率,然后用3000乘以此概率可估计这3000人中是A型血的人数.
    【详解】(1)这次随机抽取的献血者人数为5÷10%=50(人),
    所以m=×100=20,
    故答案为50,20;
    (2)O型献血的人数为46%×50=23(人),
    A型献血的人数为50﹣10﹣5﹣23=12(人),
    补全表格中的数据如下:
    血型
    A
    B
    AB
    O
    人数
    12
    10
    5
    23
    故答案为12,23;
    (3)从献血者人群中任抽取一人,其血型是A型的概率=,
    3000×=720,
    估计这3000人中大约有720人是A型血.
    【点睛】本题考查了扇形统计图、统计表、概率公式、用样本估计总体等,读懂统计图、统计表,从中找到必要的信息是解题的关键;随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.
    20、(1)证明见解析;(2)△EAD是等腰三角形.证明见解析;(3).
    【解析】
    试题分析:
    (1)连接OG,则由已知易得∠OGE=∠AHK=90°,由OG=OA可得∠AGO=∠OAG,从而可得∠KGE=∠AKH=∠EKG,这样即可得到KE=GE;
    (2)设∠FGB=α,由AB是直径可得∠AGB=90°,从而可得∠KGE=90°-α,结合GE=KE可得∠EKG=90°-α,这样在△GKE中可得∠E=2α,由∠FGB=∠ACH可得∠ACH=2α,这样可得∠E=∠ACH,由此即可得到CA∥EF;
    (3)如下图2,作NP⊥AC于P,
    由(2)可知∠ACH=∠E,由此可得sinE=sin∠ACH=,设AH=3a,可得AC=5a,CH=4a,则tan∠CAH=,由(2)中结论易得∠CAK=∠EGK=∠EKG=∠AKC,从而可得CK=AC=5a,由此可得HK=a,tan∠AKH=,AK=a,结合AK=可得a=1,则AC=5;在四边形BGKH中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,结合∠AKH+∠GKG=180°,∠ACG=∠ABG可得∠ACG=∠AKH,
    在Rt△APN中,由tan∠CAH=,可设PN=12b,AP=9b,由tan∠ACG=tan∠AKH=3可得CP=4b,由此可得AC=AP+CP==5,则可得b=,由此即可在Rt△CPN中由勾股定理解出CN的长.
    试题解析:
    (1)如图1,连接OG.

    ∵EF切⊙O于G,
    ∴OG⊥EF,
    ∴∠AGO+∠AGE=90°,
    ∵CD⊥AB于H,
    ∴∠AHD=90°,
    ∴∠OAG=∠AKH=90°,
    ∵OA=OG,
    ∴∠AGO=∠OAG,
    ∴∠AGE=∠AKH,
    ∵∠EKG=∠AKH,
    ∴∠EKG=∠AGE,
    ∴KE=GE.
    (2)设∠FGB=α,
    ∵AB是直径,
    ∴∠AGB=90°,
    ∴∠AGE=∠EKG=90°﹣α,
    ∴∠E=180°﹣∠AGE﹣∠EKG=2α,
    ∵∠FGB=∠ACH,
    ∴∠ACH=2α,
    ∴∠ACH=∠E,
    ∴CA∥FE.
    (3)作NP⊥AC于P.
    ∵∠ACH=∠E,
    ∴sin∠E=sin∠ACH=,设AH=3a,AC=5a,
    则CH=,tan∠CAH=,
    ∵CA∥FE,
    ∴∠CAK=∠AGE,
    ∵∠AGE=∠AKH,
    ∴∠CAK=∠AKH,
    ∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH==3,AK=,
    ∵AK=,
    ∴,
    ∴a=1.AC=5,
    ∵∠BHD=∠AGB=90°,
    ∴∠BHD+∠AGB=180°,
    在四边形BGKH中,∠BHD+∠HKG+∠AGB+∠ABG=360°,
    ∴∠ABG+∠HKG=180°,
    ∵∠AKH+∠HKG=180°,
    ∴∠AKH=∠ABG,
    ∵∠ACN=∠ABG,
    ∴∠AKH=∠ACN,
    ∴tan∠AKH=tan∠ACN=3,
    ∵NP⊥AC于P,
    ∴∠APN=∠CPN=90°,
    在Rt△APN中,tan∠CAH=,设PN=12b,则AP=9b,
    在Rt△CPN中,tan∠ACN==3,
    ∴CP=4b,
    ∴AC=AP+CP=13b,
    ∵AC=5,
    ∴13b=5,
    ∴b=,
    ∴CN===.

    21、(1)a=3,b=-2;(2) m≥8或m≤-2
    【解析】
    (1)把A点坐标代入反比例解析式确定出a的值,确定出A坐标,代入一次函数解析式求出b的值;(2)分别求出直线l1与x轴交于点D,再求出直线l2与x轴交于点B,从而得出直线l2与直线l1交于点C坐标,分两种情况进行讨论:①当S△ABC=S△BCD+S△ABD=6时,利用三角形的面积求出m的值,②当S△ABC=S△BCD−S△ABD=6时,利用三角形的面积求出m的值,从而得出m的取值范围.
    【详解】
    (1)∵点A在图象上

    ∴a=3
    ∴A(3,1)
    ∵点A在y=x+b图象上
    ∴1=3+b
    ∴b=-2
    ∴解析式y=x-2
    (2)设直线y=x-2与x轴的交点为D
    ∴D(2,0)
    ①当点C在点A的上方如图(1)

    ∵直线y=-x+m与x轴交点为B
    ∴B(m,0)(m>3)
    ∵直线y=-x+m与直线y=x-2相交于点C

    解得:
    ∴C
    ∵S△ABC=S△BCD-S△ABD≥6

    ∴m≥8
    ②若点C在点A下方如图2

    ∵S△ABC=S△BCD+S△ABD≥6

    ∴m≤-2
    综上所述,m≥8或m≤-2
    【点睛】
    此题考查了一次函数与反比例函数的交点问题,三角形的面积,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.
    22、(1)详见解析;(2)(,1).
    【解析】
    (1)根据勾股定理可得AB的长,即⊙M的直径,根据同弧所对的圆周角可得BD平分∠ABO;
    (2)作辅助构建切线AE,根据特殊的三角函数值可得∠OAB=30°,分别计算EF和AF的长,可得点E的坐标.
    【详解】
    (1)∵点A(,0)与点B(0,﹣1),
    ∴OA=,OB=1,
    ∴AB==2,
    ∵AB是⊙M的直径,
    ∴⊙M的直径为2,
    ∵∠COD=∠CBO,∠COD=∠CBA,
    ∴∠CBO=∠CBA,
    即BD平分∠ABO;
    (2)如图,过点A作AE⊥AB于E,交BD的延长线于点E,过E作EF⊥OA于F,即AE是切线,
    ∵在Rt△ACB中,tan∠OAB=,
    ∴∠OAB=30°,
    ∵∠ABO=90°,
    ∴∠OBA=60°,
    ∴∠ABC=∠OBC==30°,
    ∴OC=OB•tan30°=1×,
    ∴AC=OA﹣OC=,
    ∴∠ACE=∠ABC+∠OAB=60°,
    ∴∠EAC=60°,
    ∴△ACE是等边三角形,
    ∴AE=AC=,
    ∴AF=AE=,EF==1,
    ∴OF=OA﹣AF=,
    ∴点E的坐标为(,1).

    【点睛】
    此题属于圆的综合题,考查了勾股定理、圆周角定理、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.
    23、(1);(2)
    【解析】
    (1)直接利用概率公式求解;
    (2)画树状图展示所有12种等可能的结果数,再找出选中的恰好是正确答案A,B的结果数,然后根据概率公式求解.
    【详解】
    解:(1)选中的恰好是正确答案A的概率为;
    (2)画树状图:

    共有12种等可能的结果数,其中选中的恰好是正确答案A,B的结果数为2,
    所以选中的恰好是正确答案A,B的概率=.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
    24、(1)m=8,反比例函数的表达式为y=;(2)当n=3时,△BMN的面积最大.
    【解析】
    (1)求出点A的坐标,利用待定系数法即可解决问题;
    (2)构造二次函数,利用二次函数的性质即可解决问题.
    【详解】
    解:(1)∵直线y=2x+6经过点A(1,m),
    ∴m=2×1+6=8,
    ∴A(1,8),
    ∵反比例函数经过点A(1,8),
    ∴8=,
    ∴k=8,
    ∴反比例函数的解析式为y=.
    (2)由题意,点M,N的坐标为M(,n),N(,n),
    ∵0<n<6,
    ∴<0,
    ∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,
    ∴n=3时,△BMN的面积最大.
    25、(1)△ABD,△ACD,△DCE(2)△BDF∽△CED∽△DEF,证明见解析;(3)4.
    【解析】
    (1)根据等腰三角形的性质以及相似三角形的判定得出△ADE∽△ABD∽△ACD∽△DCE,同理可得:△ADE∽△ACD.△ADE∽△DCE.
    (2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性质得出,从而得出△BDF∽△CED∽△DEF.
    (3)利用△DEF的面积等于△ABC的面积的,求出DH的长,从而利用S△DEF的值求出EF即可
    【详解】
    解:(1)图(1)中与△ADE相似的有△ABD,△ACD,△DCE.
    (2)△BDF∽△CED∽△DEF,证明如下:
    ∵∠B+∠BDF+∠BFD=30°,∠EDF+∠BDF+∠CDE=30°,
    又∵∠EDF=∠B,
    ∴∠BFD=∠CDE.
    ∵AB=AC,
    ∴∠B=∠C.
    ∴△BDF∽△CED.
    ∴.
    ∵BD=CD,
    ∴,即.
    又∵∠C=∠EDF,
    ∴△CED∽△DEF.
    ∴△BDF∽△CED∽△DEF.
    (3)连接AD,过D点作DG⊥EF,DH⊥BF,垂足分别为G,H.

    ∵AB=AC,D是BC的中点,
    ∴AD⊥BC,BD=BC=1.
    在Rt△ABD中,AD2=AB2﹣BD2,即AD2=102﹣3,
    ∴AD=2.
    ∴S△ABC=•BC•AD=×3×2=42,
    S△DEF=S△ABC=×42=3.
    又∵•AD•BD=•AB•DH,
    ∴.
    ∵△BDF∽△DEF,
    ∴∠DFB=∠EFD.
    ∵DH⊥BF,DG⊥EF,
    ∴∠DHF=∠DGF.
    又∵DF=DF,
    ∴△DHF≌△DGF(AAS).
    ∴DH=DG=.
    ∵S△DEF=·EF·DG=·EF·=3,
    ∴EF=4.
    【点睛】
    本题考查了和相似有关的综合性题目,用到的知识点有三角形相似的判定和性质、等腰三角形的性质以及勾股定理的运用,灵活运用相似三角形的判定定理和性质定理是解题的关键,解答时,要仔细观察图形、选择合适的判定方法,注意数形结合思想的运用.
    26、 甲种商品的每件进价为40元,乙种商品的每件进价为48元;甲种商品按原销售单价至少销售20件.
    【解析】
    【分析】设甲种商品的每件进价为x元,乙种商品的每件进价为(x+8))元根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元购进的甲、乙两种商品件数相同”列出方程进行求解即可;
    设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式进行求解即可.
    【详解】设甲种商品的每件进价为x元,则乙种商品的每件进价为元,
    根据题意得,,
    解得,
    经检验,是原方程的解,
    答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;
    甲乙两种商品的销售量为,
    设甲种商品按原销售单价销售a件,则

    解得,
    答:甲种商品按原销售单价至少销售20件.
    【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系列出方程,找出不等关系列出不等式是解题的关键.
    27、探究:(1)3,1;(2);(3)参加聚会的人数为8人;拓展:琪琪的思考对,见解析.
    【解析】
    探究:(1)根据握手次数=参会人数×(参会人数-1)÷2,即可求出结论;
    (2)由(1)的结论结合参会人数为n,即可得出结论;
    (3)由(2)的结论结合共握手28次,即可得出关于n的一元二次方程,解之取其正值即可得出结论;
    拓展:将线段数当成握手数,顶点数看成参会人数,由(2)的结论结合线段总数为2,即可得出关于m的一元二次方程,解之由该方程的解均不为整数可得出琪琪的思考对.
    【详解】
    探究:(1)3×(3-1)÷2=3,5×(5-1)÷2=1.
    故答案为3;1.
    (2)∵参加聚会的人数为n(n为正整数),
    ∴每人需跟(n-1)人握手,
    ∴握手总数为.
    故答案为.
    (3)依题意,得:=28,
    整理,得:n2-n-56=0,
    解得:n1=8,n2=-7(舍去).
    答:参加聚会的人数为8人.
    拓展:琪琪的思考对,理由如下:
    如果线段数为2,则由题意,得:=2,
    整理,得:m2-m-60=0,
    解得m1=,m2=(舍去).
    ∵m为正整数,
    ∴没有符合题意的解,
    ∴线段总数不可能为2.
    【点睛】
    本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,列式计算;(2)根据各数量之间的关系,用含n的代数式表示出握手总数;(3)(拓展)找准等量关系,正确列出一元二次方程.

    相关试卷

    浙江省杭州市临安市2021-2022学年中考押题数学预测卷含解析: 这是一份浙江省杭州市临安市2021-2022学年中考押题数学预测卷含解析,共21页。试卷主要包含了已知等内容,欢迎下载使用。

    浙江省杭州江干区六校联考2022年中考押题数学预测卷含解析: 这是一份浙江省杭州江干区六校联考2022年中考押题数学预测卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,函数,初三,计算的结果是,一次函数的图象不经过,下列各数中,为无理数的是等内容,欢迎下载使用。

    浙江省杭州杭州经济开发区五校联考2021-2022学年中考数学押题试卷含解析: 这是一份浙江省杭州杭州经济开发区五校联考2021-2022学年中考数学押题试卷含解析,共21页。试卷主要包含了下列说法中,正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map