|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年浙江省绍兴县中考数学四模试卷含解析
    立即下载
    加入资料篮
    2021-2022学年浙江省绍兴县中考数学四模试卷含解析01
    2021-2022学年浙江省绍兴县中考数学四模试卷含解析02
    2021-2022学年浙江省绍兴县中考数学四模试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年浙江省绍兴县中考数学四模试卷含解析

    展开
    这是一份2021-2022学年浙江省绍兴县中考数学四模试卷含解析,共21页。试卷主要包含了的倒数是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是( )

    A.点A B.点B C.点C D.点D
    2.已知二次函数y=x2﹣4x+m的图象与x轴交于A、B两点,且点A的坐标为(1,0),则线段AB的长为(  )
    A.1 B.2 C.3 D.4
    3.设α,β是一元二次方程x2+2x-1=0的两个根,则αβ的值是(  )
    A.2 B.1 C.-2 D.-1
    4.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是(  )
    A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6
    5.如图,点A,B,C在⊙O上,∠ACB=30°,⊙O的半径为6,则的长等于(  )

    A.π B.2π C.3π D.4π
    6.下列图形中,是轴对称图形但不是中心对称图形的是(  )
    A.直角梯形 B.平行四边形 C.矩形 D.正五边形
    7.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是(  )
    A.= B.=
    C.= D.=
    8.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是( )

    A. B. C. D.
    9.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是(  )
    学生数(人)
    5
    8
    14
    19
    4
    时间(小时)
    6
    7
    8
    9
    10
    A.14,9 B.9,9 C.9,8 D.8,9
    10.的倒数是( )
    A. B.3 C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图放置的正方形,正方形,正方形,…都是边长为的正方形,点在轴上,点,…,都在直线上,则的坐标是__________,的坐标是______.

    12.在△ABC中,∠C=90°,sinA=,BC=4,则AB值是_____.
    13.如图,Rt△ABC中,若∠C=90°,BC=4,tanA=,则AB=___.

    14.已知一组数据-3,x,-2, 3,1,6的众数为3,则这组数据的中位数为______.
    15.因式分解:a2﹣a=_____.
    16.如果,那么=_____.
    三、解答题(共8题,共72分)
    17.(8分)艺术节期间,学校向学生征集书画作品,杨老师从全校36个班中随机抽取了4 个班 (用A,B,C,D表示),对征集到的作品的数量进行了统计,制作了两幅不完整的统计图.请 根据相关信息,回答下列问题:
    (1)请你将条形统计图补充完整;并估计全校共征集了_____件作品;

    (2)如果全校征集的作品中有4件获得一等奖,其中有3名作者是男生,1名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求选取的两名学生恰好是一男一女的概率.
    18.(8分)在△ABC中,∠ACB=45°.点D(与点B、C不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
    (1)如果AB=AC.如图①,且点D在线段BC上运动.试判断线段CF与BD之间的位置关系,并证明你的结论.
    (2)如果AB≠AC,如图②,且点D在线段BC上运动.(1)中结论是否成立,为什么?
    (3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=4,BC=3,CD=x,求线段CP的长.(用含x的式子表示)

    19.(8分)今年 3 月 12 日植树节期间, 学校预购进 A、B 两种树苗,若购进 A种树苗 3 棵,B 种树苗 5 棵,需 2100 元,若购进 A 种树苗 4 棵,B 种树苗 10棵,需 3800 元.
    (1)求购进 A、B 两种树苗的单价;
    (2)若该单位准备用不多于 8000 元的钱购进这两种树苗共 30 棵,求 A 种树苗至少需购进多少棵?
    20.(8分)学习了正多边形之后,小马同学发现利用对称、旋转等方法可以计算等分正多边形面积的方案.
    (1)请聪明的你将下面图①、图②、图③的等边三角形分别割成2个、3个、4个全等三角形;
    (2)如图④,等边△ABC边长AB=4,点O为它的外心,点M、N分别为边AB、BC上的动点(不与端点重合),且∠MON=120°,若四边形BMON的面积为s,它的周长记为l,求最小值;
    (3)如图⑤,等边△ABC的边长AB=4,点P为边CA延长线上一点,点Q为边AB延长线上一点,点D为BC边中点,且∠PDQ=120°,若PA=x,请用含x的代数式表示△BDQ的面积S△BDQ.

    21.(8分)如图,在平面直角坐标系xOy中,直线y=x+b与双曲线y=相交于A,B两点,
    已知A(2,5).求:b和k的值;△OAB的面积.

    22.(10分) “中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元,求A、B两种型号的空调的购买价各是多少元?
    23.(12分)如图,在△ABC中,BC=6,AB=AC,E,F分别为AB,AC上的点(E,F不与A重合),且EF∥BC.将△AEF沿着直线EF向下翻折,得到△A′EF,再展开.
    (1)请判断四边形AEA′F的形状,并说明理由;
    (2)当四边形AEA′F是正方形,且面积是△ABC的一半时,求AE的长.

    24.为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.
    (1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;
    (2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    ,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.
    【详解】




    因为0.268<0.732<1.268,
    所以 表示的点与点B最接近,
    故选B.
    2、B
    【解析】
    先将点A(1,0)代入y=x2﹣4x+m,求出m的值,将点A(1,0)代入y=x2﹣4x+m,得到x1+x2=4,x1•x2=3,即可解答
    【详解】
    将点A(1,0)代入y=x2﹣4x+m,
    得到m=3,
    所以y=x2﹣4x+3,与x轴交于两点,
    设A(x1,y1),b(x2,y2)
    ∴x2﹣4x+3=0有两个不等的实数根,
    ∴x1+x2=4,x1•x2=3,
    ∴AB=|x1﹣x2|= =2;
    故选B.
    【点睛】
    此题考查抛物线与坐标轴的交点,解题关键在于将已知点代入.
    3、D
    【解析】
    试题分析:∵α、β是一元二次方程的两个根,∴αβ==-1,故选D.
    考点:根与系数的关系.
    4、D
    【解析】
    根据平均数、中位数、众数以及方差的定义判断各选项正误即可.
    【详解】
    A、数据中5出现2次,所以众数为5,此选项正确;
    B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;
    C、平均数为(7+5+3+5+10)÷5=6,此选项正确;
    D、方差为×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;
    故选:D.
    【点睛】
    本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.
    5、B
    【解析】
    根据圆周角得出∠AOB=60°,进而利用弧长公式解答即可.
    【详解】
    解:∵∠ACB=30°,
    ∴∠AOB=60°,
    ∴的长==2π,
    故选B.
    【点睛】
    此题考查弧长的计算,关键是根据圆周角得出∠AOB=60°.
    6、D
    【解析】分析:根据轴对称图形与中心对称图形的概念结合矩形、平行四边形、直角梯形、正五边形的性质求解.
    详解:A.直角梯形不是轴对称图形,也不是中心对称图形,故此选项错误;
    B.平行四边形不是轴对称图形,是中心对称图形,故此选项错误;
    C.矩形是轴对称图形,也是中心对称图形,故此选项错误;
    D.正五边形是轴对称图形,不是中心对称图形,故此选项正确.
    故选D.
    点睛:本题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.
    7、B
    【解析】
    设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,根据题意可得:现在生产600台所需时间与原计划生产450台机器所需时间相同,据此列方程即可.
    【详解】
    设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,由题意得:.
    故选B.
    【点睛】
    本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.
    8、B
    【解析】
    根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.
    【详解】
    连接BD,

    ∵四边形ABCD是菱形,∠A=60°,
    ∴∠ADC=120°,
    ∴∠1=∠2=60°,
    ∴△DAB是等边三角形,
    ∵AB=2,
    ∴△ABD的高为,
    ∵扇形BEF的半径为2,圆心角为60°,
    ∴∠4+∠5=60°,∠3+∠5=60°,
    ∴∠3=∠4,
    设AD、BE相交于点G,设BF、DC相交于点H,
    在△ABG和△DBH中,

    ∴△ABG≌△DBH(ASA),
    ∴四边形GBHD的面积等于△ABD的面积,
    ∴图中阴影部分的面积是:S扇形EBF-S△ABD=
    =.
    故选B.
    9、C
    【解析】
    解:观察、分析表格中的数据可得:
    ∵课外阅读时间为1小时的人数最多为11人,
    ∴众数为1.
    ∵将这组数据按照从小到大的顺序排列,第25个和第26个数据的均为2,
    ∴中位数为2.
    故选C.
    【点睛】
    本题考查(1)众数是一组数据中出现次数最多的数;(2)中位数的确定要分两种情况:①当数据组中数据的总个数为奇数时,把所有数据按从小到大的顺序排列,中间的那个数就是中位数;②当数据组中数据的总个数为偶数时,把所有数据按从小到大的顺序排列,中间的两个数的平均数是这组数据的中位数.
    10、A
    【解析】
    解:的倒数是.
    故选A.
    【点睛】
    本题考查倒数,掌握概念正确计算是解题关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    先求出OA的长度,然后利用含30°的直角三角形的性质得到点D的坐标,探索规律,从而得到的坐标即可.
    【详解】
    分别过点 作y轴的垂线交y轴于点,

    ∵点B在上









    同理, 都是含30°的直角三角形
    ∵,


    同理,点 的横坐标为
    纵坐标为
    故点的坐标为
    故答案为:;.
    【点睛】
    本题主要考查含30°的直角三角形的性质,找到点的坐标规律是解题的关键.
    12、6
    【解析】
    根据正弦函数的定义得出sinA=,即,即可得出AB的值.
    【详解】
    ∵sinA=,即,
    ∴AB=1,
    故答案为1.
    【点睛】
    本题考查了解直角三角形,熟练掌握正弦函数的定义是解题的关键.
    13、1.
    【解析】
    在Rt△ABC中,已知tanA,BC的值,根据tanA=,可将AC的值求出,再由勾股定理可将斜边AB的长求出.
    【详解】
    解:Rt△ABC中,∵BC=4,tanA=


    故答案为1.
    【点睛】
    考查解直角三角形以及勾股定理,熟练掌握锐角三角函数是解题的关键.
    14、
    【解析】
    分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.
    详解:∵-3,x,-1, 3,1,6的众数是3,
    ∴x=3,
    先对这组数据按从小到大的顺序重新排序-3、-1、1、3、3、6位于最中间的数是1,3,
    ∴这组数的中位数是=1.
    故答案为: 1.
    点睛:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
    15、a(a﹣1)
    【解析】
    直接提取公因式a,进而分解因式得出答案
    【详解】
    a2﹣a=a(a﹣1).
    故答案为a(a﹣1).
    【点睛】
    此题考查公因式,难度不大
    16、
    【解析】
    试题解析:
    设a=2t,b=3t,

    故答案为:

    三、解答题(共8题,共72分)
    17、(1)图形见解析,216件;(2)
    【解析】
    (1)由B班级的作品数量及其占总数量的比例可得4个班作品总数,再求得D班级的数量,可补全条形图,再用36乘四个班的平均数即估计全校的作品数;
    (2)列表得出所有等可能结果,从中找到一男、一女的结果数,根据概率公式求解可得.
    【详解】
    (1)4个班作品总数为:件,所以D班级作品数量为:36-6-12-10=8;
    ∴估计全校共征集作品×36=324件.
    条形图如图所示,

    (2)男生有3名,分别记为A1,A2,A3,女生记为B,
    列表如下:

    A1
    A2
    A3
    B
    A1

    (A1,A2)
    (A1,A3)
    (A1,B)
    A2
    (A2,A1)

    (A2,A3)
    (A2,B)
    A3
    (A3,A1)
    (A3,A2)

    (A3,B)
    B
    (B,A1)
    (B,A2)
    (B,A3)

    由列表可知,共有12种等可能情况,其中选取的两名学生恰好是一男一女的有6种.
    所以选取的两名学生恰好是一男一女的概率为.
    【点睛】
    考查了列表法或树状图法求概率以及扇形与条形统计图的知识.注意掌握扇形统计图与条形统计图的对应关系.用到的知识点为:概率=所求情况数与总情况数之比.
    18、(1)CF与BD位置关系是垂直,理由见解析;(2)AB≠AC时,CF⊥BD的结论成立,理由见解析;(3)见解析
    【解析】
    (1)由∠ACB=15°,AB=AC,得∠ABD=∠ACB=15°;可得∠BAC=90°,由正方形ADEF,可得∠DAF=90°,AD=AF,∠DAF=∠DAC+∠CAF;∠BAC=∠BAD+∠DAC;得∠CAF=∠BAD.可证△DAB≌△FAC(SAS),得∠ACF=∠ABD=15°,得∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
    (2)过点A作AG⊥AC交BC于点G,可得出AC=AG,易证:△GAD≌△CAF,所以∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
    (3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=1 ,BC=3,CD=x,求线段CP的长.考虑点D的位置,分两种情况去解答.①点D在线段BC上运动,已知∠BCA=15°,可求出AQ=CQ=1.即DQ=1-x,易证△AQD∽△DCP,再根据相似三角形的性质求解问题.②点D在线段BC延长线上运动时,由∠BCA=15°,可求出AQ=CQ=1,则DQ=1+x.过A作AQ⊥BC交CB延长线于点Q,则△AGD∽△ACF,得CF⊥BD,由△AQD∽△DCP,得再根据相似三角形的性质求解问题.
    【详解】
    (1)CF与BD位置关系是垂直;
    证明如下:
    ∵AB=AC,∠ACB=15°,
    ∴∠ABC=15°.
    由正方形ADEF得AD=AF,
    ∵∠DAF=∠BAC=90°,
    ∴∠DAB=∠FAC,
    ∴△DAB≌△FAC(SAS),
    ∴∠ACF=∠ABD.
    ∴∠BCF=∠ACB+∠ACF=90°.
    即CF⊥BD.
    (2)AB≠AC时,CF⊥BD的结论成立.
    理由是:
    过点A作GA⊥AC交BC于点G,
    ∵∠ACB=15°,
    ∴∠AGD=15°,
    ∴AC=AG,
    同理可证:△GAD≌△CAF
    ∴∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°,
    即CF⊥BD.
    (3)过点A作AQ⊥BC交CB的延长线于点Q,
    ①点D在线段BC上运动时,
    ∵∠BCA=15°,可求出AQ=CQ=1.
    ∴DQ=1﹣x,△AQD∽△DCP,
    ∴,
    ∴,
    ∴.
    ②点D在线段BC延长线上运动时,
    ∵∠BCA=15°,
    ∴AQ=CQ=1,
    ∴DQ=1+x.
    过A作AQ⊥BC,
    ∴∠Q=∠FAD=90°,
    ∵∠C′AF=∠C′CD=90°,∠AC′F=∠CC′D,
    ∴∠ADQ=∠AFC′,
    则△AQD∽△AC′F.
    ∴CF⊥BD,
    ∴△AQD∽△DCP,
    ∴,
    ∴,
    ∴.


    【点睛】
    综合性题型,解题关键是灵活运用所学全等、相似、正方形等知识点.
    19、(1)购进 A 种树苗的单价为 200 元/棵,购进 B 种树苗的单价为 300 元/棵(2)A 种 树苗至少需购进 1 棵
    【解析】
    (1)设购进A种树苗的单价为x元/棵,购进B种树苗的单价为y元/棵,根据“若购进A种树苗3棵,B种树苗5棵,需210元,若购进A种树苗4棵,B种树苗1棵,需3800元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
    (2)设需购进A种树苗a棵,则购进B种树苗(30-a)棵,根据总价=单价×购买数量结合购买两种树苗的总费用不多于8000元,即可得出关于a的一元一次不等式,解之取其中的最小值即可得出结论.
    【详解】
    设购进 A 种树苗的单价为 x 元/棵,购进 B 种树苗的单价为 y 元/棵,根据题意得: ,
    解得: .
    答:购进 A 种树苗的单价为 200 元/棵,购进 B 种树苗的单价为 300 元/棵.
    (2)设需购进 A 种树苗 a 棵,则购进 B 种树苗(30﹣a)棵,根据题意得:
    200a+300(30﹣a)≤8000,
    解得:a≥1.
    ∴A种树苗至少需购进 1 棵.
    【点睛】
    本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量间的关系,正确列出一元一次不等式.
    20、(1)详见解析;(2)2+2;(3)S△BDQx+.
    【解析】
    (1)根据要求利用全等三角形的判定和性质画出图形即可.
    (2)如图④中,作OE⊥AB于E,OF⊥BC于F,连接OB.证明△OEM≌△OFN(ASA),推出EM=FN,ON=OM,S△EOM=S△NOF,推出S四边形BMON=S四边形BEOF=定值,证明Rt△OBE≌Rt△OBF(HL),推出BM+BN=BE+EM+BF﹣FN=2BE=定值,推出欲求最小值,只要求出l的最小值,因为l=BM+BN+ON+OM=定值+ON+OM所以欲求最小值,只要求出ON+OM的最小值,因为OM=ON,根据垂线段最短可知,当OM与OE重合时,OM定值最小,由此即可解决问题.
    (3)如图⑤中,连接AD,作DE⊥AB于E,DF⊥AC于F.证明△PDF≌△QDE(ASA),即可解决问题.
    【详解】
    解:(1)如图1,作一边上的中线可分割成2个全等三角形,
    如图2,连接外心和各顶点的线段可分割成3个全等三角形,
    如图3,连接各边的中点可分割成4个全等三角形,

    (2)如图④中,作OE⊥AB于E,OF⊥BC于F,连接OB.

    ∵△ABC是等边三角形,O是外心,
    ∴OB平分∠ABC,∠ABC=60°∵OE⊥AB,OF⊥BC,
    ∴OE=OF,
    ∵∠OEB=∠OFB=90°,
    ∴∠EOF+∠EBF=180°,
    ∴∠EOF=∠NOM=120°,
    ∴∠EOM=∠FON,
    ∴△OEM≌△OFN(ASA),
    ∴EM=FN,ON=OM,S△EOM=S△NOF,
    ∴S四边形BMON=S四边形BEOF=定值,
    ∵OB=OB,OE=OF,∠OEB=∠OFB=90°,
    ∴Rt△OBE≌Rt△OBF(HL),
    ∴BE=BF,
    ∴BM+BN=BE+EM+BF﹣FN=2BE=定值,
    ∴欲求最小值,只要求出l的最小值,
    ∵l=BM+BN+ON+OM=定值+ON+OM,
    欲求最小值,只要求出ON+OM的最小值,
    ∵OM=ON,根据垂线段最短可知,当OM与OE重合时,OM定值最小,
    此时定值最小,s=×2×=,l=2+2++=4+,
    ∴的最小值==2+2.
    (3)如图⑤中,连接AD,作DE⊥AB于E,DF⊥AC于F.

    ∵△ABC是等边三角形,BD=DC,
    ∴AD平分∠BAC,
    ∵DE⊥AB,DF⊥AC,
    ∴DE=DF,
    ∵∠DEA=∠DEQ=∠AFD=90°,
    ∴∠EAF+∠EDF=180°,
    ∵∠EAF=60°,
    ∴∠EDF=∠PDQ=120°,
    ∴∠PDF=∠QDE,
    ∴△PDF≌△QDE(ASA),
    ∴PF=EQ,
    在Rt△DCF中,∵DC=2,∠C=60°,∠DFC=90°,
    ∴CF=CD=1,DF=,
    同法可得:BE=1,DE=DF=,
    ∵AF=AC﹣CF=4﹣1=3,PA=x,
    ∴PF=EQ=3+x,
    ∴BQ=EQ﹣BE=2+x,
    ∴S△BDQ=•BQ•DE=×(2+x)×=x+.
    【点睛】
    本题主要考查多边形的综合题,主要涉及的知识点:全等三角形的判定和性质、多边形内角和、角平分线的性质、等量代换、三角形的面积等,牢记并熟练运用这些知识点是解此类综合题的关键。
    21、(1)b=3,k=10;(2)S△AOB=.
    【解析】
    (1)由直线y=x+b与双曲线y=相交于A、B两点,A(2,5),即可得到结论;
    (2)过A作AD⊥x轴于D,BE⊥x轴于E,根据y=x+3,y=,得到(-5,-2),C(-3,0).求出OC=3,然后根据三角形的面积公式即可得到结论.
    解:()把代入.∴∴.
    把代入,∴,
    ∴.
    ()∵,.
    ∴时,,
    ∴,.∴.
    又∵,
    ∴ .
    22、A、B两种型号的空调购买价分别为2120元、2320元
    【解析】
    试题分析:根据题意,设出A、B两种型号的空调购买价分别为x元、y元,然后根据“已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元”,列出方程求解即可.
    试题解析:设A、B两种型号的空调购买价分别为x元、y元,依题意得:
    解得:
    答:A、B两种型号的空调购买价分别为2120元、2320元
    23、(1)四边形AEA′F为菱形.理由见解析;(2)1.
    【解析】
    (1)先证明AE=AF,再根据折叠的性质得AE=A′E,AF=A′F,然后根据菱形的判定方法可判断四边形AEA′F为菱形;(2)四先利用四边形AEA′F是正方形得到∠A=90°,则AB=AC=BC=6,然后利用正方形AEA′F的面积是△ABC的一半得到AE2=••6•6,然后利用算术平方根的定义求AE即可.
    【详解】
    (1)四边形AEA′F为菱形.
    理由如下:
    ∵AB=AC,
    ∴∠B=∠C,
    ∵EF∥BC,
    ∴∠AEF=∠B,∠AFE=∠C,
    ∴∠AEF=∠AFE,
    ∴AE=AF,
    ∵△AEF沿着直线EF向下翻折,得到△A′EF,
    ∴AE=A′E,AF=A′F,
    ∴AE=A′E=AF=A′F,
    ∴四边形AEA′F为菱形;
    (2)∵四边形AEA′F是正方形,
    ∴∠A=90°,
    ∴△ABC为等腰直角三角形,
    ∴AB=AC=BC=×6=6,
    ∵正方形AEA′F的面积是△ABC的一半,
    ∴AE2=••6•6,
    ∴AE=1.
    【点睛】
    本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    24、(1)20%;(2)12.1.
    【解析】
    试题分析:(1)经过两次增长,求年平均增长率的问题,应该明确原来的基数,增长后的结果.设这两年的年平均增长率为x,则经过两次增长以后图书馆有书7100(1+x)2本,即可列方程求解;
    (2)先求出2017年图书借阅总量的最小值,再求出2016年的人均借阅量,2017年的人均借阅量,进一步求得a的值至少是多少.
    试题解析:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x,根据题意得
    7100(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去).
    答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%;
    (2)10800(1+0.2)=12960(本)
    10800÷1310=8(本)
    12960÷1440=9(本)
    (9﹣8)÷8×100%=12.1%.
    故a的值至少是12.1.
    考点:一元二次方程的应用;一元一次不等式的应用;最值问题;增长率问题.

    相关试卷

    浙江省绍兴县重点达标名校2021-2022学年中考冲刺卷数学试题含解析: 这是一份浙江省绍兴县重点达标名校2021-2022学年中考冲刺卷数学试题含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列事件中是必然事件的是等内容,欢迎下载使用。

    浙江省衢州市名校2021-2022学年中考数学四模试卷含解析: 这是一份浙江省衢州市名校2021-2022学年中考数学四模试卷含解析,共24页。试卷主要包含了答题时请按要求用笔,下列计算正确的是, “a是实数,”这一事件是等内容,欢迎下载使用。

    2022年浙江省绍兴县中考数学仿真试卷含解析: 这是一份2022年浙江省绍兴县中考数学仿真试卷含解析,共20页。试卷主要包含了一、单选题,下列运算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map