


2021-2022学年重庆市双福育才中学中考数学模试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( )
A.20 B.24 C.28 D.30
2.已知抛物线y=x2-2mx-4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为( )
A.(1,-5) B.(3,-13) C.(2,-8) D.(4,-20)
3.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是( )
A. B. C. D.
4.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.如图是对某球员罚球训练时命中情况的统计:
下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.1,所以“罚球命中”的概率是0.1.其中合理的是( )
A.① B.② C.①③ D.②③
5.如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于( )
A. B. C.2 D.
6.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( )
A. B. C. D.
7.在平面直角坐标系中,有两条抛物线关于x轴对称,且他们的顶点相距10个单位长度,若其中一条抛物线的函数表达式为y=+6x+m,则m的值是 ( )
A.-4或-14 B.-4或14 C.4或-14 D.4或14
8.下列各式中,互为相反数的是( )
A.和 B.和 C.和 D.和
9.下面几何的主视图是( )
A. B. C. D.
10.如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是( )
A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<2
11.如图,AB∥CD,那么( )
A.∠BAD与∠B互补 B.∠1=∠2 C.∠BAD与∠D互补 D.∠BCD与∠D互补
12.若m,n是一元二次方程x2﹣2x﹣1=0的两个不同实数根,则代数式m2﹣m+n的值是( )
A.﹣1 B.3 C.﹣3 D.1
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.若有意义,则x 的取值范围是 .
14.分解因式:mx2﹣4m=_____.
15.若关于x的一元二次方程x2+2x﹣m2﹣m=0(m>0),当m=1、2、3、…、2018时,相应的一元二次方程的两个根分别记为α1、β1,α2、β2,…,α2018、β2018,则:的值为_____.
16.太阳半径约为696000千米,数字696000用科学记数法表示为 千米.
17.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为_____.
18.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为1.当m=1,n=20时.
①若点P的纵坐标为2,求直线AB的函数表达式.
②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.
20.(6分)如图,一次函数y=﹣x+的图象与反比例函数y=(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,△AOM面积为1.
(1)求反比例函数的解析式;
(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.
21.(6分)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.试判断PD与⊙O的位置关系,并说明理由;若点C是弧AB的中点,已知AB=4,求CE•CP的值.
22.(8分)先化简:,然后从的范围内选取一个合适的整数作为x的值代入求值.
23.(8分)如图,△ABC的顶点坐标分别为A(1,3)、B(4,1)、C(1,1).在图中以点O为位似中心在原点的另一侧画出△ABC放大1倍后得到的△A1B1C1,并写出A1的坐标;请在图中画出△ABC绕点O逆时针旋转90°后得到的△A1B1C1.
24.(10分)如图,直线与双曲线相交于、两点.
(1) ,点坐标为 .
(2)在轴上找一点,在轴上找一点,使的值最小,求出点两点坐标
25.(10分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.采用树状图或列表法列出两次摸出小球出现的所有可能结果;求摸出的两个小球号码之和等于4的概率.
26.(12分)已知,,,斜边,将绕点顺时针旋转,如图1,连接.
(1)填空: ;
(2)如图1,连接,作,垂足为,求的长度;
(3)如图2,点,同时从点出发,在边上运动,沿路径匀速运动,沿路径匀速运动,当两点相遇时运动停止,已知点的运动速度为1.5单位秒,点的运动速度为1单位秒,设运动时间为秒,的面积为,求当为何值时取得最大值?最大值为多少?
27.(12分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,且BF是⊙O的切线,BF交AC的延长线于F.
(1)求证:∠CBF=∠CAB. (2)若AB=5,sin∠CBF=,求BC和BF的长.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
试题解析:根据题意得=30%,解得n=30,
所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.
故选D.
考点:利用频率估计概率.
2、C
【解析】
试题分析:=,∴点M(m,﹣m2﹣1),∴点M′(﹣m,m2+1),∴m2+2m2﹣1=m2+1.解得m=±2.∵m>0,∴m=2,∴M(2,﹣8).故选C.
考点:二次函数的性质.
3、B
【解析】
根据矩形的性质得到,CB∥x轴,AB∥y轴,于是得到D、E坐标,根据勾股定理得到ED,连接BB′,交ED于F,过B′作B′G⊥BC于G,根据轴对称的性质得到BF=B′F,BB′⊥ED求得BB′,设EG=x,根据勾股定理即可得到结论.
【详解】
解:∵矩形OABC,
∴CB∥x轴,AB∥y轴.
∵点B坐标为(6,1),
∴D的横坐标为6,E的纵坐标为1.
∵D,E在反比例函数的图象上,
∴D(6,1),E(,1),
∴BE=6﹣=,BD=1﹣1=3,
∴ED==.连接BB′,交ED于F,过B′作B′G⊥BC于G.
∵B,B′关于ED对称,
∴BF=B′F,BB′⊥ED,
∴BF•ED=BE•BD,即BF=3×,
∴BF=,
∴BB′=.
设EG=x,则BG=﹣x.
∵BB′2﹣BG2=B′G2=EB′2﹣GE2,
∴,
∴x=,
∴EG=,
∴CG=,
∴B′G=,
∴B′(,﹣),
∴k=.
故选B.
【点睛】
本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,熟练掌握折叠的性质是解题的关键.
4、B
【解析】
根据图形和各个小题的说法可以判断是否正确,从而解答本题
【详解】
当罚球次数是500时,该球员命中次数是411,所以此时“罚球命中”的频率是:411÷500=0.822,但“罚球命中”的概率不一定是0.822,故①错误;
随着罚球次数的增加,“罚球命中”的频率总在0.2附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.2.故②正确;
虽然该球员“罚球命中”的频率的平均值是0.1,但是“罚球命中”的概率不是0.1,故③错误.
故选:B.
【点睛】
此题考查了频数和频率的意义,解题的关键在于利用频率估计概率.
5、D
【解析】
根据同弧或等弧所对的圆周角相等可知∠BED=∠BAD,再结合图形根据正切的定义进行求解即可得.
【详解】
∵∠DAB=∠DEB,
∴tan∠DEB= tan∠DAB=,
故选D.
【点睛】
本题考查了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念,正确得出相等的角是解题关键.
6、A
【解析】
让黄球的个数除以球的总个数即为所求的概率.
【详解】
解:因为一共10个球,其中3个黄球,所以从袋中任意摸出1个球是黄球的概率是.
故选:A.
【点睛】
本题考查概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.
7、D
【解析】
根据顶点公式求得已知抛物线的顶点坐标,然后根据轴对称的性质求得另一条抛物线的顶点,根据题意得出关于m的方程,解方程即可求得.
【详解】
∵一条抛物线的函数表达式为y=x2+6x+m,
∴这条抛物线的顶点为(-3,m-9),
∴关于x轴对称的抛物线的顶点(-3,9-m),
∵它们的顶点相距10个单位长度.
∴|m-9-(9-m)|=10,
∴2m-18=±10,
当2m-18=10时,m=1,
当2m-18=-10时,m=4,
∴m的值是4或1.
故选D.
【点睛】
本题考查了二次函数图象与几何变换,解答本题的关键是掌握二次函数的顶点坐标公式,坐标和线段长度之间的转换,关于x轴对称的点和抛物线的关系.
8、A
【解析】
根据乘方的法则进行计算,然后根据只有符号不同的两个数互为相反数,可得答案.
【详解】
解:A. =9,=-9,故和互为相反数,故正确;
B. =9,=9,故和不是互为相反数,故错误;
C. =-8,=-8,故和不是互为相反数,故错误;
D. =8,=8故和不是互为相反数,故错误.
故选A.
【点睛】
本题考查了有理数的乘方和相反数的定义,关键是掌握有理数乘方的运算法则.
9、B
【解析】
主视图是从物体正面看所得到的图形.
【详解】
解:从几何体正面看
故选B.
【点睛】
本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
10、D
【解析】
解:∵直线l1与x轴的交点为A(﹣1,0),
∴﹣1k+b=0,∴,解得:.
∵直线l1:y=﹣1x+4与直线l1:y=kx+b(k≠0)的交点在第一象限,
∴,
解得0<k<1.
故选D.
【点睛】
两条直线相交或平行问题;一次函数图象上点的坐标特征.
11、C
【解析】
分清截线和被截线,根据平行线的性质进行解答即可.
【详解】
解:∵AB∥CD,
∴∠BAD与∠D互补,即C选项符合题意;
当AD∥BC时,∠BAD与∠B互补,∠1=∠2,∠BCD与∠D互补,
故选项A、B、D都不合题意,
故选:C.
【点睛】
本题考查了平行线的性质,熟记性质并准确识图是解题的关键.
12、B
【解析】
把m代入一元二次方程,可得,再利用两根之和,将式子变形后,整理代入,即可求值.
【详解】
解:∵若,是一元二次方程的两个不同实数根,
∴,
∴
∴
故选B.
【点睛】
本题考查了一元二次方程根与系数的关系,及一元二次方程的解,熟记根与系数关系的公式.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、x≥8
【解析】
略
14、m(x+2)(x﹣2)
【解析】
提取公因式法和公式法相结合因式分解即可.
【详解】
原式
故答案为
【点睛】
本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.
15、.
【解析】
利用根与系数的关系得到α1+β1=-2,α1β1=-1×2;α2+β2=-2,α2β2=-2×3;…α2018+β2018=-2,α2018β2018=-2018×1.把原式变形,再代入,即可求出答案.
【详解】
∵x2+2x-m2-m=0,m=1,2,3,…,2018,
∴由根与系数的关系得:α1+β1=-2,α1β1=-1×2;
α2+β2=-2,α2β2=-2×3;
…
α2018+β2018=-2,α2018β2018=-2018×1.
∴原式=
=
=2×()
=2×(1-)
=,
故答案为.
【点睛】
本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1x2=.
16、 .
【解析】
试题分析:696000=6.96×1,故答案为6.96×1.
考点:科学记数法—表示较大的数.
17、1
【解析】
作DH⊥x轴于H,如图,
当y=0时,-3x+3=0,解得x=1,则A(1,0),
当x=0时,y=-3x+3=3,则B(0,3),
∵四边形ABCD为正方形,
∴AB=AD,∠BAD=90°,
∴∠BAO+∠DAH=90°,
而∠BAO+∠ABO=90°,
∴∠ABO=∠DAH,
在△ABO和△DAH中
∴△ABO≌△DAH,
∴AH=OB=3,DH=OA=1,
∴D点坐标为(1,1),
∵顶点D恰好落在双曲线y= 上,
∴a=1×1=1.
故答案是:1.
18、3
【解析】
试题分析:因为等腰△ABC的周长为33,底边BC=5,所以AB=AC=8,又DE垂直平分AB,所以AE=BE,所以△BEC的周长为=BE+CE+BC=AE+CE+BC=AC+BC=8+5=3.
考点:3.等腰三角形的性质;3.垂直平分线的性质.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)①;②四边形是菱形,理由见解析;(2)四边形能是正方形,理由见解析,m+n=32.
【解析】
(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;
②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;
(2)先确定出B(1,),D(1,),进而求出点P的坐标,再求出A,C坐标,最后用AC=BD,即可得出结论.
【详解】
(1)①如图1,
,
反比例函数为,
当时,,
,
当时,
,
,
,
设直线的解析式为,
,
,
直线的解析式为;
②四边形是菱形,
理由如下:如图2,
由①知,,
轴,
,
点是线段的中点,
,
当时,由得,,
由得,,
,,
,
,
四边形为平行四边形,
,
四边形是菱形;
(2)四边形能是正方形,
理由:当四边形是正方形,记,的交点为,
,
当时,,
,,
,
,,,
,
,
.
【点睛】
此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.
20、(1) (2)(0,)
【解析】
(1)根据反比例函数比例系数k的几何意义得出|k|=1,进而得到反比例函数的解析式;
(2)作点A关于y轴的对称点A′,连接A′B,交y轴于点P,得到PA+PB最小时,点P的位置,根据两点间的距离公式求出最小值A′B的长;利用待定系数法求出直线A′B的解析式,得到它与y轴的交点,即点P的坐标.
【详解】
(1)∵反比例函数 y= =(k>0)的图象过点 A,过 A 点作 x 轴的垂线,垂足为 M,
∴|k|=1,
∵k>0,
∴k=2,
故反比例函数的解析式为:y=;
(2)作点 A 关于 y 轴的对称点 A′,连接 A′B,交 y 轴于点 P,则 PA+PB 最小.
由,解得,或,
∴A(1,2),B(4,),
∴A′(﹣1,2),最小值 A′B= =,
设直线 A′B 的解析式为 y=mx+n,
则 ,解得,
∴直线 A′B 的解析式为 y= ,
∴x=0 时,y= ,
∴P 点坐标为(0,).
【点睛】
本题考查的是反比例函数图象与一次函数图象的交点问题以及最短路线问题,解题的关键是确定PA+PB最小时,点P的位置,灵活运用数形结合思想求出有关点的坐标和图象的解析式是解题的关键.
21、(1)PD是⊙O的切线.证明见解析.(2)1.
【解析】
试题分析:(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;
(2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC长,再证明△CAE∽△CPA,进而可得,然后可得CE•CP的值.
试题解析:(1)如图,PD是⊙O的切线.
证明如下:
连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切线.
(2)连结BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵C为弧AB的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP•CE=CA2=()2=1.
考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型.
22、,当x=1时,原式=﹣1.
【解析】
先化简分式,然后将x的值代入计算即可.
【详解】
解:原式=
= .
且,
∴x的整数有,
∴取,
当时,
原式.
【点睛】
本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.
23、(1)A(﹣1,﹣6);(1)见解析
【解析】
试题分析:(1)把每个坐标做大1倍,并去相反数.(1)横纵坐标对调,并且把横坐标取相反数.
试题解析:
解:(1)如图,△A1B1C1为所作,A(﹣1,﹣6);
(1)如图,△A1B1C1为所作.
24、 (1),;(1),.
【解析】
(1)由点A在一次函数图象上,将A(-1,a)代入y=x+4,求出a的值,得到点A的坐标,再由点A的坐标利用待定系数法求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;
(1)作点A关于y轴的对称点A′,作点B作关于x轴的对称点B′,连接A′B′,交x轴于点P,交y轴于点Q,连接PB、QA.利用待定系数法求出直线A′B′的解析式,进而求出P、Q两点坐标.
【详解】
解:(1)把点A(-1,a)代入一次函数y=x+4,
得:a=-1+4,解得:a=3,
∴点A的坐标为(-1,3).
把点A(-1,3)代入反比例函数y=,
得:k=-3,
∴反比例函数的表达式y=-.
联立两个函数关系式成方程组得:
解得: 或
∴点B的坐标为(-3,1).
故答案为3,(-3,1);
(1)作点A关于y轴的对称点A′,作点B作关于x轴的对称点B′,连接A′B′,交x轴于点P,交y轴于点Q,连接PB、QA,如图所示.
∵点B、B′关于x轴对称,点B的坐标为(-3,1),
∴点B′的坐标为(-3,-1),PB=PB′,
∵点A、A′关于y轴对称,点A的坐标为(-1,3),
∴点A′的坐标为(1,3),QA=QA′,
∴BP+PQ+QA=B′P+PQ+QA′=A′B′,值最小.
设直线A′B′的解析式为y=mx+n,
把A′,B′两点代入得:
解得:
∴直线A′B′的解析式为y=x+1.
令y=0,则x+1=0,解得:x=-1,点P的坐标为(-1,0),
令x=0,则y=1,点Q的坐标为(0,1).
【点睛】
本题考查反比例函数与一次函数的交点问题、待定系数法求函数解析式、轴对称中的最短线路问题,解题的关键是:(1)联立两函数解析式成方程组,解方程组求出交点坐标;(1)根据轴对称的性质找出点P、Q的位置.本题属于基础题,难度适中,解决该题型题目时,联立解析式成方程组,解方程组求出交点坐标是关键.
25、 (1)见解析;(2).
【解析】
(1)画树状图列举出所有情况;
(2)让摸出的两个球号码之和等于4的情况数除以总情况数即为所求的概率.
【详解】
解:(1)根据题意,可以画出如下的树形图:
从树形图可以看出,两次摸球出现的所有可能结果共有6种.
(2)由树状图知摸出的两个小球号码之和等于4的有2种结果,
∴摸出的两个小球号码之和等于4的概率为=.
【点睛】
本题要查列表法与树状图法求概率,列出树状图得出所有等可能结果是解题关键.
26、(1)1;(2);(3)x时,y有最大值,最大值.
【解析】
(1)只要证明△OBC是等边三角形即可;
(2)求出△AOC的面积,利用三角形的面积公式计算即可;
(3)分三种情形讨论求解即可解决问题:①当0<x时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当x≤4时,M在BC上运动,N在OB上运动.③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.
【详解】
(1)由旋转性质可知:OB=OC,∠BOC=1°,
∴△OBC是等边三角形,
∴∠OBC=1°.
故答案为1.
(2)如图1中.
∵OB=4,∠ABO=30°,
∴OAOB=2,ABOA=2,
∴S△AOC•OA•AB2×2.
∵△BOC是等边三角形,
∴∠OBC=1°,∠ABC=∠ABO+∠OBC=90°,
∴AC,
∴OP.
(3)①当0<x时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.
则NE=ON•sin1°x,
∴S△OMN•OM•NE1.5xx,
∴yx2,
∴x时,y有最大值,最大值.
②当x≤4时,M在BC上运动,N在OB上运动.
作MH⊥OB于H.
则BM=8﹣1.5x,MH=BM•sin1°(8﹣1.5x),
∴yON×MHx2+2x.
当x时,y取最大值,y,
③当4<x≤4.8时,M、N都在BC上运动,
作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,
∴y•MN•OG=12x,
当x=4时,y有最大值,最大值=2.
综上所述:y有最大值,最大值为.
【点睛】
本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题.
27、(1)证明略;(2)BC=,BF=.
【解析】
试题分析:(1)连结AE.有AB是⊙O的直径可得∠AEB=90°再有BF是⊙O的切线可得BF⊥AB,利用同角的余角相等即可证明;
(2)在Rt△ABE中有三角函数可以求出BE,又有等腰三角形的三线合一可得BC=2BE,
过点C作CG⊥AB于点G.可求出AE,再在Rt△ABE中,求出sin∠2,cos∠2.然后再在Rt△CGB中求出CG,最后证出△AGC∽△ABF有相似的性质求出BF即可.
试题解析:
(1)证明:连结AE.∵AB是⊙O的直径, ∴∠AEB=90°,∴∠1+∠2=90°.
∵BF是⊙O的切线,∴BF⊥AB, ∴∠CBF +∠2=90°.∴∠CBF =∠1.
∵AB=AC,∠AEB=90°, ∴∠1=∠CAB.
∴∠CBF=∠CAB.
(2)解:过点C作CG⊥AB于点G.∵sin∠CBF=,∠1=∠CBF, ∴sin∠1=.
∵∠AEB=90°,AB=5. ∴BE=AB·sin∠1=.
∵AB=AC,∠AEB=90°, ∴BC=2BE=.
在Rt△ABE中,由勾股定理得.
∴sin∠2=,cos∠2=.
在Rt△CBG中,可求得GC=4,GB=2. ∴AG=3.
∵GC∥BF, ∴△AGC∽△ABF. ∴,
∴.
考点:切线的性质,相似的性质,勾股定理.
重庆市双福育才中学2023-2024学年数学八年级第一学期期末学业质量监测模拟试题【含解析】: 这是一份重庆市双福育才中学2023-2024学年数学八年级第一学期期末学业质量监测模拟试题【含解析】,共18页。试卷主要包含了下列图形中对称轴只有两条的是,下列说法正确的是,在分式中x的取值范围是等内容,欢迎下载使用。
重庆市双福育才中学2023-2024学年数学八年级第一学期期末联考试题【含解析】: 这是一份重庆市双福育才中学2023-2024学年数学八年级第一学期期末联考试题【含解析】,共19页。试卷主要包含了下列因式分解正确的是,如图,在中,,,求证,已知,则a+b+c的值是,若关于的分式方程无解,则的值是等内容,欢迎下载使用。
重庆市双福育才中学2023-2024学年数学九上期末学业水平测试试题含答案: 这是一份重庆市双福育才中学2023-2024学年数学九上期末学业水平测试试题含答案,共8页。试卷主要包含了下列事件中,属于随机事件的是等内容,欢迎下载使用。