年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年山东省莱芜市名校中考数学考前最后一卷含解析

    2021-2022学年山东省莱芜市名校中考数学考前最后一卷含解析第1页
    2021-2022学年山东省莱芜市名校中考数学考前最后一卷含解析第2页
    2021-2022学年山东省莱芜市名校中考数学考前最后一卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年山东省莱芜市名校中考数学考前最后一卷含解析

    展开

    这是一份2021-2022学年山东省莱芜市名校中考数学考前最后一卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,下列四个实数中是无理数的是,下列计算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(共10小题,每小题3分,共30分)
    1.下列各式计算正确的是( )
    A.a+3a=3a2 B.(–a2)3=–a6 C.a3·a4=a7 D.(a+b)2=a2–2ab+b2
    2.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为(  )
    A.4 B.3 C.2 D.1
    3.已知二次函数y=x2+bx﹣9图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=,则该二次函数的对称轴是直线(  )
    A.x=1 B.x= C.x=﹣1 D.x=﹣
    4.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形,转动这个四边形,使它形状改变,当,时,等于( )

    A. B. C. D.
    5.下列四个实数中是无理数的是( )
    A.2.5 B. C.π D.1.414
    6.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则∠C与∠D的大小关系为(  )

    A.∠C>∠D B.∠C<∠D C.∠C=∠D D.无法确定
    7.在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有5个红球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个黄球的概率为(  )
    A. B. C. D.
    8.如图,甲圆柱型容器的底面积为30cm2,高为8cm,乙圆柱型容器底面积为xcm2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y(cm)与x(cm2)之间的大致图象是(  )

    A. B. C. D.
    9.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是和﹣1,则点C所对应的实数是( )

    A.1+ B.2+ C.2﹣1 D.2+1
    10.下列计算正确的是(  )
    A.3a﹣2a=1 B.a2+a5=a7 C.(ab)3=ab3 D.a2•a4=a6
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.若分式有意义,则实数x的取值范围是_______.
    12.如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是_____cm.

    13.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为______个.

    14.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为_____.

    15.如图,是用火柴棒拼成的图形,则第n个图形需_____根火柴棒.

    16.甲、乙两点在边长为100m的正方形ABCD上按顺时针方向运动,甲的速度为5m/秒,乙的速度为10m/秒,甲从A点出发,乙从CD边的中点出发,则经过__秒,甲乙两点第一次在同一边上.
    三、解答题(共8题,共72分)
    17.(8分)已知,如图所示直线y=kx+2(k≠0)与反比例函数y=(m≠0)分别交于点P,与y轴、x轴分别交于点A和点B,且cos∠ABO=,过P点作x轴的垂线交于点C,连接AC,
    (1)求一次函数的解析式.
    (2)若AC是△PCB的中线,求反比例函数的关系式.

    18.(8分)如图,反比例y=的图象与一次函数y=kx﹣3的图象在第一象限内交于A(4,a).
    (1)求一次函数的解析式;
    (2)若直线x=n(0<n<4)与反比例函数和一次函数的图象分别交于点B,C,连接AB,若△ABC是等腰直角三角形,求n的值.

    19.(8分)解不等式组: ,并写出它的所有整数解.
    20.(8分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
    (1)观察猜想
    图1中,线段PM与PN的数量关系是   ,位置关系是   ;
    (2)探究证明
    把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
    (3)拓展延伸
    把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.

    21.(8分)已知抛物线,与轴交于两点,与轴交于点,且抛物线的对称轴为直线.
    (1)抛物线的表达式;
    (2)若抛物线与抛物线关于直线对称,抛物线与轴交于点两点(点在点左侧),要使,求所有满足条件的抛物线的表达式.
    22.(10分)如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G.
    (1)求四边形OEBF的面积;
    (2)求证:OG•BD=EF2;
    (3)在旋转过程中,当△BEF与△COF的面积之和最大时,求AE的长.

    23.(12分)一次函数的图象经过点和点,求一次函数的解析式.
    24.如图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.
    以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    根据合并同类项、幂的乘方、同底数幂的乘法、完全平方公式逐项计算即可.
    【详解】
    A. a+3a=4a,故不正确;
    B. (–a2)3=(-a)6 ,故不正确;
    C. a3·a4=a7 ,故正确;
    D. (a+b)2=a2+2ab+b2,故不正确;
    故选C.
    【点睛】
    本题考查了合并同类项、幂的乘方、同底数幂的乘法、完全平方公式,熟练掌握各知识点是解答本题的关键.
    2、A
    【解析】
    分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.
    详解:根据题意,得:=2x
    解得:x=3,
    则这组数据为6、7、3、9、5,其平均数是6,
    所以这组数据的方差为 [(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,
    故选A.
    点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.
    3、D
    【解析】
    设A点坐标为(a,),则可求得B点坐标,把两点坐标代入抛物线的解析式可得到关于a和b的方程组,可求得b的值,则可求得二次函数的对称轴.
    【详解】
    解:∵A在反比例函数图象上,∴可设A点坐标为(a,).
    ∵A、B两点关于原点对称,∴B点坐标为(﹣a,﹣).
    又∵A、B两点在二次函数图象上,∴代入二次函数解析式可得:,解得:或,∴二次函数对称轴为直线x=﹣.
    故选D.
    【点睛】
    本题主要考查二次函数的性质,待定系数法求二次函数解析式,根据条件先求得b的值是解题的关键,注意掌握关于原点对称的两点的坐标的关系.
    4、B
    【解析】
    首先连接AC,由将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,AB=1,,易得△ABC是等边三角形,即可得到答案.
    【详解】
    连接AC,
    ∵将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,
    ∴AB=BC,
    ∵,
    ∴△ABC是等边三角形,
    ∴AC=AB=1.
    故选:B.

    【点睛】
    本题考点:菱形的性质.
    5、C
    【解析】
    本题主要考查了无理数的定义.根据无理数的定义:无限不循环小数是无理数即可求解.
    解:A、2.5是有理数,故选项错误;
    B、是有理数,故选项错误;
    C、π是无理数,故选项正确;
    D、1.414是有理数,故选项错误.
    故选C.
    6、A
    【解析】
    直接利用圆周角定理结合三角形的外角的性质即可得.
    【详解】
    连接BE,如图所示:

    ∵∠ACB=∠AEB,
    ∠AEB>∠D,
    ∴∠C>∠D.
    故选:A.
    【点睛】
    考查了圆周角定理以及三角形的外角,正确作出辅助线是解题关键.
    7、A
    【解析】
    设黄球有x个,根据摸出一个球是蓝球的概率是,得出黄球的个数,再根据概率公式即可得出随机摸出一个黄球的概率.
    【详解】
    解:设袋子中黄球有x个,
    根据题意,得:,
    解得:x=3,
    即袋中黄球有3个,
    所以随机摸出一个黄球的概率为,
    故选A.
    【点睛】
    此题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的关键.
    8、C
    【解析】
    根据题意可以写出y关于x的函数关系式,然后令x=40求出相应的y值,即可解答本题.
    【详解】
    解:由题意可得,
    y==,
    当x=40时,y=6,
    故选C.
    【点睛】
    本题考查了反比例函数的图象,根据题意列出函数解析式是解决此题的关键.
    9、D
    【解析】
    设点C所对应的实数是x.根据中心对称的性质,对称点到对称中心的距离相等,则有
    ,解得.
    故选D.
    10、D
    【解析】
    根据合并同类项法则、积的乘方及同底数幂的乘法的运算法则依次计算后即可解答.
    【详解】
    ∵3a﹣2a=a,∴选项A不正确;
    ∵a2+a5≠a7,∴选项B不正确;
    ∵(ab)3=a3b3,∴选项C不正确;
    ∵a2•a4=a6,∴选项D正确.
    故选D.
    【点睛】
    本题考查了合并同类项法则、积的乘方及同底数幂的乘法的运算法则,熟练运用法则是解决问题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    由于分式的分母不能为2,x-1在分母上,因此x-1≠2,解得x.
    解:∵分式有意义,
    ∴x-1≠2,即x≠1.
    故答案为x≠1.
    本题主要考查分式有意义的条件:分式有意义,分母不能为2.
    12、
    【解析】
    先求出扇形弧长,再求出圆锥的底面半径,再根据勾股定理 即可出圆锥的高.
    【详解】
    圆心角为120°,半径为6cm的扇形的弧长为4cm
    ∴圆锥的底面半径为2,
    故圆锥的高为=4cm
    【点睛】
    此题主要考查圆的弧长及圆锥的底面半径,解题的关键是熟知圆的相关公式.
    13、9n+1.
    【解析】
    ∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,
    ∴正方形和等边三角形的和=6+6=12=9+1;
    ∵第2个图由11个正方形和10个等边三角形组成,
    ∴正方形和等边三角形的和=11+10=21=9×2+1;
    ∵第1个图由16个正方形和14个等边三角形组成,
    ∴正方形和等边三角形的和=16+14=10=9×1+1,
    …,
    ∴第n个图中正方形和等边三角形的个数之和=9n+1.
    故答案为9n+1.
    14、(﹣,1)
    【解析】
    如图作AF⊥x轴于F,CE⊥x轴于E.

    ∵四边形ABCD是正方形,
    ∴OA=OC,∠AOC=90°,
    ∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,
    ∴∠COE=∠OAF,
    在△COE和△OAF中,

    ∴△COE≌△OAF,
    ∴CE=OF,OE=AF,
    ∵A(1,),
    ∴CE=OF=1,OE=AF=,
    ∴点C坐标(﹣,1),
    故答案为(,1).
    点睛:本题考查正方形的性质、全等三角形的判定和性质等知识,坐标与图形的性质,解题的关键是学会添加常用的辅助线,构造全等三角形解决问题,属于中考常考题型.注意:距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.
    15、2n+1.
    【解析】
    解:根据图形可得出:
    当三角形的个数为1时,火柴棒的根数为3;
    当三角形的个数为2时,火柴棒的根数为5;
    当三角形的个数为3时,火柴棒的根数为7;
    当三角形的个数为4时,火柴棒的根数为9;
    ……
    由此可以看出:当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1.
    故答案为:2n+1.
    16、1
    【解析】
    试题分析:设x秒时,甲乙两点相遇.根据题意得:10x-5x=250,解得:x=50,
    相遇时甲走了250m,乙走了500米, 则根据题意推得第一次在同一边上时可以为1.

    三、解答题(共8题,共72分)
    17、(2)y=2x+2;(2)y=.
    【解析】
    (2)由cos∠ABO=,可得到tan∠ABO=2,从而可得到k=2;
    (2)先求得A、B的坐标,然后依据中点坐标公式可求得点P的坐标,将点P的坐标代入反比例函数的解析式可求得m的值.
    【详解】
    (2)∵cos∠ABO=,
    ∴tan∠ABO=2.又∵OA=2
    ∴OB=2.B(-2,0)代入y=kx+2得k=2
    ∴一次函数的解析式为y=2x+2.
    (2)当x=0时,y=2,
    ∴A(0,2).
    当y=0时,2x+2=0,解得:x=﹣2.
    ∴B(﹣2,0).
    ∵AC是△PCB的中线,
    ∴P(2,4).
    ∴m=xy=2×4=4,
    ∴反例函数的解析式为y=.
    【点睛】
    本题主要考查的是反比例函数与一次函数的交点、锐角三角函数的定义、中点坐标公式的应用,确定一次函数系数k=tan∠ABO是解题的关键.
    18、(1)y=x﹣3(2)1
    【解析】
    (1)由已知先求出a,得出点A的坐标,再把A的坐标代入一次函数y=kx-3求出k的值即可求出一次函数的解析式;
    (2)易求点B、C的坐标分别为(n,),(n,n-3).设直线y=x-3与x轴、y轴分别交于点D、E,易得OD=OE=3,那么∠OED=45°.根据平行线的性质得到∠BCA=∠OED=45°,所以当△ABC是等腰直角三角形时只有AB=AC一种情况.过点A作AF⊥BC于F,根据等腰三角形三线合一的性质得出BF=FC,依此得出方程-1=1-(n-3),解方程即可.
    【详解】
    解:(1)∵反比例y=的图象过点A(4,a),
    ∴a==1,
    ∴A(4,1),
    把A(4,1)代入一次函数y=kx﹣3,得4k﹣3=1,
    ∴k=1,
    ∴一次函数的解析式为y=x﹣3;
    (2)由题意可知,点B、C的坐标分别为(n,),(n,n﹣3).
    设直线y=x﹣3与x轴、y轴分别交于点D、E,如图,

    当x=0时,y=﹣3;当y=0时,x=3,
    ∴OD=OE,
    ∴∠OED=45°.
    ∵直线x=n平行于y轴,
    ∴∠BCA=∠OED=45°,
    ∵△ABC是等腰直角三角形,且0<n<4,
    ∴只有AB=AC一种情况,
    过点A作AF⊥BC于F,则BF=FC,F(n,1),
    ∴﹣1=1﹣(n﹣3),
    解得n1=1,n2=4,
    ∵0<n<4,
    ∴n2=4舍去,
    ∴n的值是1.
    【点睛】
    本题考查了反比例函数与一次函数的交点问题,待定系数法求一次函数的解析式,等腰直角三角形的性质,难度适中.
    19、﹣2,﹣1,0,1,2;
    【解析】
    首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集;再确定解集中的所有整数解即可.
    【详解】
    解:解不等式(1),得
    解不等式(2),得x≤2
    所以不等式组的解集:-3<x≤2
    它的整数解为:-2,-1,0,1,2
    20、 (1)PM=PN, PM⊥PN;(2)△PMN是等腰直角三角形,理由详见解析;(3).
    【解析】
    (1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;
    (2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;
    (3)方法1、先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.
    方法2、先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可.
    【详解】
    解:(1)∵点P,N是BC,CD的中点,
    ∴PN∥BD,PN=BD,
    ∵点P,M是CD,DE的中点,
    ∴PM∥CE,PM=CE,
    ∵AB=AC,AD=AE,
    ∴BD=CE,
    ∴PM=PN,
    ∵PN∥BD,
    ∴∠DPN=∠ADC,
    ∵PM∥CE,
    ∴∠DPM=∠DCA,
    ∵∠BAC=90°,
    ∴∠ADC+∠ACD=90°,
    ∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,
    ∴PM⊥PN,
    故答案为:PM=PN,PM⊥PN,
    (2)由旋转知,∠BAD=∠CAE,
    ∵AB=AC,AD=AE,
    ∴△ABD≌△ACE(SAS),
    ∴∠ABD=∠ACE,BD=CE,
    同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,
    ∴PM=PN,
    ∴△PMN是等腰三角形,
    同(1)的方法得,PM∥CE,
    ∴∠DPM=∠DCE,
    同(1)的方法得,PN∥BD,
    ∴∠PNC=∠DBC,
    ∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,
    ∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC
    =∠BCE+∠DBC=∠ACB+∠ACE+∠DBC
    =∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,
    ∵∠BAC=90°,
    ∴∠ACB+∠ABC=90°,
    ∴∠MPN=90°,
    ∴△PMN是等腰直角三角形,
    (3)方法1、如图2,同(2)的方法得,△PMN是等腰直角三角形,
    ∴MN最大时,△PMN的面积最大,
    ∴DE∥BC且DE在顶点A上面,
    ∴MN最大=AM+AN,
    连接AM,AN,
    在△ADE中,AD=AE=4,∠DAE=90°,
    ∴AM=2,
    在Rt△ABC中,AB=AC=10,AN=5,
    ∴MN最大=2+5=7,
    ∴S△PMN最大=PM2=×MN2=×(7)2=.
    方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD,
    ∴PM最大时,△PMN面积最大,
    ∴点D在BA的延长线上,
    ∴BD=AB+AD=14,
    ∴PM=7,
    ∴S△PMN最大=PM2=×72=

    【点睛】
    本题考查旋转中的三角形,关键在于对三角形的所有知识点熟练掌握.
    21、(1);(2).
    【解析】
    (1)根据待定系数法即可求解;
    (2)根据题意知,根据三角形面积公式列方程即可求解.
    【详解】
    (1)根据题意得:,
    解得:,
    抛物线的表达式为:;
    (2)∵抛物线与抛物线关于直线对称,抛物线的对称轴为直线
    ∴抛物线的对称轴为直线,
    ∵抛物线与轴交于点两点且点在点左侧,
    ∴的横坐标为:
    ∴,
    令,则,
    解得:,
    令,则,
    ∴点的坐标分别为,,点的坐标为,
    ∴,
    ∵,
    ∴,即,
    解得:或,
    ∵抛物线与抛物线关于直线对称,抛物线的对称轴为直线,
    ∴抛物线的表达式为或.
    【点睛】
    本题属于二次函数综合题,涉及了待定系数法求函数解析式、一元二次方程的解及三角形的面积,第(2)问的关键是得到抛物线的对称轴为直线.
    22、(1);(2)详见解析;(3)AE=.
    【解析】
    (1)由四边形ABCD是正方形,直角∠MPN,易证得△BOE≌△COF(ASA),则可证得S四边形OEBF=S△BOC=S正方形ABCD;
    (2)易证得△OEG∽△OBE,然后由相似三角形的对应边成比例,证得OG•OB=OE2,再利用OB与BD的关系,OE与EF的关系,即可证得结论;
    (3)首先设AE=x,则BE=CF=1﹣x,BF=x,继而表示出△BEF与△COF的面积之和,然后利用二次函数的最值问题,求得AE的长.
    【详解】
    (1)∵四边形ABCD是正方形,
    ∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,
    ∴∠BOF+∠COF=90°,
    ∵∠EOF=90°,
    ∴∠BOF+∠COE=90°,
    ∴∠BOE=∠COF,
    在△BOE和△COF中,

    ∴△BOE≌△COF(ASA),
    ∴S四边形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD
    (2)证明:∵∠EOG=∠BOE,∠OEG=∠OBE=45°,
    ∴△OEG∽△OBE,
    ∴OE:OB=OG:OE,
    ∴OG•OB=OE2,

    ∴OG•BD=EF2;
    (3)如图,过点O作OH⊥BC,
    ∵BC=1,

    设AE=x,则BE=CF=1﹣x,BF=x,
    ∴S△BEF+S△COF=BE•BF+CF•OH

    ∴当时,S△BEF+S△COF最大;
    即在旋转过程中,当△BEF与△COF的面积之和最大时,

    【点睛】
    本题属于四边形的综合题,主要考查了正方形的性质,旋转的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理以及二次函数的最值问题.注意掌握转化思想的应用是解此题的关键.
    23、y=2x+1.
    【解析】
    直接把点A(﹣1,1),B(1,5)代入一次函数y=kx+b(k≠0),求出k、b的值即可.
    【详解】
    ∵一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1)和点B(1,5),∴,解得:.
    故一次函数的解析式为y=2x+1.
    【点睛】
    本题考查了待定系数法求一次函数的解析式,熟知待定系数法求一次函数解析式一般步骤是解答此题的关键.
    24、(1)作图见解析;(2)作图见解析;5π(平方单位).
    【解析】
    (1)连接AO、BO、CO并延长到2AO、2BO、2CO长度找到各点的对应点,顺次连接即可.
    (2)△A′B′C′的A′、C′绕点B′顺时针旋转90°得到对应点,顺次连接即可.A′B′在旋转过程中扫过的图形面积是一个扇形,根据扇形的面积公式计算即可.
    【详解】
    解:(1)见图中△A′B′C′

    (2)见图中△A″B′C″
    扇形的面积(平方单位).
    【点睛】
    本题主要考查了位似图形及旋转变换作图的方法及扇形的面积公式.

    相关试卷

    新疆乌鲁木齐市名校2021-2022学年中考数学考前最后一卷含解析:

    这是一份新疆乌鲁木齐市名校2021-2022学年中考数学考前最后一卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,不等式组的解集在数轴上表示为,下列调查中,最适合采用全面调查,关于x的方程=无解,则k的值为,若,,则的值是等内容,欢迎下载使用。

    2021-2022学年山东省济南市莱芜区市级名校中考数学考前最后一卷含解析:

    这是一份2021-2022学年山东省济南市莱芜区市级名校中考数学考前最后一卷含解析,共20页。

    2021-2022学年山东省邹城市达标名校中考考前最后一卷数学试卷含解析:

    这是一份2021-2022学年山东省邹城市达标名校中考考前最后一卷数学试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,一元二次方程的根的情况是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map