2021-2022学年山东省莱芜市名校中考数学考前最后一卷含解析
展开
这是一份2021-2022学年山东省莱芜市名校中考数学考前最后一卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,下列四个实数中是无理数的是,下列计算正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.下列各式计算正确的是( )
A.a+3a=3a2 B.(–a2)3=–a6 C.a3·a4=a7 D.(a+b)2=a2–2ab+b2
2.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为( )
A.4 B.3 C.2 D.1
3.已知二次函数y=x2+bx﹣9图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=,则该二次函数的对称轴是直线( )
A.x=1 B.x= C.x=﹣1 D.x=﹣
4.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形,转动这个四边形,使它形状改变,当,时,等于( )
A. B. C. D.
5.下列四个实数中是无理数的是( )
A.2.5 B. C.π D.1.414
6.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则∠C与∠D的大小关系为( )
A.∠C>∠D B.∠C<∠D C.∠C=∠D D.无法确定
7.在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有5个红球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个黄球的概率为( )
A. B. C. D.
8.如图,甲圆柱型容器的底面积为30cm2,高为8cm,乙圆柱型容器底面积为xcm2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y(cm)与x(cm2)之间的大致图象是( )
A. B. C. D.
9.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是和﹣1,则点C所对应的实数是( )
A.1+ B.2+ C.2﹣1 D.2+1
10.下列计算正确的是( )
A.3a﹣2a=1 B.a2+a5=a7 C.(ab)3=ab3 D.a2•a4=a6
二、填空题(本大题共6个小题,每小题3分,共18分)
11.若分式有意义,则实数x的取值范围是_______.
12.如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是_____cm.
13.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为______个.
14.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为_____.
15.如图,是用火柴棒拼成的图形,则第n个图形需_____根火柴棒.
16.甲、乙两点在边长为100m的正方形ABCD上按顺时针方向运动,甲的速度为5m/秒,乙的速度为10m/秒,甲从A点出发,乙从CD边的中点出发,则经过__秒,甲乙两点第一次在同一边上.
三、解答题(共8题,共72分)
17.(8分)已知,如图所示直线y=kx+2(k≠0)与反比例函数y=(m≠0)分别交于点P,与y轴、x轴分别交于点A和点B,且cos∠ABO=,过P点作x轴的垂线交于点C,连接AC,
(1)求一次函数的解析式.
(2)若AC是△PCB的中线,求反比例函数的关系式.
18.(8分)如图,反比例y=的图象与一次函数y=kx﹣3的图象在第一象限内交于A(4,a).
(1)求一次函数的解析式;
(2)若直线x=n(0<n<4)与反比例函数和一次函数的图象分别交于点B,C,连接AB,若△ABC是等腰直角三角形,求n的值.
19.(8分)解不等式组: ,并写出它的所有整数解.
20.(8分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想
图1中,线段PM与PN的数量关系是 ,位置关系是 ;
(2)探究证明
把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸
把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.
21.(8分)已知抛物线,与轴交于两点,与轴交于点,且抛物线的对称轴为直线.
(1)抛物线的表达式;
(2)若抛物线与抛物线关于直线对称,抛物线与轴交于点两点(点在点左侧),要使,求所有满足条件的抛物线的表达式.
22.(10分)如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G.
(1)求四边形OEBF的面积;
(2)求证:OG•BD=EF2;
(3)在旋转过程中,当△BEF与△COF的面积之和最大时,求AE的长.
23.(12分)一次函数的图象经过点和点,求一次函数的解析式.
24.如图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.
以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据合并同类项、幂的乘方、同底数幂的乘法、完全平方公式逐项计算即可.
【详解】
A. a+3a=4a,故不正确;
B. (–a2)3=(-a)6 ,故不正确;
C. a3·a4=a7 ,故正确;
D. (a+b)2=a2+2ab+b2,故不正确;
故选C.
【点睛】
本题考查了合并同类项、幂的乘方、同底数幂的乘法、完全平方公式,熟练掌握各知识点是解答本题的关键.
2、A
【解析】
分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.
详解:根据题意,得:=2x
解得:x=3,
则这组数据为6、7、3、9、5,其平均数是6,
所以这组数据的方差为 [(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,
故选A.
点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.
3、D
【解析】
设A点坐标为(a,),则可求得B点坐标,把两点坐标代入抛物线的解析式可得到关于a和b的方程组,可求得b的值,则可求得二次函数的对称轴.
【详解】
解:∵A在反比例函数图象上,∴可设A点坐标为(a,).
∵A、B两点关于原点对称,∴B点坐标为(﹣a,﹣).
又∵A、B两点在二次函数图象上,∴代入二次函数解析式可得:,解得:或,∴二次函数对称轴为直线x=﹣.
故选D.
【点睛】
本题主要考查二次函数的性质,待定系数法求二次函数解析式,根据条件先求得b的值是解题的关键,注意掌握关于原点对称的两点的坐标的关系.
4、B
【解析】
首先连接AC,由将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,AB=1,,易得△ABC是等边三角形,即可得到答案.
【详解】
连接AC,
∵将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,
∴AB=BC,
∵,
∴△ABC是等边三角形,
∴AC=AB=1.
故选:B.
【点睛】
本题考点:菱形的性质.
5、C
【解析】
本题主要考查了无理数的定义.根据无理数的定义:无限不循环小数是无理数即可求解.
解:A、2.5是有理数,故选项错误;
B、是有理数,故选项错误;
C、π是无理数,故选项正确;
D、1.414是有理数,故选项错误.
故选C.
6、A
【解析】
直接利用圆周角定理结合三角形的外角的性质即可得.
【详解】
连接BE,如图所示:
∵∠ACB=∠AEB,
∠AEB>∠D,
∴∠C>∠D.
故选:A.
【点睛】
考查了圆周角定理以及三角形的外角,正确作出辅助线是解题关键.
7、A
【解析】
设黄球有x个,根据摸出一个球是蓝球的概率是,得出黄球的个数,再根据概率公式即可得出随机摸出一个黄球的概率.
【详解】
解:设袋子中黄球有x个,
根据题意,得:,
解得:x=3,
即袋中黄球有3个,
所以随机摸出一个黄球的概率为,
故选A.
【点睛】
此题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的关键.
8、C
【解析】
根据题意可以写出y关于x的函数关系式,然后令x=40求出相应的y值,即可解答本题.
【详解】
解:由题意可得,
y==,
当x=40时,y=6,
故选C.
【点睛】
本题考查了反比例函数的图象,根据题意列出函数解析式是解决此题的关键.
9、D
【解析】
设点C所对应的实数是x.根据中心对称的性质,对称点到对称中心的距离相等,则有
,解得.
故选D.
10、D
【解析】
根据合并同类项法则、积的乘方及同底数幂的乘法的运算法则依次计算后即可解答.
【详解】
∵3a﹣2a=a,∴选项A不正确;
∵a2+a5≠a7,∴选项B不正确;
∵(ab)3=a3b3,∴选项C不正确;
∵a2•a4=a6,∴选项D正确.
故选D.
【点睛】
本题考查了合并同类项法则、积的乘方及同底数幂的乘法的运算法则,熟练运用法则是解决问题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
由于分式的分母不能为2,x-1在分母上,因此x-1≠2,解得x.
解:∵分式有意义,
∴x-1≠2,即x≠1.
故答案为x≠1.
本题主要考查分式有意义的条件:分式有意义,分母不能为2.
12、
【解析】
先求出扇形弧长,再求出圆锥的底面半径,再根据勾股定理 即可出圆锥的高.
【详解】
圆心角为120°,半径为6cm的扇形的弧长为4cm
∴圆锥的底面半径为2,
故圆锥的高为=4cm
【点睛】
此题主要考查圆的弧长及圆锥的底面半径,解题的关键是熟知圆的相关公式.
13、9n+1.
【解析】
∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,
∴正方形和等边三角形的和=6+6=12=9+1;
∵第2个图由11个正方形和10个等边三角形组成,
∴正方形和等边三角形的和=11+10=21=9×2+1;
∵第1个图由16个正方形和14个等边三角形组成,
∴正方形和等边三角形的和=16+14=10=9×1+1,
…,
∴第n个图中正方形和等边三角形的个数之和=9n+1.
故答案为9n+1.
14、(﹣,1)
【解析】
如图作AF⊥x轴于F,CE⊥x轴于E.
∵四边形ABCD是正方形,
∴OA=OC,∠AOC=90°,
∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,
∴∠COE=∠OAF,
在△COE和△OAF中,
,
∴△COE≌△OAF,
∴CE=OF,OE=AF,
∵A(1,),
∴CE=OF=1,OE=AF=,
∴点C坐标(﹣,1),
故答案为(,1).
点睛:本题考查正方形的性质、全等三角形的判定和性质等知识,坐标与图形的性质,解题的关键是学会添加常用的辅助线,构造全等三角形解决问题,属于中考常考题型.注意:距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.
15、2n+1.
【解析】
解:根据图形可得出:
当三角形的个数为1时,火柴棒的根数为3;
当三角形的个数为2时,火柴棒的根数为5;
当三角形的个数为3时,火柴棒的根数为7;
当三角形的个数为4时,火柴棒的根数为9;
……
由此可以看出:当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1.
故答案为:2n+1.
16、1
【解析】
试题分析:设x秒时,甲乙两点相遇.根据题意得:10x-5x=250,解得:x=50,
相遇时甲走了250m,乙走了500米, 则根据题意推得第一次在同一边上时可以为1.
三、解答题(共8题,共72分)
17、(2)y=2x+2;(2)y=.
【解析】
(2)由cos∠ABO=,可得到tan∠ABO=2,从而可得到k=2;
(2)先求得A、B的坐标,然后依据中点坐标公式可求得点P的坐标,将点P的坐标代入反比例函数的解析式可求得m的值.
【详解】
(2)∵cos∠ABO=,
∴tan∠ABO=2.又∵OA=2
∴OB=2.B(-2,0)代入y=kx+2得k=2
∴一次函数的解析式为y=2x+2.
(2)当x=0时,y=2,
∴A(0,2).
当y=0时,2x+2=0,解得:x=﹣2.
∴B(﹣2,0).
∵AC是△PCB的中线,
∴P(2,4).
∴m=xy=2×4=4,
∴反例函数的解析式为y=.
【点睛】
本题主要考查的是反比例函数与一次函数的交点、锐角三角函数的定义、中点坐标公式的应用,确定一次函数系数k=tan∠ABO是解题的关键.
18、(1)y=x﹣3(2)1
【解析】
(1)由已知先求出a,得出点A的坐标,再把A的坐标代入一次函数y=kx-3求出k的值即可求出一次函数的解析式;
(2)易求点B、C的坐标分别为(n,),(n,n-3).设直线y=x-3与x轴、y轴分别交于点D、E,易得OD=OE=3,那么∠OED=45°.根据平行线的性质得到∠BCA=∠OED=45°,所以当△ABC是等腰直角三角形时只有AB=AC一种情况.过点A作AF⊥BC于F,根据等腰三角形三线合一的性质得出BF=FC,依此得出方程-1=1-(n-3),解方程即可.
【详解】
解:(1)∵反比例y=的图象过点A(4,a),
∴a==1,
∴A(4,1),
把A(4,1)代入一次函数y=kx﹣3,得4k﹣3=1,
∴k=1,
∴一次函数的解析式为y=x﹣3;
(2)由题意可知,点B、C的坐标分别为(n,),(n,n﹣3).
设直线y=x﹣3与x轴、y轴分别交于点D、E,如图,
当x=0时,y=﹣3;当y=0时,x=3,
∴OD=OE,
∴∠OED=45°.
∵直线x=n平行于y轴,
∴∠BCA=∠OED=45°,
∵△ABC是等腰直角三角形,且0<n<4,
∴只有AB=AC一种情况,
过点A作AF⊥BC于F,则BF=FC,F(n,1),
∴﹣1=1﹣(n﹣3),
解得n1=1,n2=4,
∵0<n<4,
∴n2=4舍去,
∴n的值是1.
【点睛】
本题考查了反比例函数与一次函数的交点问题,待定系数法求一次函数的解析式,等腰直角三角形的性质,难度适中.
19、﹣2,﹣1,0,1,2;
【解析】
首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集;再确定解集中的所有整数解即可.
【详解】
解:解不等式(1),得
解不等式(2),得x≤2
所以不等式组的解集:-3<x≤2
它的整数解为:-2,-1,0,1,2
20、 (1)PM=PN, PM⊥PN;(2)△PMN是等腰直角三角形,理由详见解析;(3).
【解析】
(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;
(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;
(3)方法1、先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.
方法2、先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可.
【详解】
解:(1)∵点P,N是BC,CD的中点,
∴PN∥BD,PN=BD,
∵点P,M是CD,DE的中点,
∴PM∥CE,PM=CE,
∵AB=AC,AD=AE,
∴BD=CE,
∴PM=PN,
∵PN∥BD,
∴∠DPN=∠ADC,
∵PM∥CE,
∴∠DPM=∠DCA,
∵∠BAC=90°,
∴∠ADC+∠ACD=90°,
∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,
∴PM⊥PN,
故答案为:PM=PN,PM⊥PN,
(2)由旋转知,∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△ABD≌△ACE(SAS),
∴∠ABD=∠ACE,BD=CE,
同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,
∴PM=PN,
∴△PMN是等腰三角形,
同(1)的方法得,PM∥CE,
∴∠DPM=∠DCE,
同(1)的方法得,PN∥BD,
∴∠PNC=∠DBC,
∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,
∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC
=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC
=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,
∵∠BAC=90°,
∴∠ACB+∠ABC=90°,
∴∠MPN=90°,
∴△PMN是等腰直角三角形,
(3)方法1、如图2,同(2)的方法得,△PMN是等腰直角三角形,
∴MN最大时,△PMN的面积最大,
∴DE∥BC且DE在顶点A上面,
∴MN最大=AM+AN,
连接AM,AN,
在△ADE中,AD=AE=4,∠DAE=90°,
∴AM=2,
在Rt△ABC中,AB=AC=10,AN=5,
∴MN最大=2+5=7,
∴S△PMN最大=PM2=×MN2=×(7)2=.
方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD,
∴PM最大时,△PMN面积最大,
∴点D在BA的延长线上,
∴BD=AB+AD=14,
∴PM=7,
∴S△PMN最大=PM2=×72=
【点睛】
本题考查旋转中的三角形,关键在于对三角形的所有知识点熟练掌握.
21、(1);(2).
【解析】
(1)根据待定系数法即可求解;
(2)根据题意知,根据三角形面积公式列方程即可求解.
【详解】
(1)根据题意得:,
解得:,
抛物线的表达式为:;
(2)∵抛物线与抛物线关于直线对称,抛物线的对称轴为直线
∴抛物线的对称轴为直线,
∵抛物线与轴交于点两点且点在点左侧,
∴的横坐标为:
∴,
令,则,
解得:,
令,则,
∴点的坐标分别为,,点的坐标为,
∴,
∵,
∴,即,
解得:或,
∵抛物线与抛物线关于直线对称,抛物线的对称轴为直线,
∴抛物线的表达式为或.
【点睛】
本题属于二次函数综合题,涉及了待定系数法求函数解析式、一元二次方程的解及三角形的面积,第(2)问的关键是得到抛物线的对称轴为直线.
22、(1);(2)详见解析;(3)AE=.
【解析】
(1)由四边形ABCD是正方形,直角∠MPN,易证得△BOE≌△COF(ASA),则可证得S四边形OEBF=S△BOC=S正方形ABCD;
(2)易证得△OEG∽△OBE,然后由相似三角形的对应边成比例,证得OG•OB=OE2,再利用OB与BD的关系,OE与EF的关系,即可证得结论;
(3)首先设AE=x,则BE=CF=1﹣x,BF=x,继而表示出△BEF与△COF的面积之和,然后利用二次函数的最值问题,求得AE的长.
【详解】
(1)∵四边形ABCD是正方形,
∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,
∴∠BOF+∠COF=90°,
∵∠EOF=90°,
∴∠BOF+∠COE=90°,
∴∠BOE=∠COF,
在△BOE和△COF中,
∴△BOE≌△COF(ASA),
∴S四边形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD
(2)证明:∵∠EOG=∠BOE,∠OEG=∠OBE=45°,
∴△OEG∽△OBE,
∴OE:OB=OG:OE,
∴OG•OB=OE2,
∵
∴OG•BD=EF2;
(3)如图,过点O作OH⊥BC,
∵BC=1,
∴
设AE=x,则BE=CF=1﹣x,BF=x,
∴S△BEF+S△COF=BE•BF+CF•OH
∵
∴当时,S△BEF+S△COF最大;
即在旋转过程中,当△BEF与△COF的面积之和最大时,
【点睛】
本题属于四边形的综合题,主要考查了正方形的性质,旋转的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理以及二次函数的最值问题.注意掌握转化思想的应用是解此题的关键.
23、y=2x+1.
【解析】
直接把点A(﹣1,1),B(1,5)代入一次函数y=kx+b(k≠0),求出k、b的值即可.
【详解】
∵一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1)和点B(1,5),∴,解得:.
故一次函数的解析式为y=2x+1.
【点睛】
本题考查了待定系数法求一次函数的解析式,熟知待定系数法求一次函数解析式一般步骤是解答此题的关键.
24、(1)作图见解析;(2)作图见解析;5π(平方单位).
【解析】
(1)连接AO、BO、CO并延长到2AO、2BO、2CO长度找到各点的对应点,顺次连接即可.
(2)△A′B′C′的A′、C′绕点B′顺时针旋转90°得到对应点,顺次连接即可.A′B′在旋转过程中扫过的图形面积是一个扇形,根据扇形的面积公式计算即可.
【详解】
解:(1)见图中△A′B′C′
(2)见图中△A″B′C″
扇形的面积(平方单位).
【点睛】
本题主要考查了位似图形及旋转变换作图的方法及扇形的面积公式.
相关试卷
这是一份新疆乌鲁木齐市名校2021-2022学年中考数学考前最后一卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,不等式组的解集在数轴上表示为,下列调查中,最适合采用全面调查,关于x的方程=无解,则k的值为,若,,则的值是等内容,欢迎下载使用。
这是一份2021-2022学年山东省济南市莱芜区市级名校中考数学考前最后一卷含解析,共20页。
这是一份2021-2022学年山东省邹城市达标名校中考考前最后一卷数学试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,一元二次方程的根的情况是等内容,欢迎下载使用。