终身会员
搜索
    上传资料 赚现金

    2021-2022学年山东省枣庄市市中学区五校联考中考五模数学试题含解析

    立即下载
    加入资料篮
    2021-2022学年山东省枣庄市市中学区五校联考中考五模数学试题含解析第1页
    2021-2022学年山东省枣庄市市中学区五校联考中考五模数学试题含解析第2页
    2021-2022学年山东省枣庄市市中学区五校联考中考五模数学试题含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年山东省枣庄市市中学区五校联考中考五模数学试题含解析

    展开

    这是一份2021-2022学年山东省枣庄市市中学区五校联考中考五模数学试题含解析,共23页。试卷主要包含了下列计算正确的是,tan30°的值为等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列实数中是无理数的是(  )
    A. B.2﹣2 C.5. D.sin45°
    2.在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代数式中,能构成完全平方式的概率是( )
    A.1 B. C. D.
    3.下列各数中负数是(  )
    A.﹣(﹣2) B.﹣|﹣2| C.(﹣2)2 D.﹣(﹣2)3
    4.下列现象,能说明“线动成面”的是(  )
    A.天空划过一道流星
    B.汽车雨刷在挡风玻璃上刷出的痕迹
    C.抛出一块小石子,石子在空中飞行的路线
    D.旋转一扇门,门在空中运动的痕迹
    5.下列四个图案中,不是轴对称图案的是(  )
    A. B. C. D.
    6.已知反比例函数y=的图象位于第一、第三象限,则k的取值范围是(  )
    A.k>8 B.k≥8 C.k≤8 D.k<8
    7.在1、﹣1、3、﹣2这四个数中,最大的数是(  )
    A.1 B.﹣1 C.3 D.﹣2
    8.下列计算正确的是(  )
    A.(﹣2a)2=2a2 B.a6÷a3=a2
    C.﹣2(a﹣1)=2﹣2a D.a•a2=a2
    9.tan30°的值为(  )
    A. B. C. D.
    10.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数(x>0)的图象经过顶点B,则k的值为

    A.12 B.20 C.24 D.32
    11.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积是( )

    A. B. C.- D.
    12.我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是( )
    A.28°,30° B.30°,28° C.31°,30° D.30°,30°
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.一个不透明的袋子中装有三个小球,它们除分别标有的数字 1,3,5 不同外,其他完全相同.从袋子中任意摸出一球后放回,再任意摸出一球,则两次摸出的球所标数字之 和为8的概率是__________.
    14.如图,直线y=kx与双曲线y=(x>0)交于点A(1,a),则k=_____.

    15.有5张背面看上去无差别的扑克牌,正面分别写着5,6,7,8,9,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是__.

    16.若正六边形的内切圆半径为2,则其外接圆半径为__________.
    17.已知关于x的方程有两个不相等的实数根,则m的取值范围是______.
    18.如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的半径是____cm.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,正方形ABCD的边长为2,BC边在x轴上,BC的中点与原点O重合,过定点M(-2,0)与动点P(0,t)的直线MP记作l.
    (1)若l的解析式为y=2x+4,判断此时点A是否在直线l上,并说明理由;
    (2)当直线l与AD边有公共点时,求t的取值范围.

    20.(6分)如图,一条公路的两侧互相平行,某课外兴趣小组在公路一侧AE的点A处测得公路对面的点C与AE的夹角∠CAE=30°,沿着AE方向前进15米到点B处测得∠CBE=45°,求公路的宽度.(结果精确到0.1米,参考数据:≈1.73)

    21.(6分)某中学九年级数学兴趣小组想测量建筑物AB的高度他们在C处仰望建筑物顶端A处,测得仰角为,再往建筑物的方向前进6米到达D处,测得仰角为,求建筑物的高度测角器的高度忽略不计,结果精确到米,,

    22.(8分)△ABC内接于⊙O,AC为⊙O的直径,∠A=60°,点D在AC上,连接BD作等边三角形BDE,连接OE.
    如图1,求证:OE=AD;如图2,连接CE,求证:∠OCE=∠ABD;如图3,在(2)的条件下,延长EO交⊙O于点G,在OG上取点F,使OF=2OE,延长BD到点M使BD=DM,连接MF,若tan∠BMF=,OD=3,求线段CE的长.
    23.(8分)在△ABC中,AB=AC,∠BAC=α,点P是△ABC内一点,且∠PAC+∠PCA=,连接PB,试探究PA、PB、PC满足的等量关系.
    (1)当α=60°时,将△ABP绕点A逆时针旋转60°得到△ACP′,连接PP′,如图1所示.由△ABP≌△ACP′可以证得△APP′是等边三角形,再由∠PAC+∠PCA=30°可得∠APC的大小为   度,进而得到△CPP′是直角三角形,这样可以得到PA、PB、PC满足的等量关系为   ;
    (2)如图2,当α=120°时,参考(1)中的方法,探究PA、PB、PC满足的等量关系,并给出证明;
    (3)PA、PB、PC满足的等量关系为   .

    24.(10分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:当轿车刚到乙地时,此时货车距离乙地   千米;当轿车与货车相遇时,求此时x的值;在两车行驶过程中,当轿车与货车相距20千米时,求x的值.

    25.(10分)先化简÷(x-),然后从- 26.(12分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.求证:四边形OCED是矩形;若CE=1,DE=2,ABCD的面积是   .

    27.(12分)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.求证:△AFE≌△CDF;若AB=4,BC=8,求图中阴影部分的面积.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    A、是有理数,故A选项错误;
    B、是有理数,故B选项错误;
    C、是有理数,故C选项错误;
    D、是无限不循环小数,是无理数,故D选项正确;
    故选:D.
    2、B
    【解析】
    试题解析:能够凑成完全平方公式,则4a前可是“-”,也可以是“+”,但4前面的符号一定是:“+”,
    此题总共有(-,-)、(+,+)、(+,-)、(-,+)四种情况,能构成完全平方公式的有2种,所以概率是.
    故选B.
    考点:1.概率公式;2.完全平方式.
    3、B
    【解析】
    首先利用相反数,绝对值的意义,乘方计算方法计算化简,进一步利用负数的意义判定即可.
    【详解】
    A、-(-2)=2,是正数;
    B、-|-2|=-2,是负数;
    C、(-2)2=4,是正数;
    D、-(-2)3=8,是正数.
    故选B.
    【点睛】
    此题考查负数的意义,利用相反数,绝对值的意义,乘方计算方法计算化简是解决问题的关键.
    4、B
    【解析】
    本题是一道关于点、线、面、体的题目,回忆点、线、面、体的知识;
    【详解】
    解:∵A、天空划过一道流星说明“点动成线”,
    ∴故本选项错误.
    ∵B、汽车雨刷在挡风玻璃上刷出的痕迹说明“线动成面”,
    ∴故本选项正确.
    ∵C、抛出一块小石子,石子在空中飞行的路线说明“点动成线”,
    ∴故本选项错误.
    ∵D、旋转一扇门,门在空中运动的痕迹说明“面动成体”,
    ∴故本选项错误.
    故选B.
    【点睛】
    本题考查了点、线、面、体,准确认识生活实际中的现象是解题的关键.点动成线、线动成面、面动成体.
    5、B
    【解析】
    根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.
    【详解】
    A、是轴对称图形,故本选项错误;
    B、不是轴对称图形,故本选项正确;
    C、是轴对称图形,故本选项错误;
    D、是轴对称图形,故本选项错误.
    故选:B.
    【点睛】
    本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.
    6、A
    【解析】
    本题考查反比例函数的图象和性质,由k-8>0即可解得答案.
    【详解】
    ∵反比例函数y=的图象位于第一、第三象限,
    ∴k-8>0,
    解得k>8,
    故选A.
    【点睛】
    本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.
    7、C
    【解析】
    有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
    【详解】
    解:根据有理数比较大小的方法,可得
    -2<-1<1<1,
    ∴在1、-1、1、-2这四个数中,最大的数是1.
    故选C.
    【点睛】
    此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.
    8、C
    【解析】
    解:选项A,原式=;
    选项B,原式=a3;
    选项C,原式=-2a+2=2-2a;
    选项D, 原式=
    故选C
    9、D
    【解析】
    直接利用特殊角的三角函数值求解即可.
    【详解】
    tan30°=,故选:D.
    【点睛】
    本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.
    10、D
    【解析】
    如图,过点C作CD⊥x轴于点D,

    ∵点C的坐标为(3,4),∴OD=3,CD=4.
    ∴根据勾股定理,得:OC=5.
    ∵四边形OABC是菱形,∴点B的坐标为(8,4).
    ∵点B在反比例函数(x>0)的图象上,
    ∴.
    故选D.
    11、A
    【解析】
    先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD.
    【详解】
    ∵∠ACB=90°,AC=BC=1,
    ∴AB=,
    ∴S扇形ABD=,
    又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,
    ∴Rt△ADE≌Rt△ACB,
    ∴S阴影部分=S△ADE+S扇形ABD−S△ABC=S扇形ABD=,
    故选A.
    【点睛】
    本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.
    12、D
    【解析】
    试题分析:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,
    30出现了3次,出现的次数最多,则众数是30;
    故选D.
    考点:众数;算术平均数.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    根据题意列出表格或树状图即可解答.
    【详解】
    解:根据题意画出树状图如下:

    总共有9种情况,其中两个数字之和为8的有2种情况,
    ∴,
    故答案为:.
    【点睛】
    本题考查了概率的求解,解题的关键是画出树状图或列出表格,并熟记概率的计算公式.
    14、1
    【解析】
    解:∵直线y=kx与双曲线y=(x>0)交于点A(1,a),∴a=1,k=1.故答案为1.
    15、
    【解析】
    列表得出所有等可能的情况数,找出恰好是两个连续整数的情况数,即可求出所求概率.
    【详解】
    解:列表如下:

    5
    6
    7
    8
    9
    5
    ﹣﹣﹣
    (6、5)
    (7、5)
    (8、5)
    (9、5)
    6
    (5、6)
    ﹣﹣﹣
    (7、6)
    (8、6)
    (9、6)
    7
    (5、7)
    (6、7)
    ﹣﹣﹣
    (8、7)
    (9、7)
    8
    (5、8)
    (6、8)
    (7、8)
    ﹣﹣﹣
    (9、8)
    9
    (5、9)
    (6、9)
    (7、9)
    (8、9)
    ﹣﹣﹣
    所有等可能的情况有20种,其中恰好是两个连续整数的情况有8种,
    则P(恰好是两个连续整数)=
    故答案为.
    【点睛】
    此题考查了列表法与树状图法,概率=所求情况数与总情况数之比.
    16、
    【解析】
    根据题意画出草图,可得OG=2,,因此利用三角函数便可计算的外接圆半径OA.
    【详解】

    解:如图,连接、,作于;
    则,
    ∵六边形正六边形,
    ∴是等边三角形,
    ∴,
    ∴,
    ∴正六边形的内切圆半径为2,则其外接圆半径为.
    故答案为.
    【点睛】
    本题主要考查多边形的内接圆和外接圆,关键在于根据题意画出草图,再根据三角函数求解,这是多边形问题的解题思路.
    17、
    【解析】
    试题分析:若一元二次方程有两个不相等的实数根,则根的判别式△=b2﹣4ac>0,建立关于m的不等式,解不等式即可求出m的取值范围. ∵关于x的方程x2﹣6x+m=0有两个不相等的实数根,
    ∴△=b2﹣4ac=(﹣6)2﹣4m=36﹣4m>0, 解得:m<1.
    考点:根的判别式.
    18、5
    【解析】
    本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.
    【详解】
    解:如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.
    连接OC,交AB于D点.连接OA.

    ∵尺的对边平行,光盘与外边缘相切,
    ∴OC⊥AB.
    ∴AD=4cm.
    设半径为Rcm,则R2=42+(R-2)2,
    解得R=5,
    ∴该光盘的半径是5cm.
    故答案为5
    【点睛】
    此题考查了切线的性质及垂径定理,建立数学模型是关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、 (1)点A在直线l上,理由见解析;(2)≤t≤4.
    【解析】
    (1)由题意得点B、A坐标,把点A的横坐标x=-1代入解析式y=2x+4得出y的值,即可得出点A在直线l上;
    (2)当直线l经过点D时,设l的解析式代入数值解出即可
    【详解】
    (1)此时点A在直线l上.
    ∵BC=AB=2,点O为BC中点,
    ∴点B(-1,0),A(-1,2).
    把点A的横坐标x=-1代入解析式y=2x+4,得
    y=2,等于点A的纵坐标2,
    ∴此时点A在直线l上.
    (2)由题意可得,点D(1,2),及点M(-2,0),
    当直线l经过点D时,设l的解析式为y=kx+t(k≠0),
    ∴解得
    由(1)知,当直线l经过点A时,t=4.
    ∴当直线l与AD边有公共点时,t的取值范围是≤t≤4.

    【点睛】
    本题考查的知识点是一次函数综合题,解题的关键是熟练的掌握一次函数综合题.
    20、公路的宽为20.5米.
    【解析】
    作CD⊥AE,设CD=x米,由∠CBD=45°知BD=CD=x,根据tan∠CAD=,可得=,解之即可.
    【详解】
    解:如图,过点C作CD⊥AE于点D,

    设公路的宽CD=x米,
    ∵∠CBD=45°,
    ∴BD=CD=x,
    在Rt△ACD中,∵∠CAE=30°,
    ∴tan∠CAD==,即=,
    解得:x=≈20.5(米),
    答:公路的宽为20.5米.
    【点睛】
    本题考查了直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数解直角三角形.
    21、14.2米;
    【解析】
    Rt△ADB中用AB表示出BD、Rt△ACB中用AB表示出BC,根据CD=BC-BD可得关于AB 的方程,解方程可得.
    【详解】
    设米
    ∵∠C=45°
    在中,米,

     又米,
    在中
    Tan∠ADB= ,
    Tan60°=
    解得
    答,建筑物的高度为米.
    【点睛】
    本题考查解直角三角形的应用-仰角俯角问题,解题的关键是利用数形结合的思想找出各边之间的关系,然后找出所求问题需要的条件.
    22、 (1)证明见解析;(2)证明见解析;(3)CE=.
    【解析】
    (1)连接OB,证明△ABD≌△OBE,即可证出OE=AD.
    (2)连接OB,证明△OCE≌△OBE,则∠OCE=∠OBE,由(1)的全等可知∠ABD=∠OBE,则∠OCE=∠ABD.
    (3)过点M作AB的平行线交AC于点Q,过点D作DN垂直EG于点N,则△ADB≌△MQD,四边形MQOG为平行四边形,∠DMF=∠EDN,再结合特殊角度和已知的线段长度求出CE的长度即可.
    【详解】
    解:(1)如图1所示,连接OB,

    ∵∠A=60°,OA=OB,
    ∴△AOB为等边三角形,
    ∴OA=OB=AB,∠A=∠ABO=∠AOB=60°,
    ∵△DBE为等边三角形,
    ∴DB=DE=BE,∠DBE=∠BDE=∠DEB=60°,
    ∴∠ABD=∠OBE,
    ∴△ADB≌△OBE(SAS),
    ∴OE=AD;
    (2)如图2所示,

    由(1)可知△ADB≌△OBE,
    ∴∠BOE=∠A=60°,∠ABD=∠OBE,
    ∵∠BOA=60°,
    ∴∠EOC=∠BOE =60°,
    又∵OB=OC,OE=OE,
    ∴△BOE≌△COE(SAS),
    ∴∠OCE=∠OBE,
    ∴∠OCE=∠ABD;
    (3)如图3所示,过点M作AB的平行线交AC于点Q,过点D作DN垂直EG于点N,

    ∵BD=DM,∠ADB=∠QDM,∠QMD=∠ABD,
    ∴△ADB≌△MQD(ASA),
    ∴AB=MQ,
    ∵∠A=60°,∠ABC=90°,
    ∴∠ACB=30°,
    ∴AB==AO=CO=OG,
    ∴MQ=OG,
    ∵AB∥GO,
    ∴MQ∥GO,
    ∴四边形MQOG为平行四边形,
    设AD为x,则OE=x,OF=2x,
    ∵OD=3,
    ∴OA=OG=3+x,GF=3﹣x,
    ∵DQ=AD=x,
    ∴OQ=MG=3﹣x,
    ∴MG=GF,
    ∵∠DOG=60°,
    ∴∠MGF=120°,
    ∴∠GMF=∠GFM=30°,
    ∵∠QMD=∠ABD=∠ODE,∠ODN=30°,
    ∴∠DMF=∠EDN,
    ∵OD=3,
    ∴ON=,DN=,
    ∵tan∠BMF=,
    ∴tan∠NDE=,
    ∴ ,
    解得x=1,
    ∴NE=,
    ∴DE=,
    ∴CE=.
    故答案为(1)证明见解析;(2)证明见解析;(3)CE=.
    【点睛】
    本题考查圆的相关性质以及与圆有关的计算,全等三角形的性质和判定,第三问构造全等三角形找到与∠BMF相等的角为解题的关键.
    23、(1)150,(1)证明见解析(3)
    【解析】
    (1)根据旋转变换的性质得到△PAP′为等边三角形,得到∠P′PC=90°,根据勾股定理解答即可;
    (1)如图1,作将△ABP绕点A逆时针旋转110°得到△ACP′,连接PP′,作AD⊥PP′于D,根据余弦的定义得到PP′=PA,根据勾股定理解答即可;
    (3)与(1)类似,根据旋转变换的性质、勾股定理和余弦、正弦的关系计算即可.
    试题解析:
    【详解】
    解:(1)∵△ABP≌△ACP′,
    ∴AP=AP′,
    由旋转变换的性质可知,∠PAP′=60°,P′C=PB,
    ∴△PAP′为等边三角形,
    ∴∠APP′=60°,
    ∵∠PAC+∠PCA=×60° =30°,
    ∴∠APC=150°,
    ∴∠P′PC=90°,
    ∴PP′1+PC1=P′C1,
    ∴PA1+PC1=PB1,
    故答案为150,PA1+PC1=PB1;
    (1)如图,作°,使,连接,.过点A作AD⊥于D点.
    ∵°,
    即,
    ∴.
    ∵AB=AC,,
    ∴.

    ∴,°.
    ∵AD⊥,
    ∴°.
    ∴在Rt中,.
    ∴.
    ∵°,
    ∴°.
    ∴°.
    ∴在Rt中,.
    ∴;
    (3)如图1,与(1)的方法类似,
    作将△ABP绕点A逆时针旋转α得到△ACP′,连接PP′,
    作AD⊥PP′于D,
    由旋转变换的性质可知,∠PAP′=α,P′C=PB,
    ∴∠APP′=90°-,
    ∵∠PAC+∠PCA=,
    ∴∠APC=180°-,
    ∴∠P′PC=(180°-)-(90°-)=90°,
    ∴PP′1+PC1=P′C1,
    ∵∠APP′=90°-,
    ∴PD=PA•cos(90°-)=PA•sin,
    ∴PP′=1PA•sin,
    ∴4PA1sin1+PC1=PB1,
    故答案为4PA1sin1+PC1=PB1.
    【点睛】
    本题考查的是旋转变换的性质、等边三角形的性质、勾股定理的应用,掌握等边三角形的性质、旋转变换的性质、灵活运用类比思想是解题的关键.
    24、(1)30;(2)当x=3.9时,轿车与货车相遇;(3)在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时.
    【解析】
    (1)根据图象可知货车5小时行驶300千米,由此求出货车的速度为60千米/时,再根据图象得出货车出发后4.5小时轿车到达乙地,由此求出轿车到达乙地时,货车行驶的路程为270千米,而甲、乙两地相距300千米,则此时货车距乙地的路程为:300﹣270=30千米;
    (2)先求出线段CD对应的函数关系式,再根据两直线的交点即可解答;
    (3)分两种情形列出方程即可解决问题.
    【详解】
    解:(1)根据图象信息:货车的速度V货=,
    ∵轿车到达乙地的时间为货车出发后4.5小时,
    ∴轿车到达乙地时,货车行驶的路程为:4.5×60=270(千米),
    此时,货车距乙地的路程为:300﹣270=30(千米).
    所以轿车到达乙地后,货车距乙地30千米.
    故答案为30;
    (2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).
    ∵C(2.5,80),D(4.5,300)在其图象上,
    ,解得,
    ∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5);
    易得OA:y=60x,
    ,解得,
    ∴当x=3.9时,轿车与货车相遇;
    (3)当x=2.5时,y货=150,两车相距=150﹣80=70>20,
    由题意60x﹣(110x﹣195)=20或110x﹣195﹣60x=20,
    解得x=3.5或4.3小时.
    答:在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时.
    【点睛】
    本题考查了一次函数的应用,对一次函数图象的意义的理解,待定系数法求一次函数的解析式的运用,行程问题中路程=速度×时间的运用,本题有一定难度,其中求出货车与轿车的速度是解题的关键.
    25、当x=-1时,原式=; 当x=1时,原式=
    【解析】
    先将括号外的分式进行因式分解,再把括号内的分式通分,然后按照分式的除法法则,将除法转化为乘法进行计算.
    【详解】
    原式=
    =
    =
    ∵-<x<,且x为整数,
    ∴若使分式有意义,x只能取-1和1
    当x=1时,原式=.或:当x=-1时,原式=1
    26、(1)证明见解析;(2)1.
    【解析】
    【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;
    (2)由菱形的对角线互相垂直平分和菱形的面积公式解答.
    【详解】(1)∵四边形ABCD是菱形,
    ∴AC⊥BD,
    ∴∠COD=90°.
    ∵CE∥OD,DE∥OC,
    ∴四边形OCED是平行四边形,
    又∠COD=90°,
    ∴平行四边形OCED是矩形;
    (2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.
    ∵四边形ABCD是菱形,
    ∴AC=2OC=1,BD=2OD=2,
    ∴菱形ABCD的面积为:AC•BD=×1×2=1,
    故答案为1.
    【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.
    27、(1)证明见解析;(2)1.
    【解析】
    试题分析:(1)根据矩形的性质得到AB=CD,∠B=∠D=90°,根据折叠的性质得到∠E=∠B,AB=AE,根据全等三角形的判定定理即可得到结论;
    (2)根据全等三角形的性质得到AF=CF,EF=DF,根据勾股定理得到DF=3,根据三角形的面积公式即可得到结论.
    试题解析:(1)∵四边形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵将矩形ABCD沿对角线AC翻折,点B落在点E处,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF与△CDF中,∵∠E=∠D,∠AFE=∠CFD,AE=CD,∴△AEF≌△CDF;
    (2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴图中阴影部分的面积=S△ACE﹣S△AEF=×4×8﹣×4×3=1.
    点睛:本题考查了翻折变换﹣折叠的性质,熟练掌握折叠的性质是解题的关键.

    相关试卷

    2023-2024学年山东省枣庄市市中学区五校联考数学八上期末统考试题含答案:

    这是一份2023-2024学年山东省枣庄市市中学区五校联考数学八上期末统考试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,化简等于,下列等式变形是因式分解的是等内容,欢迎下载使用。

    山东省济南市市中学区五校联考2021-2022学年中考二模数学试题含解析:

    这是一份山东省济南市市中学区五校联考2021-2022学年中考二模数学试题含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,关于x的方程,下列事件中,属于必然事件的是等内容,欢迎下载使用。

    山东省枣庄市市中学区中学区永安乡黄庄中学2021-2022学年中考数学五模试卷含解析:

    这是一份山东省枣庄市市中学区中学区永安乡黄庄中学2021-2022学年中考数学五模试卷含解析,共22页。试卷主要包含了答题时请按要求用笔,的倒数是,下面计算中,正确的是,﹣3的相反数是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map