|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年浙江省仙居县中考数学押题卷含解析
    立即下载
    加入资料篮
    2021-2022学年浙江省仙居县中考数学押题卷含解析01
    2021-2022学年浙江省仙居县中考数学押题卷含解析02
    2021-2022学年浙江省仙居县中考数学押题卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年浙江省仙居县中考数学押题卷含解析

    展开
    这是一份2021-2022学年浙江省仙居县中考数学押题卷含解析,共24页。试卷主要包含了如图,与∠1是内错角的是,一组数据,计算,下列各式中,正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下面调查方式中,合适的是(  )
    A.调查你所在班级同学的体重,采用抽样调查方式
    B.调查乌金塘水库的水质情况,采用抽样调査的方式
    C.调查《CBA联赛》栏目在我市的收视率,采用普查的方式
    D.要了解全市初中学生的业余爱好,采用普查的方式
    2.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是(  )

    A.国 B.厉 C.害 D.了
    3.如图,与∠1是内错角的是( )

    A.∠2 B.∠3
    C.∠4 D.∠5
    4.光年天文学中的距离单位,1光年大约是9500000000000km,用科学记数法表示为  
    A. B. C. D.
    5.一组数据:6,3,4,5,7的平均数和中位数分别是 ( )
    A.5,5 B.5,6 C.6,5 D.6,6
    6.如图,点A、B在数轴上表示的数的绝对值相等,且,那么点A表示的数是  

    A. B. C. D.3
    7.把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=(  )

    A.141° B.144° C.147° D.150°
    8.计算:的结果是( )
    A. B.. C. D.
    9.下列各式中,正确的是( )
    A.t5·t5 = 2t5 B.t4+t2 = t 6 C.t3·t4 = t12 D.t2·t3 = t5
    10.在银行存款准备金不变的情况下,银行的可贷款总量与存款准备金率成反比例关系.当存款准备金率为7.5%时,某银行可贷款总量为400亿元,如果存款准备金率上调到8%时,该银行可贷款总量将减少多少亿(  )
    A.20 B.25 C.30 D.35
    11.已知a-2b=-2,则4-2a+4b的值是(  )
    A.0 B.2 C.4 D.8
    12.已知关于x的一元二次方程有实数根,则m的取值范围是( )
    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,正方形ABCD边长为1,以AB为直径作半圆,点P是CD 中点,BP与半圆交于点Q,连结DQ.给出如下结论:①DQ=1;②;③S△PDQ=;④cos∠ADQ=.其中正确结论是_________.(填写序号)

    14.如图,△ABC三边的中线AD,BE,CF的公共点G,若,则图中阴影部分面积是 .

    15.据统计,今年无锡鼋头渚“樱花节”活动期间入园赏樱人数约803万人次,用科学记数法可表示为_____人次.
    16.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_____.

    17.如图,点A,B在反比例函数(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是______.

    18.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)2013年我国多地出现雾霾天气,某企业抓住商机准备生产空气净化设备,该企业决定从以下两个投资方案中选择一个进行投资生产,方案一:生产甲产品,每件产品成本为a元(a为常数,且40<a<100),每件产品销售价为120元,每年最多可生产125万件;方案二:生产乙产品,每件产品成本价为80元,每件产品销售价为180元,每年可生产120万件,另外,年销售x万件乙产品时需上交0.5x2万元的特别关税,在不考虑其它因素的情况下:
    (1)分别写出该企业两个投资方案的年利润y1(万元)、y2(万元)与相应生产件数x(万件)(x为正整数)之间的函数关系式,并指出自变量的取值范围;
    (2)分别求出这两个投资方案的最大年利润;
    (3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?
    20.(6分)先化简:,然后在不等式的非负整数解中选择一个适当的数代入求值.
    21.(6分)如图,已知抛物线与x轴负半轴相交于点A,与y轴正半轴相交于点B,,直线l过A、B两点,点D为线段AB上一动点,过点D作轴于点C,交抛物线于点 E.
    (1)求抛物线的解析式;
    (2)若抛物线与x轴正半轴交于点F,设点D的横坐标为x,四边形FAEB的面积为S,请写出S与x的函数关系式,并判断S是否存在最大值,如果存在,求出这个最大值;并写出此时点E的坐标;如果不存在,请说明理由.
    (3)连接BE,是否存在点D,使得和相似?若存在,求出点D的坐标;若不存在,说明理由.

    22.(8分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.

    请根据图中信息解决下列问题:
    (1)共有   名同学参与问卷调查;
    (2)补全条形统计图和扇形统计图;
    (3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.
    23.(8分)某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:
    项目
    选手
    服装
    普通话
    主题
    演讲技巧
    李明
    85
    70
    80
    85
    张华
    90
    75
    75
    80
    结合以上信息,回答下列问题:求服装项目的权数及普通话项目对应扇形的圆心角大小;求李明在选拔赛中四个项目所得分数的众数和中位数;根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.

    24.(10分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过点D作DE⊥AC,垂足为E.

    (1)证明:DE为⊙O的切线;
    (2)连接DC,若BC=4,求弧DC与弦DC所围成的图形的面积.
    25.(10分)在▱ABCD中,过点D作DE⊥AB于点E,点F在CD上,CF=AE,连接BF,AF.
    (1)求证:四边形BFDE是矩形;
    (2)若AF平分∠BAD,且AE=3,DE=4,求tan∠BAF的值.

    26.(12分)如图所示,直线y=x+2与双曲线y=相交于点A(2,n),与x轴交于点C.
    (1)求双曲线解析式;
    (2)点P在x轴上,如果△ACP的面积为5,求点P的坐标.

    27.(12分)如图是一副扑克牌中的四张牌,将它们正面向下冼均匀,从中任意抽取两张牌,用画树状图(或列表)的方法,求抽出的两张牌牌面上的数字之和都是偶数的概率.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
    【详解】
    A、调查你所在班级同学的体重,采用普查,故A不符合题意;
    B、调查乌金塘水库的水质情况,无法普查,采用抽样调査的方式,故B符合题意;
    C、调查《CBA联赛》栏目在我市的收视率,调查范围广适合抽样调查,故C不符合题意;
    D、要了解全市初中学生的业余爱好,调查范围广适合抽样调查,故D不符合题意;
    故选B.
    【点睛】
    本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
    2、A
    【解析】
    正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
    【详解】
    ∴有“我”字一面的相对面上的字是国.
    故答案选A.
    【点睛】
    本题考查的知识点是专题:正方体相对两个面上的文字,解题的关键是熟练的掌握正方体相对两个面上的文字.
    3、B
    【解析】
    由内错角定义选B.
    4、C
    【解析】
    科学记数法的表示形式为的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:将9500000000000km用科学记数法表示为.
    故选C.
    【点睛】
    本题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    5、A
    【解析】
    试题分析:根据平均数的定义列式计算,再根据找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数解答.
    平均数为:×(6+3+4+1+7)=1,
    按照从小到大的顺序排列为:3,4,1,6,7,所以,中位数为:1.
    故选A.
    考点:中位数;算术平均数.
    6、B
    【解析】
    如果点A,B表示的数的绝对值相等,那么AB的中点即为坐标原点.
    【详解】
    解:如图,AB的中点即数轴的原点O.
    根据数轴可以得到点A表示的数是.
    故选:B.
    【点睛】
    此题考查了数轴有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点确定数轴的原点是解决本题的关键.
    7、B
    【解析】
    先根据多边形的内角和公式分别求得正六边形和正五边形的每一个内角的度数,再根据多边形的内角和公式求得∠APG的度数.
    【详解】
    (6﹣2)×180°÷6=120°,
    (5﹣2)×180°÷5=108°,
    ∠APG=(6﹣2)×180°﹣120°×3﹣108°×2
    =720°﹣360°﹣216°
    =144°,
    故选B.
    【点睛】
    本题考查了多边形内角与外角,关键是熟悉多边形内角和定理:(n﹣2)•180 (n≥3)且n为整数).
    8、B
    【解析】
    根据分式的运算法则即可求出答案.
    【详解】
    解:原式=
    =
    =
    故选;B
    【点睛】
    本题考查分式的运算法则,解题关键是熟练运用分式的运算法则,本题属于基础题型.
    9、D
    【解析】选项A,根据同底数幂的乘法可得原式=t10;选项B,不是同类项,不能合并;选项C,根据同底数幂的乘法可得原式=t7;选项D,根据同底数幂的乘法可得原式=t5,四个选项中只有选项D正确,故选D.
    10、B
    【解析】
    设可贷款总量为y,存款准备金率为x,比例常数为k,则由题意可得:
    ,,
    ∴,
    ∴当时,(亿),
    ∵400-375=25,
    ∴该行可贷款总量减少了25亿.
    故选B.
    11、D
    【解析】
    ∵a-2b=-2,
    ∴-a+2b=2,
    ∴-2a+4b=4,
    ∴4-2a+4b=4+4=8,
    故选D.
    12、C
    【解析】
    解:∵关于x的一元二次方程有实数根,
    ∴△==,
    解得m≥1,
    故选C.
    【点睛】
    本题考查一元二次方程根的判别式.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、①②④
    【解析】
    ①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1;
    ②连接AQ,如图4,根据勾股定理可求出BP.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求出BQ,从而求出PQ的值,就可得到的值;
    ③过点Q作QH⊥DC于H,如图4.易证△PHQ∽△PCB,运用相似三角形的性质可求出QH,从而可求出S△DPQ的值;
    ④过点Q作QN⊥AD于N,如图3.易得DP∥NQ∥AB,根据平行线分线段成比例可得,把AN=1-DN代入,即可求出DN,然后在Rt△DNQ中运用三角函数的定义,就可求出cos∠ADQ的值.
    【详解】
    解:①连接OQ,OD,如图1.

    易证四边形DOBP是平行四边形,从而可得DO∥BP.
    结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,
    则有DQ=DA=1.
    故①正确;
    ②连接AQ,如图4.

    则有CP=,BP=.
    易证Rt△AQB∽Rt△BCP,
    运用相似三角形的性质可求得BQ=,
    则PQ=,
    ∴.
    故②正确;
    ③过点Q作QH⊥DC于H,如图4.

    易证△PHQ∽△PCB,
    运用相似三角形的性质可求得QH=,
    ∴S△DPQ=DP•QH=××=.
    故③错误;
    ④过点Q作QN⊥AD于N,如图3.

    易得DP∥NQ∥AB,
    根据平行线分线段成比例可得,
    则有,
    解得:DN=.
    由DQ=1,得cos∠ADQ=.
    故④正确.
    综上所述:正确结论是①②④.
    故答案为:①②④.
    【点睛】
    本题主要考查了圆周角定理、平行四边形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、平行线分线段成比例、等腰三角形的性质、平行线的性质、锐角三角函数的定义、勾股定理等知识,综合性比较强,常用相似三角形的性质、勾股定理、三角函数的定义来建立等量关系,应灵活运用.
    14、4
    【解析】
    试题分析:由中线性质,可得AG=2GD,则,∴阴影部分的面积为4;其实图中各个单独小三角形面积都相等本题虽然超纲,但学生容易蒙对的.
    考点:中线的性质.
    15、8.03×106
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.803万=.
    16、1
    【解析】
    ∵骑车的学生所占的百分比是×100%=35%,
    ∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,
    ∴若该校共有学生1500人,则据此估计步行的有1500×40%=1(人),
    故答案为1.
    17、
    【解析】
    试题解析:过点B作直线AC的垂线交直线AC于点F,如图所示.

    ∵△BCE的面积是△ADE的面积的2倍,E是AB的中点,
    ∴S△ABC=2S△BCE,S△ABD=2S△ADE,
    ∴S△ABC=2S△ABD,且△ABC和△ABD的高均为BF,
    ∴AC=2BD,
    ∴OD=2OC.
    ∵CD=k,
    ∴点A的坐标为(,3),点B的坐标为(-,-),
    ∴AC=3,BD=,
    ∴AB=2AC=6,AF=AC+BD=,
    ∴CD=k=.
    【点睛】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理.构造直角三角形利用勾股定理巧妙得出k值是解题的关键.
    18、﹣2
    【解析】
    要求函数的解析式只要求出B点的坐标就可以,过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.根据条件得到△ACO∽△ODB,得到:=1,然后用待定系数法即可.
    【详解】
    过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.

    设点A的坐标是(m,n),则AC=n,OC=m.
    ∵∠AOB=90°,
    ∴∠AOC+∠BOD=90°.
    ∵∠DBO+∠BOD=90°,
    ∴∠DBO=∠AOC.
    ∵∠BDO=∠ACO=90°,
    ∴△BDO∽△OCA.
    ∴,
    ∵OB=1OA,
    ∴BD=1m,OD=1n.
    因为点A在反比例函数y=的图象上,
    ∴mn=1.
    ∵点B在反比例函数y=的图象上,
    ∴B点的坐标是(-1n,1m).
    ∴k=-1n•1m=-4mn=-2.
    故答案为-2.
    【点睛】
    本题考查了反比例函数图象上点的坐标特征,相似三角形的判定和性质,利用相似三角形的性质求得点B的坐标(用含n的式子表示)是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)y1=(120-a)x(1≤x≤125,x为正整数),y2=100x-0.5x2(1≤x≤120,x为正整数);(2)110-125a(万元),10(万元);(3)当40<a<80时,选择方案一;当a=80时,选择方案一或方案二均可;当80<a<100时,选择方案二.
    【解析】
    (1)根据题意直接得出y1与y2与x的函数关系式即可;
    (2)根据a的取值范围可知y1随x的增大而增大,可求出y1的最大值.又因为﹣0.5<0,可求出y2的最大值;
    (3)第三问要分两种情况决定选择方案一还是方案二.当2000﹣200a>1以及2000﹣200a<1.
    【详解】
    解:(1)由题意得:
    y1=(120﹣a)x(1≤x≤125,x为正整数),
    y2=100x﹣0.5x2(1≤x≤120,x为正整数);
    (2)①∵40<a<100,∴120﹣a>0,
    即y1随x的增大而增大,
    ∴当x=125时,y1最大值=(120﹣a)×125=110﹣125a(万元)
    ②y2=﹣0.5(x﹣100)2+10,
    ∵a=﹣0.5<0,
    ∴x=100时,y2最大值=10(万元);
    (3)∵由110﹣125a>10,
    ∴a<80,
    ∴当40<a<80时,选择方案一;
    由110﹣125a=10,得a=80,
    ∴当a=80时,选择方案一或方案二均可;
    由110﹣125a<10,得a>80,
    ∴当80<a<100时,选择方案二.
    考点:二次函数的应用.
    20、;2.
    【解析】
    先将后面的两个式子进行因式分解并约分,然后计算减法,根据题意选择x=0代入化简后的式子即可得出答案.
    【详解】
    解:原式=
    =
    =
    的非负整数解有:2,1,0,
    其中当x取2或1时分母等于0,不符合条件,故x只能取0
    ∴将x=0代入得:原式=2
    【点睛】
    本题考查的是分式的化简求值,注意选择数时一定要考虑化简前的式子是否有意义.
    21、(1);(2)与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为.(3)存在点D,使得和相似,此时点D的坐标为或.
    【解析】
    利用二次函数图象上点的坐标特征可得出点A、B的坐标,结合即可得出关于a的一元一次方程,解之即可得出结论;
    由点A、B的坐标可得出直线AB的解析式待定系数法,由点D的横坐标可得出点D、E的坐标,进而可得出DE的长度,利用三角形的面积公式结合即可得出S关于x的函数关系式,再利用二次函数的性质即可解决最值问题;
    由、,利用相似三角形的判定定理可得出:若要和相似,只需或,设点D的坐标为,则点E的坐标为,进而可得出DE、BD的长度当时,利用等腰直角三角形的性质可得出,进而可得出关于m的一元二次方程,解之取其非零值即可得出结论;当时,由点B的纵坐标可得出点E的纵坐标为4,结合点E的坐标即可得出关于m的一元二次方程,解之取其非零值即可得出结论综上即可得出结论.
    【详解】
    当时,有,
    解得:,,
    点A的坐标为.
    当时,,
    点B的坐标为.

    ,解得:,
    抛物线的解析式为.
    点A的坐标为,点B的坐标为,
    直线AB的解析式为.
    点D的横坐标为x,则点D的坐标为,点E的坐标为,
    如图.

    点F的坐标为,点A的坐标为,点B的坐标为,
    ,,,


    当时,S取最大值,最大值为18,此时点E的坐标为,
    与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为.
    ,,
    若要和相似,只需或如图.

    设点D的坐标为,则点E的坐标为,

    当时,,


    为等腰直角三角形.
    ,即,
    解得:舍去,,
    点D的坐标为;
    当时,点E的纵坐标为4,

    解得:,舍去,
    点D的坐标为.
    综上所述:存在点D,使得和相似,此时点D的坐标为或.
    故答案为:(1);(2)与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为.(3)存在点D,使得和相似,此时点D的坐标为或.
    【点睛】
    本题考查了二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、三角形的面积、二次函数的性质、相似三角形的判定、等腰直角三角形以及解一元二次方程,解题的关键是:利用二次函数图象上点的坐标特征求出点A、B的坐标;利用三角形的面积找出S关于x的函数关系式;分及两种情况求出点D的坐标.
    22、(1)100;(2)补图见解析;(3)570人.
    【解析】
    (1)由读书1本的人数及其所占百分比可得总人数;
    (2)总人数乘以读4本的百分比求得其人数,减去男生人数即可得出女生人数,用读2本的人数除以总人数可得对应百分比;
    (3)总人数乘以样本中读2本人数所占比例.
    【详解】
    (1)参与问卷调查的学生人数为(8+2)÷10%=100人,
    故答案为:100;
    (2)读4本的女生人数为100×15%﹣10=5人,
    读2本人数所占百分比为×100%=38%,
    补全图形如下:

    (3)估计该校学生一个月阅读2本课外书的人数约为1500×38%=570人.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    23、(1)服装项目的权数是10%,普通话项目对应扇形的圆心角是72°;(2)众数是85,中位数是82.5;(3)选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛,理由见解析.
    【解析】
    (1)根据扇形图用1减去其它项目的权重可求得服装项目的权重,用360度乘以普通话项目的权重即可求得普通话项目对应扇形的圆心角大小;
    (2)根据统计表中的数据可以求得李明在选拔赛中四个项目所得分数的众数和中位数;
    (3)根据统计图和统计表中的数据可以分别计算出李明和张华的成绩,然后比较大小,即可解答本题.
    【详解】
    (1)服装项目的权数是:1﹣20%﹣30%﹣40%=10%,
    普通话项目对应扇形的圆心角是:360°×20%=72°;
    (2)明在选拔赛中四个项目所得分数的众数是85,中位数是:(80+85)÷2=82.5;
    (3)李明得分为:85×10%+70×20%+80×30%+85×40%=80.5,
    张华得分为:90×10%+75×20%+75×30%+80×40%=78.5,
    ∵80.5>78.5,
    ∴李明的演讲成绩好,
    故选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛.
    【点睛】
    本题考查了扇形统计图、中位数、众数、加权平均数,明确题意,结合统计表和统计图找出所求问题需要的条件,运用数形结合的思想进行解答是解题的关键.
    24、(1)详见解析;(2).
    【解析】
    (1)连接OD,由平行线的判定定理可得OD∥AC,利用平行线的性质得∠ODE=∠DEA=90°,可得DE为⊙O的切线;
    (2)连接CD,求弧DC与弦DC所围成的图形的面积利用扇形DOC面积-三角形DOC的面积计算即可.
    【详解】
    解:
    (1)证明:连接OD,
    ∵OD=OB,
    ∴∠ODB=∠B,
    ∵AC=BC,
    ∴∠A=∠B,
    ∴∠ODB=∠A,
    ∴OD∥AC,
    ∴∠ODE=∠DEA=90°,
    ∴DE为⊙O的切线;
    (2)连接CD,
    ∵∠A=30°,AC=BC,
    ∴∠BCA=120°,
    ∵BC为直径,
    ∴∠ADC=90°,
    ∴CD⊥AB,
    ∴∠BCD=60°,
    ∵OD=OC,
    ∴∠DOC=60°,
    ∴△DOC是等边三角形,
    ∵BC=4,
    ∴OC=DC=2,
    ∴S△DOC=DC×=,
    ∴弧DC与弦DC所围成的图形的面积=﹣=﹣.

    【点睛】
    本题考查的知识点是等腰三角形的性质、切线的判定与性质以及扇形面积的计算,解题的关键是熟练的掌握等腰三角形的性质、切线的判定与性质以及扇形面积的计算.
    25、(1)证明见解析(2)
    【解析】
    分析:
    (1)由已知条件易得BE=DF且BE∥DF,从而可得四边BFDE是平行四边形,结合∠EDB=90°即可得到四边形BFDE是矩形;
    (2)由已知易得AB=5,由AF平分∠DAB,DC∥AB可得∠DAF=∠BAF=∠DFA,由此可得DF=AD=5,结合BE=DF可得BE=5,由此可得AB=8,结合BF=DE=4即可求得tan∠BAF=.
    详解:
    (1)∵四边形ABCD是平行四边形,
    ∴AB∥CD,AB=CD,
    ∵AE=CF,
    ∴BE=DF,
    ∴四边形BFDE是平行四边形.
    ∵DE⊥AB,
    ∴∠DEB=90°,
    ∴四边形BFDE是矩形;
    (2)在Rt△BCF中,由勾股定理,得
    AD =,
    ∵四边形ABCD是平行四边形,
    ∴AB∥DC,
    ∴∠DFA=∠FAB.
    ∵AF平分∠DAB
    ∴∠DAF=∠FAB,
    ∴∠DAF=∠DFA,
    ∴DF=AD=5,
    ∵四边形BFDE是矩形,
    ∴BE=DF=5,BF=DE=4,∠ABF=90°,
    ∴AB=AE+BE=8,
    ∴tan∠BAF=.
    点睛:(1)熟悉平行四边形的性质和矩形的判定方法是解答第1小题的关键;(2)能由AF平分∠DAB,DC∥AB得到∠DAF=∠BAF=∠DFA,进而推得DF=AD=5是解答第2小题的关键.
    26、(1);(2)(,0)或
    【解析】
    (1)把A点坐标代入直线解析式可求得n的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;
    (2)设P(x,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于x的方程,解方程可求得P点的坐标.
    【详解】
    解:(1)把A(2,n)代入直线解析式得:n=3,
    ∴A(2,3),
    把A坐标代入y=,得k=6,
    则双曲线解析式为y=.
    (2)对于直线y=x+2,
    令y=0,得到x=-4,即C(-4,0).
    设P(x,0),可得PC=|x+4|.
    ∵△ACP面积为5,
    ∴|x+4|•3=5,即|x+4|=2,
    解得:x=-或x=-,
    则P坐标为或.
    27、
    【解析】
    根据列表法先画出列表,再求概率.
    【详解】
    解:列表如下:

    2
    3
    5
    6
    2

    (2,3)
    (2,5)
    (2,6)
    3
    (3,2)

    (3,5)
    (3,6)
    5
    (5,2)
    (5,3)

    (5,6)
    6
    (6,2)
    (6,3)
    (6,5)

    由表可知共有12种等可能结果,其中数字之和为偶数的有4种,
    所以P(数字之和都是偶数).
    【点睛】
    此题重点考查学生对概率的应用,掌握列表法是解题的关键.

    相关试卷

    浙江省台州市仙居县重点名校2022年中考押题数学预测卷含解析: 这是一份浙江省台州市仙居县重点名校2022年中考押题数学预测卷含解析,共20页。

    浙江省丽水市级名校2021-2022学年中考押题数学预测卷含解析: 这是一份浙江省丽水市级名校2021-2022学年中考押题数学预测卷含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,今年春节某一天早7,已知点A等内容,欢迎下载使用。

    2021-2022学年浙江省平阳县中考押题数学预测卷含解析: 这是一份2021-2022学年浙江省平阳县中考押题数学预测卷含解析,共20页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map