|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年浙江省玉环市达标名校中考一模数学试题含解析
    立即下载
    加入资料篮
    2021-2022学年浙江省玉环市达标名校中考一模数学试题含解析01
    2021-2022学年浙江省玉环市达标名校中考一模数学试题含解析02
    2021-2022学年浙江省玉环市达标名校中考一模数学试题含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年浙江省玉环市达标名校中考一模数学试题含解析

    展开
    这是一份2021-2022学年浙江省玉环市达标名校中考一模数学试题含解析,共19页。试卷主要包含了下列计算中正确的是,二次函数y=﹣等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.共享单车为市民短距离出行带来了极大便利.据2017年“深圳互联网自行车发展评估报告”披露,深圳市日均使用共享单车2590000人次,其中2590000用科学记数法表示为( )
    A.259×104 B.25.9×105 C.2.59×106 D.0.259×107
    2.把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是(  )
    A.16 B.17 C.18 D.19
    3.计算 的结果是( )
    A.a2 B.-a2 C.a4 D.-a4
    4.关于x的不等式x-b>0恰有两个负整数解,则b的取值范围是
    A. B. C. D.
    5.下列计算中正确的是(  )
    A.x2+x2=x4 B.x6÷x3=x2 C.(x3)2=x6 D.x-1=x
    6.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为( )
    A. B.2 C. D.
    7.若x=-2是关于x的一元二次方程x2+ax-a2=0的一个根,则a的值为( )
    A.-1或4 B.-1或-4
    C.1或-4 D.1或4
    8.从 ,0,π, ,6这5个数中随机抽取一个数,抽到有理数的概率是(  )
    A. B. C. D.
    9.如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为( )

    A.125° B.75° C.65° D.55°
    10.已知x2+mx+25是完全平方式,则m的值为(  )
    A.10 B.±10 C.20 D.±20
    11.以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是( )
    A.b≥1.25 B.b≥1或b≤﹣1 C.b≥2 D.1≤b≤2
    12.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a,b对应的密文为a+2b,2a-b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是(  )
    A.3,-1 B.1,-3 C.-3,1 D.-1,3
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.在矩形ABCD中,AB=4, BC=3, 点P在AB上.若将△DAP沿DP折叠,使点A落在矩形对角线上的处,则AP的长为__________.
    14.将直尺和直角三角尺按如图方式摆放.若,,则________.

    15.如图,已知正方形边长为4,以A为圆心,AB为半径作弧BD,M是BC的中点,过点M作EM⊥BC交弧BD于点E,则弧BE的长为_____.

    16.如果梯形的中位线长为6,一条底边长为8,那么另一条底边长等于__________.
    17.方程的解是__________.
    18.如图,正△的边长为,点、在半径为的圆上,点在圆内,将正绕点逆时针针旋转,当点第一次落在圆上时,旋转角的正切值为_______________

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)4件同型号的产品中,有1件不合格品和3件合格品.从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?
    20.(6分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)转动转盘一次,求转出的数字是-2的概率;转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.

    21.(6分)如图,已知点D在反比例函数y=的图象上,过点D作x轴的平行线交y轴于点B(0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC=.
    (1)求反比例函数y=和直线y=kx+b的解析式;
    (2)连接CD,试判断线段AC与线段CD的关系,并说明理由;
    (3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA与点M,求∠BMC的度数.

    22.(8分)如图,一次函数y=k1x+b(k1≠0)与反比例函数的图象交于点A(-1,2),B(m,-1).
    (1)求一次函数与反比例函数的解析式;
    (2)在x轴上是否存在点P(n,0),使△ABP为等腰三角形,请你直接写出P点的坐标.

    23.(8分)先化简,再求值:先化简÷(﹣x+1),然后从﹣2<x<的范围内选取一个合适的整数作为x的值代入求值.
    24.(10分)解不等式组:并把解集在数轴上表示出来.
    25.(10分)如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.请用列表或画树状图的方法写出所有的可能;求一次函数y=kx+b的图象经过一、二、四象限的概率.

    26.(12分)如图①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直径,⊙O交AC于点D,过点D的直线交BC于点E,交AB的延长线于点P,∠A=∠PDB.

    (1)求证:PD是⊙O的切线;
    (2)若AB=4,DA=DP,试求弧BD的长;
    (3)如图②,点M是弧AB的中点,连结DM,交AB于点N.若tanA=,求的值.
    27.(12分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    绝对值大于1的正数可以科学计数法,a×10n,即可得出答案.
    【详解】
    n由左边第一个不为0的数字前面的0的个数决定,所以此处n=6.
    【点睛】
    本题考查了科学计数法的运用,熟悉掌握是解决本题的关键.
    2、A
    【解析】
    一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n-1)边形.故当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.
    故选A.
    【点睛】
    此题主要考查了多边形,减去一个角的方法可能有三种:经过两个相邻点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.
    3、D
    【解析】
    直接利用同底数幂的乘法运算法则计算得出答案.
    【详解】
    解:,
    故选D.
    【点睛】
    此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.
    4、A
    【解析】
    根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.
    【详解】
    根据x的不等式x-b>0恰有两个负整数解,可得x的负整数解为-1和-2


    综合上述可得
    故选A.
    【点睛】
    本题主要考查不等式的非整数解,关键在于非整数解的确定.
    5、C
    【解析】
    根据合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数幂的意义逐项求解,利用排除法即可得到答案.
    【详解】
    A. x2+x2=2x2 ,故不正确;
    B. x6÷x3=x3 ,故不正确;
    C. (x3)2=x6 ,故正确;
    D. x﹣1=,故不正确;
    故选C.
    【点睛】
    本题考查了合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数幂的意义,解答本题的关键是熟练掌握各知识点.
    6、D
    【解析】
    由m≤x≤n和mn<0知m<0,n>0,据此得最小值为1m为负数,最大值为1n为正数.将最大值为1n分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出.
    【详解】
    解:二次函数y=﹣(x﹣1)1+5的大致图象如下:

    ①当m≤0≤x≤n<1时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,
    解得:m=﹣1.
    当x=n时y取最大值,即1n=﹣(n﹣1)1+5, 解得:n=1或n=﹣1(均不合题意,舍去);
    ②当m≤0≤x≤1≤n时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,
    解得:m=﹣1.
    当x=1时y取最大值,即1n=﹣(1﹣1)1+5, 解得:n=,
    或x=n时y取最小值,x=1时y取最大值,
    1m=-(n-1)1+5,n=,
    ∴m=,
    ∵m<0,
    ∴此种情形不合题意,
    所以m+n=﹣1+=.
    7、C
    【解析】
    试题解析:∵x=-2是关于x的一元二次方程的一个根,
    ∴(-2)2+a×(-2)-a2=0,即a2+3a-2=0,
    整理,得(a+2)(a-1)=0,
    解得 a1=-2,a2=1.
    即a的值是1或-2.
    故选A.
    点睛:一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.
    8、C
    【解析】
    根据有理数的定义可找出在从,0,π,,6这5个数中只有0、、6为有理数,再根据概率公式即可求出抽到有理数的概率.
    【详解】
    ∵在,0,π,,6这5个数中有理数只有0、、6这3个数,
    ∴抽到有理数的概率是,
    故选C.
    【点睛】
    本题考查了概率公式以及有理数,根据有理数的定义找出五个数中的有理数的个数是解题的关键.
    9、D
    【解析】
    延长CB,根据平行线的性质求得∠1的度数,则∠DBC即可求得.
    【详解】
    延长CB,延长CB,
    ∵AD∥CB,
    ∴∠1=∠ADE=145,
    ∴∠DBC=180−∠1=180−125=55.
    故答案选:D.
    【点睛】
    本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.
    10、B
    【解析】
    根据完全平方式的特点求解:a2±2ab+b2.
    【详解】
    ∵x2+mx+25是完全平方式,
    ∴m=±10,
    故选B.
    【点睛】
    本题考查了完全平方公式:a2±2ab+b2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x和1的平方,那么中间项为加上或减去x和1的乘积的2倍.
    11、A
    【解析】
    ∵二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,a=1>0,∴Δ≤0或抛物线与x轴的交点的横坐标均大于等于0.
    当Δ≤0时,[-2(b-2)]2-4(b2-1)≤0,
    解得b≥.
    当抛物线与x轴的交点的横坐标均大于等于0时,
    设抛物线与x轴的交点的横坐标分别为x1,x2,
    则x1+x2=2(b-2)>0,Δ=[-2(b-2)]2-4(b2-1)>0,无解,
    ∴此种情况不存在.
    ∴b≥.
    12、A
    【解析】
    根据题意可得方程组,再解方程组即可.
    【详解】
    由题意得:,
    解得:,
    故选A.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、或
    【解析】
    ①点A落在矩形对角线BD上,如图1,
    ∵AB=4,BC=3,
    ∴BD=5,
    根据折叠的性质,AD=A′D=3,AP=A′P,∠A=∠PA′D=90°,
    ∴BA′=2,设AP=x,则BP=4﹣x,∵BP2=BA′2+PA′2,
    ∴(4﹣x)2=x2+22,
    解得:x=,∴AP=;
    ②点A落在矩形对角线AC上,如图2,根据折叠的性质可知DP⊥AC,
    ∴△DAP∽△ABC,
    ∴,
    ∴AP===.
    故答案为或.

    14、80°.
    【解析】
    由于直尺外形是矩形,根据矩形的性质可知对边平行,所以∠4=∠3,再根据外角的性质即可求出结果.
    【详解】
    解:如图所示,依题意得:∠4=∠3,
    ∵∠4=∠2+∠1=80°
    ∴∠3=80°.
    故答案为80°.

    【点睛】
    本题考查了平行线的性质和三角形外角的性质,掌握三角形外角的性质是解题的关键.
    15、
    【解析】
    延长ME交AD于F,由M是BC的中点,MF⊥AD,得到F点为AD的中点,即AF=AD,则∠AEF=30°,得到∠BAE=30°,再利用弧长公式计算出弧BE的长.
    【详解】
    延长ME交AD于F,如图,∵M是BC的中点,MF⊥AD,∴F点为AD的中点,即AF=AD.
    又∵AE=AD,∴AE=2AF,∴∠AEF=30°,∴∠BAE=30°,∴弧BE的长==.
    故答案为.

    【点睛】
    本题考查了弧长公式:l=.也考查了在直角三角形中,一直角边是斜边的一半,这条直角边所对的角为30度.
    16、4.
    【解析】
    只需根据梯形的中位线定理“梯形的中位线等于两底和的一半”,进行计算.
    【详解】
    解:根据梯形的中位线定理“梯形的中位线等于两底和的一半”,则另一条底边长.
    故答案为:4
    【点睛】
    本题考查梯形中位线,用到的知识点为:梯形的中位线=(上底+下底)
    17、.
    【解析】
    根据解分式方程的步骤依次计算可得.
    【详解】
    解:去分母,得:,
    解得:,
    当时,,
    所以是原分式方程的解,
    故答案为:.
    【点睛】
    本题主要考查解分式方程,解题的关键是熟练掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.
    18、
    【解析】
    作辅助线,首先求出∠DAC的大小,进而求出旋转的角度,即可得出答案.
    【详解】
    如图,分别连接OA、OB、OD;

    ∵OA=OB= ,AB=2,
    ∴△OAB是等腰直角三角形,
    ∴∠OAB=45°;
    同理可证:∠OAD=45°,
    ∴∠DAB=90°;
    ∵∠CAB=60°,
    ∴∠DAC=90°−60°=30°,
    ∴旋转角的正切值是,
    故答案为:.
    【点睛】
    此题考查等边三角形的性质,旋转的性质,点与圆的位置关系,解直角三角形,解题关键在于作辅助线.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1);(2);(3)x=1.
    【解析】
    (1)用不合格品的数量除以总量即可求得抽到不合格品的概率;
    (2)利用独立事件同时发生的概率等于两个独立事件单独发生的概率的积即可计算;
    (3)根据频率估计出概率,利用概率公式列式计算即可求得x的值.
    【详解】
    解:(1)∵4件同型号的产品中,有1件不合格品,
    ∴P(不合格品)=;
    (2)
    共有12种情况,抽到的都是合格品的情况有6种,
    P(抽到的都是合格品)==;
    (3)∵大量重复试验后发现,抽到合格品的频率稳定在0.95,
    ∴抽到合格品的概率等于0.95,
    ∴ =0.95,
    解得:x=1.
    【点睛】
    本题考查利用频率估计概率;概率公式;列表法与树状图法.
    20、(1);(2).
    【解析】
    【分析】(1)根据题意可求得2个“-2”所占的扇形圆心角的度数,再利用概率公式进行计算即可得;
    (2)由题意可得转出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情况,再找出符合条件的可能性,根据概率公式进行计算即可得.
    【详解】(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,
    所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,
    ∴转动转盘一次,求转出的数字是-2的概率为=;
    (2)由(1)可知,该转盘转出“1”、“3”、“-2”的概率相同,均为,所有可能性如下表所示:
    第一次 第二次
    1
    -2
    3
    1
    (1,1)
    (1,-2)
    (1,3)
    -2
    (-2,1)
    (-2,-2)
    (-2,3)
    3
    (3,1)
    (3,-2)
    (3,3)
    由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为.
    【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
    21、(1),(2)AC⊥CD(3)∠BMC=41°
    【解析】
    分析:(1)由A点坐标可求得OA的长,再利用三角函数的定义可求得OC的长,可求得C、D点坐标,再利用待定系数法可求得直线AC的解析式;
    (2)由条件可证明△OAC≌△BCD,再由角的和差可求得∠OAC+∠BCA=90°,可证得AC⊥CD;(3)连接AD,可证得四边形AEBD为平行四边形,可得出△ACD为等腰直角三角形,则可求得答案.
    本题解析:
    (1)∵A(1,0),∴OA=1.∵tan∠OAC=,∴,解得OC=2,
    ∴C(0,﹣2),∴BD=OC=2,∵B(0,3),BD∥x轴,∴D(﹣2,3),
    ∴m=﹣2×3=﹣6,∴y=﹣,
    设直线AC关系式为y=kx+b,∵过A(1,0),C(0,﹣2),
    ∴,解得,∴y=x﹣2;
    (2)∵B(0,3),C(0,﹣2),∴BC=1=OA,
    在△OAC和△BCD中
    ,∴△OAC≌△BCD(SAS),∴AC=CD,
    ∴∠OAC=∠BCD,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,
    ∴AC⊥CD;
    (3)∠BMC=41°.
    如图,连接AD,

    ∵AE=OC,BD=OC,AE=BD,∴BD∥x轴,
    ∴四边形AEBD为平行四边形,
    ∴AD∥BM,∴∠BMC=∠DAC,
    ∵△OAC≌△BCD,∴AC=CD,
    ∵AC⊥CD,∴△ACD为等腰直角三角形,
    ∴∠BMC=∠DAC=41°.
    22、(1)反比例函数的解析式为;一次函数的解析式为y=-x+1;(2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).
    【解析】
    (1)将A点代入求出k2,从而求出反比例函数方程,再联立将B点代入即可求出一次函数方程.
    (2)令PA=PB,求出P.令AP=AB,求P.令BP=BA,求P.根据坐标距离公式计算即可.
    【详解】
    (1)把A(-1,2)代入,得到k2=-2,
    ∴反比例函数的解析式为.
    ∵B(m,-1)在上,∴m=2,
    由题意,解得:,∴一次函数的解析式为y=-x+1.
    (2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).
    【点睛】
    本题考查一次函数图像与性质和反比例函数的图像和性质,解题的关键是待定系数法,分三种情况讨论.
    23、﹣,﹣.
    【解析】
    根据分式的减法和除法可以化简题目中的式子,然后在-2< x<中选取一个使得原分式有意义的整数值代入化简后的式子即可求出最后答案,值得注意的是,本题答案不唯一,x的值可以取-2、2中的任意一个.
    【详解】
    原式====,∵-2< x<(x为整数)且分式要有意义,所以x+1≠0,x-1≠0,x≠0,即x≠-1,1,0,因此可以选取x=2时,此时原式=-.
    【点睛】
    本题主要考查了求代数式的值,解本题的要点在于在化解过程中,求得x的取值范围,从而再选取x=2得到答案.
    24、不等式组的解集为﹣7<x≤1,将解集表示在数轴上表示见解析.
    【解析】
    试题分析:先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条不等式表示出来.
    试题解析:由①得:﹣2x≥﹣2,即x≤1,
    由②得:4x﹣2<5x+5,即x>﹣7,
    所以﹣7<x≤1.
    在数轴上表示为:
    .
    考点:解一元一次不等式组;在数轴上表示不等式的解集.
    点睛:分别求出各不等式的解集,再求出其公共解集即可.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
    25、(1)答案见解析;(2).
    【解析】
    (1)k可能的取值为-1、-2、-3,b可能的取值为-1、-2、3、4,所以将所有等可能出现的情况用列表方式表示出来即可.
    (2)判断出一次函数y=kx+b经过一、二、四象限时k、b的正负,在列表中找出满足条件的情况,利用概率的基本概念即可求出一次函数y=kx+b经过一、二、四象限的概率.
    【详解】
    解:(1)列表如下:

    所有等可能的情况有12种;
    (2)一次函数y=kx+b的图象经过一、二、四象限时,k<0,b>0,情况有4种,
    则P== .
    26、(1)见解析;(2);(3).
    【解析】
    (1)连结OD;由AB是⊙O的直径,得到∠ADB=90°,根据等腰三角形的性质得到∠ADO=∠A,∠BDO=∠ABD;得到∠PDO=90°,且D在圆上,于是得到结论;
    (2)设∠A=x,则∠A=∠P=x,∠DBA=2x,在△ABD中,根据∠A+∠ABD=90o列方程求出x的值,进而可得到∠DOB=60o,然后根据弧长公式计算即可;
    (3)连结OM,过D作DF⊥AB于点F,然后证明△OMN∽△FDN,根据相似三角形的性质求解即可.
    【详解】
    (1)连结OD,∵AB是⊙O的直径,∴∠ADB=90o,
    ∠A+∠ABD=90o,又∵OA=OB=OD,∴∠BDO=∠ABD,
    又∵∠A=∠PDB,∴∠PDB+∠BDO=90o,即∠PDO=90o,
    且D在圆上,∴PD是⊙O的切线.
    (2)设∠A=x,
    ∵DA=DP,∴∠A=∠P=x,∴∠DBA=∠P+∠BDP=x+x=2x,
    在△ABD中,
    ∠A+∠ABD=90o,x=2x=90o,即x=30o,
    ∴∠DOB=60o,∴弧BD长.

    (3)连结OM,过D作DF⊥AB于点F,∵点M是的中点,
    ∴OM⊥AB,设BD=x,则AD=2x,AB==2OM,即OM=,
    在Rt△BDF中,DF=,
    由△OMN∽△FDN得.
    【点睛】
    本题是圆的综合题,考查了切线的判定,圆周角定理及其推论,三角形外角的性质,含30°角的直角三角形的性质,弧长的计算,弧弦圆心角的关系,相似三角形的判定与性质.熟练掌握切线的判定方法是解(1)的关键,求出∠A=30o是解(2)的关键,证明△OMN∽△FDN是解(3)的关键.
    27、.
    【解析】
    试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙抽中同一篇文章,再利用概率公式求解即可求得答案.
    试题解析:解:如图:
    所有可能的结果有9种,甲、乙抽中同一篇文章的情况有3种,概率为=.

    点睛:本题主要考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.

    相关试卷

    浙江省玉环市达标名校2021-2022学年中考数学全真模拟试题含解析: 这是一份浙江省玉环市达标名校2021-2022学年中考数学全真模拟试题含解析,共25页。试卷主要包含了答题时请按要求用笔,下列各式中,正确的是等内容,欢迎下载使用。

    浙江省杭州市萧山区一模考试卷达标名校2021-2022学年中考联考数学试题含解析: 这是一份浙江省杭州市萧山区一模考试卷达标名校2021-2022学年中考联考数学试题含解析,共23页。试卷主要包含了答题时请按要求用笔,计算,化简•a5所得的结果是等内容,欢迎下载使用。

    2022年浙江省玉环市达标名校中考数学仿真试卷含解析: 这是一份2022年浙江省玉环市达标名校中考数学仿真试卷含解析,共28页。试卷主要包含了﹣3的相反数是,关于的方程有实数根,则满足等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map