![2021-2022学年驻马店市市级名校初中数学毕业考试模拟冲刺卷含解析01](http://www.enxinlong.com/img-preview/2/3/13314457/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年驻马店市市级名校初中数学毕业考试模拟冲刺卷含解析02](http://www.enxinlong.com/img-preview/2/3/13314457/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年驻马店市市级名校初中数学毕业考试模拟冲刺卷含解析03](http://www.enxinlong.com/img-preview/2/3/13314457/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021-2022学年驻马店市市级名校初中数学毕业考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列运算正确的是( )
A.a•a2=a2 B.(ab)2=ab C.3﹣1= D.
2.已知抛物线y=x2+bx+c的对称轴为x=2,若关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围内有两个相等的实数根,则c的取值范围是( )
A.c=4 B.﹣5<c≤4 C.﹣5<c<3或c=4 D.﹣5<c≤3或c=4
3.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=1.若D(1,2)、E(﹣2,1)、F(0,t)三点的“矩面积”为18,则t的值为( )
A.﹣3或7 B.﹣4或6 C.﹣4或7 D.﹣3或6
4.点M(a,2a)在反比例函数y=的图象上,那么a的值是( )
A.4 B.﹣4 C.2 D.±2
5.如图,△ABC中,∠ACB=90°,∠A=30°,AB=1.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为( )
A. B.
C. D.
6.如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C在反比例函数y=(x>0)的图象上,则△OAB的面积等于( )
A.2 B.3 C. 4 D.6
7.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为( )
A.8 B.10 C.12 D.14
8.下列运算中正确的是( )
A.x2÷x8=x−6 B.a·a2=a2 C.(a2)3=a5 D.(3a)3=9a3
9.如图,将△ABC 绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点 A′恰好落在 BC 边的延长线上,下列结论错误的是( )
A.∠BCB′=∠ACA′ B.∠ACB=2∠B
C.∠B′CA=∠B′AC D.B′C 平分∠BB′A′
10.一副直角三角板如图放置,其中,,,点F在CB的延长线上若,则等于( )
A.35° B.25° C.30° D.15°
二、填空题(共7小题,每小题3分,满分21分)
11.计算:_______________.
12.我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,,,边AD长为5. 现固定边AB,“推”矩形使点D落在y轴的正半轴上(落点记为),相应地,点C的对应点的坐标为_______.
13.如图,圆锥底面圆心为O,半径OA=1,顶点为P,将圆锥置于平面上,若保持顶点P位置不变,将圆锥顺时针滚动三周后点A恰好回到原处,则圆锥的高OP=_____.
14.双察下列等式:,,,…则第n个等式为_____.(用含n的式子表示)
15.如果关于x的一元二次方程有两个不相等的实数根,那么的取值范围是__________.
16.如图,在平面直角坐标系中有矩形ABCD,A(0,0),C(8,6),M为边CD上一动点,当△ABM是等腰三角形时,M点的坐标为_____.
17.已知:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=__________cm.
三、解答题(共7小题,满分69分)
18.(10分)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.求每个月生产成本的下降率;请你预测4月份该公司的生产成本.
19.(5分)海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.
20.(8分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了如下统计图:
(1)填空:样本中的总人数为 ;开私家车的人数m= ;扇形统计图中“骑自行车”所在扇形的圆心角为 度;
(2)补全条形统计图;
(3)该单位共有2000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?
21.(10分)如图,已知A(a,4),B(﹣4,b)是一次函数与反比例函数图象的两个交点.
(1)若a=1,求反比例函数的解析式及b的值;
(2)在(1)的条件下,根据图象直接回答:当x取何值时,反比例函数大于一次函数的值?
(3)若a﹣b=4,求一次函数的函数解析式.
22.(10分)(2016山东省烟台市)某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)
23.(12分)在矩形中,点在上,,⊥,垂足为.求证.若,且,求.
24.(14分)如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足+|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.a= ,b= ,点B的坐标为 ;当点P移动4秒时,请指出点P的位置,并求出点P的坐标;在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
根据同底数幂的乘法法则对A进行判断;根据积的乘方对B进行判断;根据负整数指数幂的意义对C进行判断;根据二次根式的加减法对D进行判断.
【详解】
解:A、原式=a3,所以A选项错误;
B、原式=a2b2,所以B选项错误;
C、原式=,所以C选项正确;
D、原式=2,所以D选项错误.
故选:C.
【点睛】
本题考查了二次根式的加减法:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.也考查了整式的运算.
2、D
【解析】
解:由对称轴x=2可知:b=﹣4,
∴抛物线y=x2﹣4x+c,
令x=﹣1时,y=c+5,
x=3时,y=c﹣3,
关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围有实数根,
当△=0时,
即c=4,
此时x=2,满足题意.
当△>0时,
(c+5)(c﹣3)≤0,
∴﹣5≤c≤3,
当c=﹣5时,
此时方程为:﹣x2+4x+5=0,
解得:x=﹣1或x=5不满足题意,
当c=3时,
此时方程为:﹣x2+4x﹣3=0,
解得:x=1或x=3此时满足题意,
故﹣5<c≤3或c=4,
故选D.
点睛:本题主要考查二次函数与一元二次方程的关系.理解二次函数与一元二次方程之间的关系是解题的关键.
3、C
【解析】
由题可知“水平底”a的长度为3,则由“矩面积”为18可知“铅垂高”h=6,再分 >2或t<1两种情况进行求解即可.
【详解】
解:由题可知a=3,则h=18÷3=6,则可知t>2或t<1.当t>2时,t-1=6,解得t=7;当t<1时,2-t=6,解得t=-4.综上,t=-4或7.
故选择C.
【点睛】
本题考查了平面直角坐标系的内容,理解题意是解题关键.
4、D
【解析】
根据点M(a,2a)在反比例函数y=的图象上,可得:,然后解方程即可求解.
【详解】
因为点M(a,2a)在反比例函数y=的图象上,可得:
,
,
解得:,
故选D.
【点睛】
本题主要考查反比例函数图象的上点的特征,解决本题的关键是要熟练掌握反比例函数图象上点的特征.
5、D
【解析】
解:当点Q在AC上时,∵∠A=30°,AP=x,∴PQ=xtan30°=,∴y=×AP×PQ=×x×=x2;
当点Q在BC上时,如下图所示:
∵AP=x,AB=1,∠A=30°,∴BP=1﹣x,∠B=60°,∴PQ=BP•tan60°=(1﹣x),∴ =AP•PQ= = ,∴该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下.故选D.
点睛:本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在BC上这种情况.
6、B
【解析】
作BD⊥x轴于D,CE⊥x轴于E,
∴BD∥CE,
∴,
∵OC是△OAB的中线,
∴,
设CE=x,则BD=2x,
∴C的横坐标为,B的横坐标为,
∴OD=,OE=,
∴DE=OE-OD=﹣=,
∴AE=DE=,
∴OA=OE+AE=,
∴S△OAB=OA•BD=×=1.
故选B.
点睛:本题是反比例函数与几何的综合题,熟知反比例函数的图象上点的特征和相似三角形的判定和性质是解题的关键.
7、B
【解析】
试题分析:根据平行四边形的性质可知AB=CD,AD∥BC,AD=BC,然后根据平行线的性质和角平分线的性质可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.
故选B.
点睛:此题主要考查了平行四边形的性质和等腰三角形的性质,解题关键是把所求线段转化为题目中已知的线段,根据等量代换可求解.
8、A
【解析】
根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.
【详解】
解:A、x2÷x8=x-6,故该选项正确;
B、a•a2=a3,故该选项错误;
C、(a2)3=a6,故该选项错误;
D、(3a)3=27a3,故该选项错误;
故选A.
【点睛】
此题主要考查了同底数幂的乘除法、幂的乘方和积的乘方,关键是掌握相关运算法则.
9、C
【解析】
根据旋转的性质求解即可.
【详解】
解:根据旋转的性质,A:∠与∠均为旋转角,故∠=∠,故A正确;
B:,,
又
,
,故B正确;
D:,
B′C平分∠BB′A′,故D正确.
无法得出C中结论,
故答案:C.
【点睛】
本题主要考查三角形旋转后具有的性质,注意灵活运用各条件
10、D
【解析】
直接利用三角板的特点,结合平行线的性质得出∠BDE=45°,进而得出答案.
【详解】
解:由题意可得:∠EDF=30°,∠ABC=45°,
∵DE∥CB,
∴∠BDE=∠ABC=45°,
∴∠BDF=45°-30°=15°.
故选D.
【点睛】
此题主要考查了平行线的性质,根据平行线的性质得出∠BDE的度数是解题关键.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
先把化简为2,再合并同类二次根式即可得解.
【详解】
2-=.
故答案为.
【点睛】
本题考查了二次根式的运算,正确对二次根式进行化简是关键.
12、
【解析】
分析:根据勾股定理,可得 ,根据平行四边形的性质,可得答案.
详解:由勾股定理得:= ,即(0,4).
矩形ABCD的边AB在x轴上,∴四边形是平行四边形,
A=B, =AB=4-(-3)=7, 与的纵坐标相等,∴(7,4),故答案为(7,4).
点睛:本题考查了多边形,利用平行四边形的性质得出A=B,=AB=4-(-3)=7是解题的关键.
13、
【解析】
先利用圆的周长公式计算出PA的长,然后利用勾股定理计算PO的长.
【详解】
解:根据题意得2π×PA=3×2π×1,
所以PA=3,
所以圆锥的高OP=
故答案为.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
14、=
【解析】
探究规律后,写出第n个等式即可求解.
【详解】
解:
…
则第n个等式为
故答案为:
【点睛】
本题主要考查二次根式的应用,找到规律是解题的关键.
15、k>-且k≠1
【解析】
由题意知,k≠1,方程有两个不相等的实数根,
所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.
又∵方程是一元二次方程,∴k≠1,
∴k>-1/4 且k≠1.
16、(4,6),(8﹣2,6),(2,6).
【解析】
分别取三个点作为定点,然后根据勾股定理和等腰三角形的两个腰相等来判断是否存在符合题意的M的坐标.
【详解】
解:当M为顶点时,AB长为底=8,M在DC中点上,
所以M的坐标为(4, 6),
当B为顶点时,AB长为腰=8,M在靠近D处,根据勾股定理可知ME==2
所以M的坐标为(8﹣2,6);
当A为顶点时,AB长为腰=8,M在靠近C处,根据勾股定理可知MF==2
所以M的坐标为(2,6);
综上所述,M的坐标为(4,6),(8﹣2,6),(2,6);
故答案为:(4,6),(8﹣2,6),(2,6).
【点睛】
本题主要考查矩形的性质、坐标与图形性质,解题关键是根据对等腰三角形性质的掌握和勾股定理的应用.
17、1.1
【解析】
试题解析:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB==1cm,∵点D为AB的中点,∴OD=AB=2.1cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.1cm.
故答案为1.1.
三、解答题(共7小题,满分69分)
18、(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.
【解析】
(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;
(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.
【详解】
(1)设每个月生产成本的下降率为x,
根据题意得:400(1﹣x)2=361,
解得:x1=0.05=5%,x2=1.95(不合题意,舍去).
答:每个月生产成本的下降率为5%;
(2)361×(1﹣5%)=342.95(万元),
答:预测4月份该公司的生产成本为342.95万元.
【点睛】
本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.
19、有触礁危险,理由见解析.
【解析】
试题分析:过点P作PD⊥AC于D,在Rt△PBD和Rt△PAD中,根据三角函数AD,BD就可以用PD表示出来,根据AB=12海里,就得到一个关于PD的方程,求得PD.从而可以判断如果渔船不改变航线继续向东航行,有没有触礁危险.
试题解析:有触礁危险.理由:过点P作PD⊥AC于D.
设PD为x,
在Rt△PBD中,∠PBD=90°-45°=45°.
∴BD=PD=x.
在Rt△PAD中,
∵∠PAD=90°-60°=30°
∴AD=
∵AD=AB+BD
∴x=12+x
∴x=
∵6(+1)<18
∴渔船不改变航线继续向东航行,有触礁危险.
【点睛】本题主要考查解直角三角形在实际问题中的应用,构造直角三角形是解题的前提和关键.
20、(1)80,20,72;(2)16,补图见解析;(3)原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.
【解析】
试题分析:(1)用乘公交车的人数除以所占的百分比,计算即可求出总人数,再用总人数乘以开私家车的所占的百分比求出m,用360°乘以骑自行车的所占的百分比计算即可得解:
样本中的总人数为:36÷45%=80人;
开私家车的人数m=80×25%=20;
扇形统计图中“骑自行车”的圆心角为.
(2)求出骑自行车的人数,然后补全统计图即可.
(3)设原来开私家车的人中有x人改为骑自行车,表示出改后骑自行车的人数和开私家车的人数,列式不等式,求解即可.
试题解析:解:(1)80,20,72.
(2)骑自行车的人数为:80×20%=16人,
补全统计图如图所示;
(3)设原来开私家车的人中有x人改为骑自行车,
由题意得,,解得x≥50.
答:原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.
考点:1.条形统计图;2.扇形统计图;3.频数、频率和总量的关系;4.一元一次不等式的应用.
21、 (1) 反比例函数的解析式为y=,b的值为﹣1;(1) 当x<﹣4或0<x<1时,反比例函数大于一次函数的值;(3) 一次函数的解析式为y=x+1
【解析】
(1)由题意得到A(1,4),设反比例函数的解析式为y=(k≠0),根据待定系数法即可得到反比例函数解析式为y=;再由点B(﹣4,b)在反比例函数的图象上,得到b=﹣1;
(1)由(1)知A(1,4),B(﹣4,﹣1),结合图象即可得到答案;
(3)设一次函数的解析式为y=mx+n(m≠0),反比例函数的解析式为y=,因为A(a,4),B(﹣4,b)是一次函数与反比例函数图象的两个交点,得到, 解得p=8,a=1,b=﹣1,则A(1,4),B(﹣4,﹣1),由点A、点B在一次函数y=mx+n图象上,得到,解得,即可得到答案.
【详解】
(1)若a=1,则A(1,4),
设反比例函数的解析式为y=(k≠0),
∵点A在反比例函数的图象上,
∴4=,
解得k=4,
∴反比例函数解析式为y=;
∵点B(﹣4,b)在反比例函数的图象上,
∴b==﹣1,
即反比例函数的解析式为y=,b的值为﹣1;
(1)由(1)知A(1,4),B(﹣4,﹣1),
根据图象:当x<﹣4或0<x<1时,反比例函数大于一次函数的值;
(3)设一次函数的解析式为y=mx+n(m≠0),反比例函数的解析式为y=,
∵A(a,4),B(﹣4,b)是一次函数与反比例函数图象的两个交点,
∴,即,
①+②得4a﹣4b=1p,
∵a﹣b=4,
∴16=1p,
解得p=8,
把p=8代入①得4a=8,代入②得﹣4b=8,
解得a=1,b=﹣1,
∴A(1,4),B(﹣4,﹣1),
∵点A、点B在一次函数y=mx+n图象上,
∴
解得
∴一次函数的解析式为y=x+1.
【点睛】
本题考查一次函数与反比例函数,解题的关键是待定系数法求函数解析式.
22、13.1.
【解析】
试题分析:如图,作CM∥AB交AD于M,MN⊥AB于N,根据=,可求得CM的长,在RT△AMN中利用三角函数求得AN的长,再由MN∥BC,AB∥CM,判定四边形MNBC是平行四边形,即可得BN的长,最后根据AB=AN+BN即可求得AB的长.
试题解析:如图作CM∥AB交AD于M,MN⊥AB于N.
由题意=,即=,CM=,
在RT△AMN中,∵∠ANM=90°,MN=BC=4,∠AMN=72°,
∴tan72°=,
∴AN≈12.3,
∵MN∥BC,AB∥CM,
∴四边形MNBC是平行四边形,
∴BN=CM=,
∴AB=AN+BN=13.1米.
考点:解直角三角形的应用.
23、(1)证明见解析;(2)1
【解析】
分析:(1)利用“AAS”证△ADF≌△EAB即可得;
(2)由∠ADF+∠FDC=90°、∠DAF+∠ADF=90°得∠FDC=∠DAF=30°,据此知AD=2DF,根据DF=AB可得答案.
详解:(1)证明:在矩形ABCD中,∵AD∥BC,
∴∠AEB=∠DAF,
又∵DF⊥AE,
∴∠DFA=90°,
∴∠DFA=∠B,
又∵AD=EA,
∴△ADF≌△EAB,
∴DF=AB.
(2)∵∠ADF+∠FDC=90°,∠DAF+∠ADF=90°,
∴∠FDC=∠DAF=30°,
∴AD=2DF,
∵DF=AB,
∴AD=2AB=1.
点睛:本题主要考查矩形的性质,解题的关键是掌握矩形的性质和全等三角形的判定与性质及直角三角形的性质.
24、(1)4,6,(4,6);(2)点P在线段CB上,点P的坐标是(2,6);(3)点P移动的时间是2.5秒或5.5秒.
【解析】
试题分析:(1)根据可以求得的值,根据长方形的性质,可以求得点的坐标;
(2)根据题意点从原点出发,以每秒2个单位长度的速度沿着的线路移动,可以得到当点移动4秒时,点的位置和点的坐标;
(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点移动的时间即可.
试题解析:(1)∵a、b满足
∴a−4=0,b−6=0,
解得a=4,b=6,
∴点B的坐标是(4,6),
故答案是:4,6,(4,6);
(2)∵点P从原点出发,以每秒2个单位长度的速度沿着O−C−B−A−O的线路移动,
∴2×4=8,
∵OA=4,OC=6,
∴当点P移动4秒时,在线段CB上,离点C的距离是:8−6=2,
即当点P移动4秒时,此时点P在线段CB上,离点C的距离是2个单位长度,点P的坐标是(2,6);
(3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况,
第一种情况,当点P在OC上时,
点P移动的时间是:5÷2=2.5秒,
第二种情况,当点P在BA上时,
点P移动的时间是:(6+4+1)÷2=5.5秒,
故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.
贵州省桐梓县市级名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份贵州省桐梓县市级名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共27页。试卷主要包含了﹣2018的绝对值是,下列运算正确的是等内容,欢迎下载使用。
广东省广州市番禹区市级名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份广东省广州市番禹区市级名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
甘肃泰安县市级名校2022年初中数学毕业考试模拟冲刺卷含解析: 这是一份甘肃泰安县市级名校2022年初中数学毕业考试模拟冲刺卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,有一组数据等内容,欢迎下载使用。