|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年重庆南开中学中考适应性考试数学试题含解析
    立即下载
    加入资料篮
    2021-2022学年重庆南开中学中考适应性考试数学试题含解析01
    2021-2022学年重庆南开中学中考适应性考试数学试题含解析02
    2021-2022学年重庆南开中学中考适应性考试数学试题含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年重庆南开中学中考适应性考试数学试题含解析

    展开
    这是一份2021-2022学年重庆南开中学中考适应性考试数学试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,方程的解是.,如图所示的几何体,它的左视图是,下列运算结果为正数的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(﹣2,3),先把△ABC向右平移6个单位得到△A1B1C1,再作△A1B1C1关于x轴对称图形△A2B2C2,则顶点A2的坐标是(  )

    A.(4,﹣3) B.(﹣4,3) C.(5,﹣3) D.(﹣3,4)
    2.如图,在中,面积是16,的垂直平分线分别交边于点,若点为边的中点,点为线段上一动点,则周长的最小值为( )

    A.6 B.8 C.10 D.12
    3.在0,﹣2,3,四个数中,最小的数是(  )
    A.0 B.﹣2 C.3 D.
    4.把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是(  )
    A.16 B.17 C.18 D.19
    5.方程的解是( ).
    A. B. C. D.
    6.如图所示的几何体,它的左视图是( )

    A. B. C. D.
    7.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )

    A.10 B.9 C.8 D.7
    8.如图,PA、PB切⊙O于A、B两点,AC是⊙O的直径,∠P=40°,则∠ACB度数是(  )

    A.50° B.60° C.70° D.80°
    9.如果实数a=,且a在数轴上对应点的位置如图所示,其中正确的是(  )
    A.
    B.
    C.
    D.
    10.下列运算结果为正数的是( )
    A.1+(–2) B.1–(–2) C.1×(–2) D.1÷(–2)
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,在△ABC中,BE平分∠ABC,DE∥BC,如果DE=2AD,AE=3,那么EC=_____.

    12.如图,在菱形ABCD中,点E、F在对角线BD上,BE=DF=BD,若四边形AECF为正方形,则tan∠ABE=_____.

    13.如图①,四边形ABCD中,AB∥CD,∠ADC=90°,P从A点出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为t秒,△PAD的面积为S,S关于t的函数图象如图②所示,当P运动到BC中点时,△PAD的面积为______.

    14.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E的坐标是______.

    15.关于x的方程(m﹣5)x2﹣3x﹣1=0有两个实数根,则m满足_____.
    16.如图,将量角器和含30°角的一块直角三角板紧靠着放在同一平面内,使三角板的0cm刻度线与量角器的0°线在同一直线上,且直径DC是直角边BC的两倍,过点A作量角器圆弧所在圆的切线,切点为E,则点E在量角器上所对应的度数是____.

    17.在中,若,则的度数是______.
    三、解答题(共7小题,满分69分)
    18.(10分)在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.求证:△ABP≌△CAQ;请判断△APQ是什么形状的三角形?试说明你的结论.

    19.(5分)绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:

    设销售员的月销售额为x(单位:万元)。销售部规定:当x<16时,为“不称职”,当 时为“基本称职”,当 时为“称职”,当 时为“优秀”.根据以上信息,解答下列问题: 补全折线统计图和扇形统计图; 求所有“称职”和“优秀”的销售员销售额的中位数和众数; 为了调动销售员的积极性,销售部决定制定一个月销售额奖励标准,凡月销售额达到或超过这个标准的销售员将获得奖励。如果要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为多少万元(结果去整数)?并简述其理由.
    20.(8分)如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:1.
    (1)求此人所在位置点P的铅直高度.(结果精确到0.1米)
    (2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)(测倾器的高度忽略不计,参考数据:tan53°≈,tan63.4°≈2)

    21.(10分)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.
    求证:△ABM∽△EFA;若AB=12,BM=5,求DE的长.
    22.(10分)如图,点A的坐标为(﹣4,0),点B的坐标为(0,﹣2),把点A绕点B顺时针旋转90°得到的点C恰好在抛物线y=ax2上,点P是抛物线y=ax2上的一个动点(不与点O重合),把点P向下平移2个单位得到动点Q,则:
    (1)直接写出AB所在直线的解析式、点C的坐标、a的值;
    (2)连接OP、AQ,当OP+AQ获得最小值时,求这个最小值及此时点P的坐标;
    (3)是否存在这样的点P,使得∠QPO=∠OBC,若不存在,请说明理由;若存在,请你直接写出此时P点的坐标.

    23.(12分)一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;
    (1)搅匀后,从中任意取一个球,标号为正数的概率是 ;
    (2) 搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.
    24.(14分)如图,圆内接四边形ABCD的两组对边延长线分别交于E、F,∠AEB、∠AFD的平分线交于P点.
    求证:PE⊥PF.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    直接利用平移的性质结合轴对称变换得出对应点位置.
    【详解】
    如图所示:

    顶点A2的坐标是(4,-3).
    故选A.
    【点睛】
    此题主要考查了轴对称变换和平移变换,正确得出对应点位置是解题关键.
    2、C
    【解析】
    连接AD,AM,由于△ABC是等腰三角形,点D是BC的中点,故,在根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,,推出,故AD的长为BM+MD的最小值,由此即可得出结论.
    【详解】
    连接AD,MA
    ∵△ABC是等腰三角形,点D是BC边上的中点


    解得
    ∵EF是线段AC的垂直平分线
    ∴点A关于直线EF的对称点为点C


    ∴AD的长为BM+MD的最小值
    ∴△CDM的周长最短




    故选:C.

    【点睛】
    本题考查了三角形线段长度的问题,掌握等腰三角形的性质、三角形的面积公式、垂直平分线的性质是解题的关键.
    3、B
    【解析】
    根据实数比较大小的法则进行比较即可.
    【详解】
    ∵在这四个数中3>0,>0,-2<0,
    ∴-2最小.
    故选B.
    【点睛】
    本题考查的是实数的大小比较,即正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.
    4、A
    【解析】
    一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n-1)边形.故当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.
    故选A.
    【点睛】
    此题主要考查了多边形,减去一个角的方法可能有三种:经过两个相邻点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.
    5、B
    【解析】
    直接解分式方程,注意要验根.
    【详解】
    解:=0,
    方程两边同时乘以最简公分母x(x+1),得:3(x+1)-7x=0,
    解这个一元一次方程,得:x=,
    经检验,x=是原方程的解.
    故选B.
    【点睛】
    本题考查了解分式方程,解分式方程不要忘记验根.
    6、A
    【解析】
    从左面观察几何体,能够看到的线用实线,看不到的线用虚线.
    【详解】
    从左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,
    故选:A.
    【点睛】
    本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.
    7、D
    【解析】
    分析:先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.
    详解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=18°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已经有3个五边形,∴1﹣3=7,即完成这一圆环还需7个五边形.
    故选D.

    点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.
    8、C
    【解析】
    连接BC,根据题意PA,PB是圆的切线以及可得的度数,然后根据,可得的度数,因为是圆的直径,所以,根据三角形内角和即可求出的度数。
    【详解】
    连接BC.
    ∵PA,PB是圆的切线

    在四边形中,




    所以
    ∵是直径


    故答案选C.

    【点睛】
    本题主要考察切线的性质,四边形和三角形的内角和以及圆周角定理。
    9、C
    【解析】
    分析:估计的大小,进而在数轴上找到相应的位置,即可得到答案.
    详解:
    由被开方数越大算术平方根越大,


    故选C.
    点睛:考查了实数与数轴的的对应关系,以及估算无理数的大小,解决本题的关键是估计的大小.
    10、B
    【解析】
    分别根据有理数的加、减、乘、除运算法则计算可得.
    【详解】
    解:A、1+(﹣2)=﹣(2﹣1)=﹣1,结果为负数;
    B、1﹣(﹣2)=1+2=3,结果为正数;
    C、1×(﹣2)=﹣1×2=﹣2,结果为负数;
    D、1÷(﹣2)=﹣1÷2=﹣,结果为负数;
    故选B.
    【点睛】
    本题主要考查有理数的混合运算,熟练掌握有理数的四则运算法则是解题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1.
    【解析】
    由BE平分∠ABC,DE∥BC,易得△BDE是等腰三角形,即可得BD=2AD,又由平行线分线段成比例定理,即可求得答案.
    【详解】
    解:∵DE∥BC,
    ∴∠DEB=∠CBE,
    ∵BE平分∠ABC,
    ∴∠ABE=∠CBE,
    ∴∠ABE=∠DEB,
    ∴BD=DE,
    ∵DE=2AD,
    ∴BD=2AD,
    ∵DE∥BC,
    ∴AD:DB=AE:EC,
    ∴EC=2AE=2×3=1.
    故答案为:1.
    【点睛】
    此题考查了平行线分线段成比例定理以及等腰三角形的判定与性质.注意掌握线段的对应关系是解此题的关键.
    12、
    【解析】
    利用正方形对角线相等且互相平分,得出EO=AO=BE,进而得出答案.
    【详解】

    解:∵四边形AECF为正方形,
    ∴EF与AC相等且互相平分,
    ∴∠AOB=90°,AO=EO=FO,
    ∵BE=DF=BD,
    ∴BE=EF=FD,
    ∴EO=AO=BE,
    ∴tan∠ABE= = .
    故答案为:
    【点睛】
    此题主要考查了正方形的性质以及锐角三角函数关系,正确得出EO=AO=BE是解题关键.
    13、1
    【解析】
    解:由图象可知,AB+BC=6,AB+BC+CD=10,∴CD=4,根据题意可知,当P点运动到C点时,△PAD的面积最大,S△PAD=×AD×DC=8,∴AD=4,又∵S△ABD=×AB×AD=2,∴AB=1,∴当P点运动到BC中点时,△PAD的面积=×(AB+CD)×AD=1,故答案为1.
    14、(,)
    【解析】
    由题意可得OA:OD=2:3,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.
    【详解】
    解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为2:3,
    ∴OA:OD=2:3,
    ∵点A的坐标为(1,0),
    即OA=1,
    ∴OD=,
    ∵四边形ODEF是正方形,
    ∴DE=OD=.
    ∴E点的坐标为:(,).
    故答案为:(,).
    【点睛】
    此题考查了位似变换的性质与正方形的性质,注意理解位似变换与相似比的定义是解此题的关键.
    15、m≥且m≠1.
    【解析】
    根据一元二次方程的定义和判别式的意义得到m﹣1≠0且 然后求出两个不等式的公共部分即可.
    【详解】
    解:根据题意得m﹣1≠0且
    解得且m≠1.
    故答案为: 且m≠1.
    【点睛】
    本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
    16、60.
    【解析】
    首先设半圆的圆心为O,连接OE,OA,由题意易得AC是线段OB的垂直平分线,即可求得∠AOC=∠ABC=60°,又由AE是切线,易证得Rt△AOE≌Rt△AOC,继而求得∠AOE的度数,则可求得答案.
    【详解】
    设半圆的圆心为O,连接OE,OA,
    ∵CD=2OC=2BC,
    ∴OC=BC,
    ∵∠ACB=90°,即AC⊥OB,
    ∴OA=BA,
    ∴∠AOC=∠ABC,
    ∵∠BAC=30°,
    ∴∠AOC=∠ABC=60°,
    ∵AE是切线,
    ∴∠AEO=90°,
    ∴∠AEO=∠ACO=90°,
    ∵在Rt△AOE和Rt△AOC中,

    ∴Rt△AOE≌Rt△AOC(HL),
    ∴∠AOE=∠AOC=60°,
    ∴∠EOD=180°﹣∠AOE﹣∠AOC=60°,
    ∴点E所对应的量角器上的刻度数是60°,
    故答案为:60.

    【点睛】
    本题考查了切线的性质、全等三角形的判定与性质以及垂直平分线的性质,解题的关键是掌握辅助线的作法,注意掌握数形结合思想的应用.
    17、
    【解析】
    先根据非负数的性质求出,,再由特殊角的三角函数值求出与的值,根据三角形内角和定理即可得出结论.
    【详解】
    在中,,
    ,,
    ,,

    故答案为:.
    【点睛】
    本题考查了非负数的性质以及特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.

    三、解答题(共7小题,满分69分)
    18、 (1)证明见解析;(2) △APQ是等边三角形.
    【解析】
    (1)根据等边三角形的性质可得AB=AC,再根据SAS证明△ABP≌△ACQ;
    (2)根据全等三角形的性质得到AP=AQ ,再证∠PAQ = 60°,从而得出△APQ是等边三角形.
    【详解】
    证明:(1)∵△ABC为等边三角形, ∴AB=AC,∠BAC=60°,
    在△ABP和△ACQ中, ∴△ABP≌△ACQ(SAS),
    (2)∵△ABP≌△ACQ, ∴∠BAP=∠CAQ,AP=AQ,
    ∵∠BAP+∠CAP=60°, ∴∠PAQ=∠CAQ+∠CAP=60°,
    ∴△APQ是等边三角形.
    【点睛】
    本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证,△ABP≌△ACQ是解题的关键.
    19、(1)补全统计图如图见解析;(2) “称职”的销售员月销售额的中位数为:22万,众数:21万;“优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;(3)月销售额奖励标准应定为22万元.
    【解析】
    (1) 根据称职的人数及其所占百分比求得总人数, 据此求得不称职、 基本称职和优秀的百分比, 再求出优秀的总人数, 从而得出销售 26 万元的人数, 据此即可补全图形 .
    (2) 根据中位数和众数的定义求解可得;
    (3) 根据中位数的意义求得称职和优秀的中位数即可得出符合要求的数据 .
    【详解】
    (1)依题可得:
    “不称职”人数为:2+2=4(人),
    “基本称职”人数为:2+3+3+2=10(人),
    “称职”人数为:4+5+4+3+4=20(人),
    ∴总人数为:20÷50%=40(人),
    ∴不称职”百分比:a=4÷40=10%,
    “基本称职”百分比:b=10÷40=25%,
    “优秀”百分比:d=1-10%-25%-50%=15%,
    ∴“优秀”人数为:40×15%=6(人),
    ∴得26分的人数为:6-2-1-1=2(人),
    补全统计图如图所示:

    (2)由折线统计图可知:“称职”20万4人,21万5人,22万4人,23万3人,24万4人,
    “优秀”25万2人,26万2人,27万1人,28万1人;
    “称职”的销售员月销售额的中位数为:22万,众数:21万;
    “优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;
    (3)由(2)知月销售额奖励标准应定为22万.
    ∵“称职”和“优秀”的销售员月销售额的中位数为:22万,
    ∴要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为22万元.
    【点睛】
    考查频数分布直方图、 扇形统计图、 中位数、 众数等知识, 解题的关键是灵活运用所学知识解决问题.
    20、(1)此人所在P的铅直高度约为14.3米;(2)从P到点B的路程约为17.1米
    【解析】
    分析:(1)过P作PF⊥BD于F,作PE⊥AB于E,设PF=5x,在Rt△ABC中求出AB,用含x的式子表示出AE,EP,由tan∠APE,求得x即可;(2)在Rt△CPF中,求出CP的长.
    详解:过P作PF⊥BD于F,作PE⊥AB于E,
    ∵斜坡的坡度i=5:1,
    设PF=5x,CF=1x,
    ∵四边形BFPE为矩形,
    ∴BF=PEPF=BE.
    在RT△ABC中,BC=90,
    tan∠ACB=,
    ∴AB=tan63.4°×BC≈2×90=180,
    ∴AE=AB-BE=AB-PF=180-5x,
    EP=BC+CF≈90+10x.
    在RT△AEP中,
    tan∠APE=,
    ∴x=,
    ∴PF=5x=.
    答:此人所在P的铅直高度约为14.3米.

    由(1)得CP=13x,
    ∴CP=13×37.1,BC+CP=90+37.1=17.1.
    答:从P到点B的路程约为17.1米.
    点睛:本题考查了解直角三角形的应用,关键是正确的画出与实际问题相符合的几何图形,找出图形中的相关线段或角的实际意义及所要解决的问题,构造直角三角形,用勾股定理或三角函数求相应的线段长.
    21、(1)见解析;(2)4.1
    【解析】
    试题分析:(1)由正方形的性质得出AB=AD,∠B=10°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出结论;
    (2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的长.
    试题解析:(1)∵四边形ABCD是正方形,
    ∴AB=AD,∠B=10°,AD∥BC,
    ∴∠AMB=∠EAF,
    又∵EF⊥AM,
    ∴∠AFE=10°,
    ∴∠B=∠AFE,
    ∴△ABM∽△EFA;
    (2)∵∠B=10°,AB=12,BM=5,
    ∴AM==13,AD=12,
    ∵F是AM的中点,
    ∴AF=AM=6.5,
    ∵△ABM∽△EFA,
    ∴,
    即,
    ∴AE=16.1,
    ∴DE=AE-AD=4.1.
    考点:1.相似三角形的判定与性质;2.正方形的性质.
    22、(1)a=;(2)OP+AQ的最小值为2,此时点P的坐标为(﹣1,);(3)P(﹣4,8)或(4,8),
    【解析】
    (1)利用待定系数法求出直线AB解析式,根据旋转性质确定出C的坐标,代入二次函数解析式求出a的值即可;
    (2)连接BQ,可得PQ与OB平行,而PQ=OB,得到四边形PQBO为平行四边形,当Q在线段AB上时,求出OP+AQ的最小值,并求出此时P的坐标即可;
    (3)存在这样的点P,使得∠QPO=∠OBC,如备用图所示,延长PQ交x轴于点H,设此时点P的坐标为(m,m2),根据正切函数定义确定出m的值,即可确定出P的坐标.
    【详解】
    解:(1)设直线AB解析式为y=kx+b,
    把A(﹣4,0),B(0,﹣2)代入得:,
    解得:,
    ∴直线AB的解析式为y=﹣x﹣2,
    根据题意得:点C的坐标为(2,2),
    把C(2,2)代入二次函数解析式得:a=;
    (2)连接BQ,

    则易得PQ∥OB,且PQ=OB,
    ∴四边形PQBO是平行四边形,
    ∴OP=BQ,
    ∴OP+AQ=BQ+AQ≥AB=2,(等号成立的条件是点Q在线段AB上),
    ∵直线AB的解析式为y=﹣x﹣2,
    ∴可设此时点Q的坐标为(t,﹣t﹣2),
    于是,此时点P的坐标为(t,﹣t),
    ∵点P在抛物线y=x2上,
    ∴﹣t=t2,
    解得:t=0或t=﹣1,
    ∴当t=0,点P与点O重合,不合题意,应舍去,
    ∴OP+AQ的最小值为2,此时点P的坐标为(﹣1,);
    (3)P(﹣4,8)或(4,8),
    如备用图所示,延长PQ交x轴于点H,

    设此时点P的坐标为(m,m2),
    则tan∠HPO=,
    又,易得tan∠OBC=,
    当tan∠HPO=tan∠OBC时,可使得∠QPO=∠OBC,
    于是,得,
    解得:m=±4,
    所以P(﹣4,8)或(4,8).
    【点睛】
    此题属于二次函数综合题,涉及的知识有:二次函数的图象与性质,待定系数法求一次函数解析式,旋转的性质,以及锐角三角函数定义,熟练掌握各自的性质是解本题的关键.
    23、(1);(2)
    【解析】
    【分析】(1)直接运用概率的定义求解;(2)根据题意确定k>0,b>0,再通过列表计算概率.
    【详解】解:(1)因为1、-1、2三个数中由两个正数,
    所以从中任意取一个球,标号为正数的概率是.
    (2)因为直线y=kx+b经过一、二、三象限,
    所以k>0,b>0,
    又因为取情况:
    k b
    1
    -1
    2
    1
    1,1
    1,-1
    1,2
    -1
    -1,1
    -1,-1
    -1.2
    2
    2,1
    2,-1
    2,2
    共9种情况,符合条件的有4种,
    所以直线y=kx+b经过一、二、三象限的概率是.
    【点睛】本题考核知识点:求规概率. 解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出 .
    24、证明见解析.
    【解析】
    由圆内接四边形ABCD的两组对边延长线分别交于E、F,∠AEB、∠AFD的平分线交于P点,继而可得EM=EN,即可证得:PE⊥PF.
    【详解】
    ∵四边形内接于圆,
    ∴,
    ∵平分,
    ∴,
    ∵,,
    ∴,
    ∴,
    ∵平分,
    ∴.
    【点睛】
    此题考查了圆的内接多边形的性质以及圆周角定理.此题难度不大,注意掌握数形结合思想的应用.

    相关试卷

    重庆南开融侨中学2021-2022学年中考数学适应性模拟试题含解析: 这是一份重庆南开融侨中学2021-2022学年中考数学适应性模拟试题含解析,共23页。试卷主要包含了下列计算正确的是,下列计算中,正确的是等内容,欢迎下载使用。

    2022届重庆市南岸区南开(融侨)中学中考适应性考试数学试题含解析: 这是一份2022届重庆市南岸区南开(融侨)中学中考适应性考试数学试题含解析,共21页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。

    2021-2022学年重庆南开中学中考数学对点突破模拟试卷含解析: 这是一份2021-2022学年重庆南开中学中考数学对点突破模拟试卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,如图,在平面直角坐标系中,A,下列说法中,正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map