2021-2022学年浙江省温州市南浦实验中学中考数学最后冲刺浓缩精华卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,数轴上有A,B,C,D四个点,其中绝对值最小的数对应的点是 ( )
A.点A B.点B C.点C D.点D
2.的相反数是( )
A. B.2 C. D.
3.下列说法中正确的是( )
A.检测一批灯泡的使用寿命适宜用普查.
B.抛掷一枚均匀的硬币,正面朝上的概率是,如果抛掷10次,就一定有5次正面朝上.
C.“367人中有两人是同月同日生”为必然事件.
D.“多边形内角和与外角和相等”是不可能事件.
4.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是( )
A.∠ABD=∠C B.∠ADB=∠ABC C. D.
5.如图,线段AB是直线y=4x+2的一部分,点A是直线与y轴的交点,点B的纵坐标为6,曲线BC是双曲线y=的一部分,点C的横坐标为6,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线.点P(2017,m)与Q(2020,n)均在该波浪线上,分别过P、Q两点向x轴作垂线段,垂足为点D和E,则四边形PDEQ的面积是( )
A.10 B. C. D.15
6.如图,已知点A,B分别是反比例函数y=(x<0),y=(x>0)的图象上的点,且∠AOB=90°,tan∠BAO=,则k的值为( )
A.2 B.﹣2 C.4 D.﹣4
7.下列事件中是必然事件的是( )
A.早晨的太阳一定从东方升起
B.中秋节的晚上一定能看到月亮
C.打开电视机,正在播少儿节目
D.小红今年14岁,她一定是初中学生
8.下列算式的运算结果正确的是( )
A.m3•m2=m6 B.m5÷m3=m2(m≠0)
C.(m﹣2)3=m﹣5 D.m4﹣m2=m2
9.第 24 届冬奥会将于 2022 年在北京和张家口举行,冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有 5 张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的图案,背面完全相同.现将这 5 张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是( )
A. B. C. D.
10.如图是某几何体的三视图及相关数据,则该几何体的全面积是( )
A.15π B.24π C.20π D.10π
二、填空题(本大题共6个小题,每小题3分,共18分)
11.因式分解:x3﹣4x=_____.
12.如图,在△ABC中,∠ABC=90°,AB=CB,F为AB延长线上一点,点E在BC上,且AE=CF,若∠CAE=32°,则∠ACF的度数为__________°.
13.如图,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC内部,且AD=CD,∠ADC=90°,连接BD,若△BCD的面积为10,则AD的长为_____.
14.不等式组的解集为______.
15.一等腰三角形,底边长是18厘米,底边上的高是18厘米,现在沿底边依次从下往上画宽度均为3厘米的矩形,画出的矩形是正方形时停止,则这个矩形是第_____个.
16.某航班每次飞行约有111名乘客,若飞机失事的概率为p=1.111 15,一家保险公司要为乘客保险,许诺飞机一旦失事,向每位乘客赔偿41万元人民币. 平均来说,保险公司应向每位乘客至少收取_____元保险费才能保证不亏本.
三、解答题(共8题,共72分)
17.(8分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3,4,5,x,甲,乙两人每次同时从袋中各随机取出1个小球,并计算2个小球上的数字之和.记录后将小球放回袋中搅匀,进行重复试验,试验数据如下表:
摸球总
次数
10
20
30
60
90
120
180
240
330
450
“和为8”出
现的频数
2
10
13
24
30
37
58
82
110
150
“和为8”出
现的频率
0.20
0.50
0.43
0.40
0.33
0.31
0.32
0.34
0.33
0.33
解答下列问题:如果试验继续进行下去,根据上表提供的数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是________;如果摸出的2个小球上数字之和为9的概率是,那么x的值可以为7吗?为什么?
18.(8分)如图,在矩形ABCD中,AB=1DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=1.求线段EC的长;求图中阴影部分的面积.
19.(8分)如图,△ABC是等腰直角三角形,且AC=BC,P是△ABC外接圆⊙O上的一动点(点P与点C位于直线AB的异侧)连接AP、BP,延长AP到D,使PD=PB,连接BD.
(1)求证:PC∥BD;
(2)若⊙O的半径为2,∠ABP=60°,求CP的长;
(3)随着点P的运动,的值是否会发生变化,若变化,请说明理由;若不变,请给出证明.
20.(8分)为了传承祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.
(1)小明回答该问题时,仅对第二个字是选“重”还是选“穷”难以抉择,随机选择其中一个,则小明回答正确的概率是 ;
(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.
九宫格
21.(8分)如图,正方形ABCD中,BD为对角线.
(1)尺规作图:作CD边的垂直平分线EF,交CD于点E,交BD于点F(保留作图痕迹,不要求写作法);
(2)在(1)的条件下,若AB=4,求△DEF的周长.
22.(10分)先化简,再求值:(x﹣3)÷(﹣1),其中x=﹣1.
23.(12分)如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.求证:BC是⊙O的切线;已知AD=3,CD=2,求BC的长.
24.某汽车制造公司计划生产A、B两种新型汽车共40辆投放到市场销售.已知A型汽车每辆成本34万元,售价39万元;B型汽车每辆成本42万元,售价50万元.若该公司对此项计划的投资不低于1536万元,不高于1552万元.请解答下列问题:
(1)该公司有哪几种生产方案?
(2)该公司按照哪种方案生产汽车,才能在这批汽车全部售出后,所获利润最大,最大利润是多少?
(3)在(2)的情况下,公司决定拿出利润的2.5%全部用于生产甲乙两种钢板(两种都生产),甲钢板每吨5000元,乙钢板每吨6000元,共有多少种生产方案?(直接写出答案)
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
试题分析:在数轴上,离原点越近则说明这个点所表示的数的绝对值越小,根据数轴可知本题中点B所表示的数的绝对值最小.故选B.
2、B
【解析】
根据相反数的性质可得结果.
【详解】
因为-2+2=0,所以﹣2的相反数是2,
故选B.
【点睛】
本题考查求相反数,熟记相反数的性质是解题的关键 .
3、C
【解析】
【分析】根据相关的定义(调查方式,概率,可能事件,必然事件)进行分析即可.
【详解】
A. 检测一批灯泡的使用寿命不适宜用普查,因为有破坏性;
B. 抛掷一枚均匀的硬币,正面朝上的概率是,如果抛掷10次,就可能有5次正面朝上,因为这是随机事件;
C. “367人中有两人是同月同日生”为必然事件.因为一年只有365天或366天,所以367人中至少有两个日子相同;
D. “多边形内角和与外角和相等”是可能事件.如四边形内角和和外角和相等.
故正确选项为:C
【点睛】本题考核知识点:对(调查方式,概率,可能事件,必然事件)理解. 解题关键:理解相关概念,合理运用举反例法.
4、C
【解析】
由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.
【详解】
∵∠A是公共角,
∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;
当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;
AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,
故选C.
5、C
【解析】
A,C之间的距离为6,点Q与点P的水平距离为3,进而得到A,B之间的水平距离为1,且k=6,根据四边形PDEQ的面积为,即可得到四边形PDEQ的面积.
【详解】
A,C之间的距离为6,
2017÷6=336…1,故点P离x轴的距离与点B离x轴的距离相同,
在y=4x+2中,当y=6时,x=1,即点P离x轴的距离为6,
∴m=6,
2020﹣2017=3,故点Q与点P的水平距离为3,
∵
解得k=6,
双曲线
1+3=4,
即点Q离x轴的距离为,
∴
∵四边形PDEQ的面积是.
故选:C.
【点睛】
考查了反比例函数的图象与性质,平行四边形的面积,综合性比较强,难度较大.
6、D
【解析】
首先过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,易得△OBD∽△AOC,又由点A,B分别在反比例函数y= (x<0),y=(x>0)的图象上,即可得S△OBD= ,S△AOC=|k|,然后根据相似三角形面积的比等于相似比的平方,即可求出k的值
【详解】
解:过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,
∴∠ACO=∠ODB=90°,
∴∠OBD+∠BOD=90°,
∵∠AOB=90°,
∴∠BOD+∠AOC=90°,
∴∠OBD=∠AOC,
∴△OBD∽△AOC,
又∵∠AOB=90°,tan∠BAO= ,
∴=,
∴ = ,即 ,
解得k=±4,
又∵k<0,
∴k=-4,
故选:D.
【点睛】
此题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法。
7、A
【解析】
必然事件就是一定发生的事件,即发生的概率是1的事件,依据定义即可求解.
【详解】
解:B、C、D选项为不确定事件,即随机事件.故错误;
一定发生的事件只有第一个答案,早晨的太阳一定从东方升起.
故选A.
【点睛】
该题考查的是对必然事件的概念的理解;必然事件就是一定发生的事件.
8、B
【解析】
直接利用同底数幂的除法运算法则以及合并同类项法则、积的乘方运算法则分别化简得出答案.
【详解】
A、m3•m2=m5,故此选项错误;
B、m5÷m3=m2(m≠0),故此选项正确;
C、(m-2)3=m-6,故此选项错误;
D、m4-m2,无法计算,故此选项错误;
故选:B.
【点睛】
此题主要考查了同底数幂的除法运算以及合并同类项法则、积的乘方运算,正确掌握运算法则是解题关键.
9、B
【解析】
先找出滑雪项目图案的张数,结合5 张形状、大小、质地均相同的卡片,再根据概率公式即可求解.
【详解】
∵有 5 张形状、大小、质地均相同的卡片,滑雪项目图案的有高山滑雪和单板滑雪2张,
∴从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是.
故选B.
【点睛】
本题考查了简单事件的概率.用到的知识点为:概率=所求情况数与总情况数之比.
10、B
【解析】
解:根据三视图得到该几何体为圆锥,其中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的面积=π×()2=9π,圆锥的侧面积=×5×π×6=15π,所以圆锥的全面积=9π+15π=24π.故选B.
点睛:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长.也考查了三视图.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、x(x+2)(x﹣2)
【解析】
试题分析:首先提取公因式x,进而利用平方差公式分解因式.即x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).故答案为x(x+2)(x﹣2).
考点:提公因式法与公式法的综合运用.
12、58
【解析】
根据HL证明Rt△CBF≌Rt△ABE,推出∠FCB=∠EAB,求出∠CAB=∠ACB=45°,
求出∠BCF=∠BAE=13°,即可求出答案.
【详解】
解:∵∠ABC=90°,
∴∠ABE=∠CBF=90°,
在Rt△CBF和Rt△ABE中
∴Rt△CBF≌Rt△ABE(HL),
∴∠FCB=∠EAB,
∵AB=BC,∠ABC=90°,
∴∠CAB=∠ACB=45°.
∵∠BAE=∠CAB﹣∠CAE=45°﹣32°=13°,
∴∠BCF=∠BAE=13°,
∴∠ACF=∠BCF+∠ACB=45°+13°=58°
故答案为58
【点睛】
本题考查了全等三角形的性质和判定,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的性质是全等三角形的对应边相等,对应角相等.
13、5
【解析】
作辅助线,构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明△ADG≌△CDH(AAS),可得DG=DH=MG=作辅助线,构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明△ADG≌△CDH(AAS),可得DG=DH=MG=,AG=CH=a+,根据AM=AG+MG,列方程可得结论.,AG=CH=a+,根据AM=AG+MG,列方程可得结论.
【详解】
解:过D作DH⊥BC于H,过A作AM⊥BC于M,过D作DG⊥AM于G,
设CM=a,
∵AB=AC,
∴BC=2CM=2a,
∵tan∠ACB=2,
∴=2,
∴AM=2a,
由勾股定理得:AC=a,
S△BDC=BC•DH=10,
•2a•DH=10,
DH=,
∵∠DHM=∠HMG=∠MGD=90°,
∴四边形DHMG为矩形,
∴∠HDG=90°=∠HDC+∠CDG,DG=HM,DH=MG,
∵∠ADC=90°=∠ADG+∠CDG,
∴∠ADG=∠CDH,
在△ADG和△CDH中,
∵,
∴△ADG≌△CDH(AAS),
∴DG=DH=MG=,AG=CH=a+,
∴AM=AG+MG,
即2a=a++,
a2=20,
在Rt△ADC中,AD2+CD2=AC2,
∵AD=CD,
∴2AD2=5a2=100,
∴AD=5或−5(舍),
故答案为5.
【点睛】
本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、三角形面积的计算;证明三角形全等得出AG=CH是解决问题的关键,并利用方程的思想解决问题.
14、1<x≤1
【解析】
解不等式x﹣3(x﹣2)<1,得:x>1,
解不等式,得:x≤1,
所以不等式组解集为:1<x≤1,
故答案为1<x≤1.
15、5
【解析】
根据相似三角形的相似比求得顶点到这个正方形的长,再根据矩形的宽求得是第几张.
【详解】
解:已知剪得的纸条中有一张是正方形,则正方形中平行于底边的边是3,
所以根据相似三角形的性质可设从顶点到这个正方形的线段为x,
则=,解得x=3,
所以另一段长为18-3=15,
因为15÷3=5,所以是第5张.
故答案为:5.
【点睛】
本题主要考查了相相似三角形的判定和性质,关键是根据似三角形的性质及等腰三角形的性质的综合运用解答.
16、21
【解析】
每次约有111名乘客,如飞机一旦失事,每位乘客赔偿41万人民币,共计4111万元,由题意可得一次飞行中飞机失事的概率为P=1.11115,所以赔偿的钱数为41111111×1.11115=2111元,即可得至少应该收取保险费每人 =21元.
三、解答题(共8题,共72分)
17、(1)出现“和为8”的概率是0.33;(2)x的值不能为7.
【解析】
(1)利用频率估计概率结合表格中数据得出答案即可;
(2)假设x=7,根据题意先列出树状图,得出和为9的概率,再与进行比较,即可得出答案.
【详解】
解:(1)随着试验次数不断增加,出现“和为8”的频率逐渐稳定在0.33,
故出现“和为8”的概率是0.33.
(2)x的值不能为7.理由:假设x=7,
则P(和为9)=≠,所以x的值不能为7.
【点睛】
此题主要考查了利用频率估计概率以及树状图法求概率,正确画出树状图是解题关键.
18、(1);(1).
【解析】
(1)根据矩形的性质得出AB=AE=4,进而利用勾股定理得出DE的长,即可得出答案;(1)利用锐角三角函数关系得出∠DAE=60°,进而求出图中阴影部分的面积为:,求出即可.
【详解】
解:(1)∵在矩形ABCD中,AB=1DA,DA=1,
∴AB=AE=4,
∴DE= ,
∴EC=CD-DE=4-1;
(1)∵sin∠DEA= ,
∴∠DEA=30°,
∴∠EAB=30°,
∴图中阴影部分的面积为:
S扇形FAB-S△DAE-S扇形EAB=
.
【点睛】
此题主要考查了扇形的面积计算以及勾股定理和锐角三角函数关系等知识,根据已知得出DE的长是解题关键.
19、(1)证明见解析;(2)+;(3)的值不变,.
【解析】
(1)根据等腰三角形的性质得到∠ABC=45°,∠ACB=90°,根据圆周角定理得到∠APB=90°,得到∠APC=∠D,根据平行线的判定定理证明;
(2)作BH⊥CP,根据正弦、余弦的定义分别求出CH、PH,计算即可;
(3)证明△CBP∽△ABD,根据相似三角形的性质解答.
【详解】
(1)证明:∵△ABC是等腰直角三角形,且AC=BC,
∴∠ABC=45°,∠ACB=90°,
∴∠APC=∠ABC=45°,
∴AB为⊙O的直径,
∴∠APB=90°,
∵PD=PB,
∴∠PBD=∠D=45°,
∴∠APC=∠D=45°,
∴PC∥BD;
(2)作BH⊥CP,垂足为H,
∵⊙O的半径为2,∠ABP=60°,
∴BC=2,∠BCP=∠BAP=30°,∠CPB=∠BAC=45°,
在Rt△BCH中,CH=BC•cos∠BCH=,
BH=BC•sin∠BCH=,
在Rt△BHP中,PH=BH=,
∴CP=CH+PH=+;
(3)的值不变,
∵∠BCP=∠BAP,∠CPB=∠D,
∴△CBP∽△ABD,
∴=,
∴=,即=.
【点睛】
本题考查的是圆周角定理、相似三角形的判定和性质以及锐角三角函数的概念,掌握圆周角定理、相似三角形的判定定理和性质定理是解题的关键.
20、(1);(2)
【解析】
试题分析:(1)利用概率公式直接计算即可;
(2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率.
试题解析:
(1)∵对第二个字是选“重”还是选“穷”难以抉择,∴若随机选择其中一个正确的概率=,故答案为;
(2)画树形图得:
由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=.
考点:列表法与树状图法;概率公式.
21、(1)见解析;(2)2+1.
【解析】
分析:(1)、根据中垂线的做法作出图形,得出答案;(2)、根据中垂线和正方形的性质得出DF、DE和EF的长度,从而得出答案.
详解:(1)如图,EF为所作;
(2)解:∵四边形ABCD是正方形,∴∠BDC=15°,CD=BC=1,又∵EF垂直平分CD,
∴∠DEF=90°,∠EDF=∠EFD=15°, DE=EF=CD=2,∴DF=DE=2,
∴△DEF的周长=DF+DE+EF=2+1.
点睛:本题主要考查的是中垂线的性质,属于基础题型.理解中垂线的性质是解题的关键.
22、﹣x+1,2.
【解析】
先将括号内的分式通分,再将乘方转化为乘法,约分,最后代入数值求解即可.
【详解】
原式=(x﹣2)÷(﹣)
=(x﹣2)÷
=(x﹣2)•
=﹣x+1,
当x=﹣1时,原式=1+1=2.
【点睛】
本题考查了整式的混合运算-化简求值,解题的关键是熟练的掌握整式的混合运算法则.
23、 (1)证明见解析
(2)BC=
【解析】
(1)AB是⊙O的直径,得∠ADB=90°,从而得出∠BAD=∠DBC,即∠ABC=90°,即可证明BC是⊙O的切线;
(2)可证明△ABC∽△BDC,则,即可得出BC=.
【详解】
(1)∵AB是⊙O的切直径,
∴∠ADB=90°,
又∵∠BAD=∠BED,∠BED=∠DBC,
∴∠BAD=∠DBC,
∴∠BAD+∠ABD=∠DBC+∠ABD=90°,
∴∠ABC=90°,
∴BC是⊙O的切线;
(2)解:∵∠BAD=∠DBC,∠C=∠C,
∴△ABC∽△BDC,
∴,即BC2=AC•CD=(AD+CD)•CD=10,
∴BC=.
考点:1.切线的判定;2.相似三角形的判定和性质.
24、(1)共有三种方案,分别为①A型号16辆时, B型号24辆;②A型号17辆时,B型号23辆;③A型号18辆时,B型号22辆;(2)当时,万元;(3)A型号4辆,B型号8辆; A型号10辆,B型号 3辆两种方案
【解析】
(1)设A型号的轿车为x辆,可根据题意列出不等式组,根据问题的实际意义推出整数值;
(2)根据“利润=售价-成本”列出一次函数的解析式解答;
(3)根据(2)中方案设计计算.
【详解】
(1)设生产A型号x辆,则B型号(40-x)辆
153634x+42(40-x)1552
解得,x可以取值16,17,18共有三种方案,分别为
A型号16辆时, B型号24辆
A型号17辆时,B型号23辆
A型号18辆时,B型号22辆
(2)设总利润W万元
则W=
=
w随x的增大而减小
当时,万元
(3)A型号4辆,B型号8辆; A型号10辆,B型号 3辆两种方案
【点睛】
本题主要考查了一次函数的应用,以及一元一次不等式组的应用,此题是典型的数学建模问题,要先将实际问题转化为不等式组解应用题.
江苏省淮安市涟水实验中学2021-2022学年中考数学最后冲刺浓缩精华卷含解析: 这是一份江苏省淮安市涟水实验中学2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共22页。试卷主要包含了下列命题中,真命题是等内容,欢迎下载使用。
北京市月坛中学2021-2022学年中考数学最后冲刺浓缩精华卷含解析: 这是一份北京市月坛中学2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,已知二次函数,估计的值在等内容,欢迎下载使用。
2021-2022学年新疆师范大附属中学中考数学最后冲刺浓缩精华卷含解析: 这是一份2021-2022学年新疆师范大附属中学中考数学最后冲刺浓缩精华卷含解析,共15页。