2022届北京市第四中学中考一模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列二次根式中,与是同类二次根式的是( )
A. B. C. D.
2.从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是( )
A. B. C. D.
3.如图,数轴上有M、N、P、Q四个点,其中点P所表示的数为a,则数-3a所对应的点可能是( )
A.M B.N C.P D.Q
4.下列算式中,结果等于x6的是( )
A.x2•x2•x2 B.x2+x2+x2 C.x2•x3 D.x4+x2
5.实数4的倒数是( )
A.4 B. C.﹣4 D.﹣
6.点A(a,3)与点B(4,b)关于y轴对称,则(a+b)2017的值为( )
A.0 B.﹣1 C.1 D.72017
7.下列几何体中,三视图有两个相同而另一个不同的是( )
A.(1)(2) B.(2)(3) C.(2)(4) D.(3)(4)
8.如图,,交于点,平分,交于. 若,则 的度数为( )
A.35o B.45o C.55o D.65o
9.如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数关系图象大致是( )
A. B. C. D.
10.矩形具有而平行四边形不具有的性质是( )
A.对角相等 B.对角线互相平分
C.对角线相等 D.对边相等
二、填空题(共7小题,每小题3分,满分21分)
11.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_______米(结果保留根号).
12.用换元法解方程,设y=,那么原方程化为关于y的整式方程是_____.
13.已知关于x的二次函数y=x2-2x-2,当a≤x≤a+2时,函数有最大值1,则a的值为________.
14.如图,从直径为4cm的圆形纸片中,剪出一个圆心角为90°的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是_____cm.
15.已知线段c是线段a和b的比例中项,且a、b的长度分别为2cm和8cm,则c的长度为_____cm.
16.如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为_____.
17.计算:=_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,海中有一个小岛 A,该岛四周 11 海里范围内有暗礁.有一货轮在海面上由西向正东方向航行,到达B处时它在小岛南偏西60°的方向上,再往正东方向行驶10海里后恰好到达小岛南偏西45°方向上的点C处.问:如果货轮继续向正东方向航行,是否会有触礁的危险?(参考数据:≈1.41,≈1.73)
19.(5分)解不等式组: ,并写出它的所有整数解.
20.(8分)如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.请用列表或画树状图的方法写出所有的可能;求一次函数y=kx+b的图象经过一、二、四象限的概率.
21.(10分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.
请根据以上信息解答下列问题:课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为______;请补全条形统计图;该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判断这种说法是否正确,并说明理由.
22.(10分)为了传承祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.
(1)小明回答该问题时,仅对第二个字是选“重”还是选“穷”难以抉择,随机选择其中一个,则小明回答正确的概率是 ;
(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.
九宫格
23.(12分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象与反比例函数 的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线AB与x轴的交点C的坐标及△AOB的面积;
(3)求方程的解集(请直接写出答案).
24.(14分)如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.求∠CDE的度数;求证:DF是⊙O的切线;若AC=DE,求tan∠ABD的值.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
根据二次根式的性质把各个二次根式化简,根据同类二次根式的定义判断即可.
【详解】
A.|a|与不是同类二次根式;
B.与不是同类二次根式;
C.2与是同类二次根式;
D.与不是同类二次根式.
故选C.
【点睛】
本题考查了同类二次根式的定义,一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.
2、C
【解析】
左视图就是从物体的左边往右边看.小正方形应该在右上角,故B错误,看不到的线要用虚线,故A错误,大立方体的边长为3cm,挖去的小立方体边长为1cm,所以小正方形的边长应该是大正方形,故D错误,所以C正确.
故此题选C.
3、A
【解析】
解:∵点P所表示的数为a,点P在数轴的右边,∴-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍,∴数-3a所对应的点可能是M,故选A.
点睛:本题考查了数轴,解决本题的关键是判断-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍.
4、A
【解析】试题解析:A、x2•x2•x2=x6,故选项A符合题意;
B、x2+x2+x2=3x2,故选项B不符合题意;
C、x2•x3=x5,故选项C不符合题意;
D、x4+x2,无法计算,故选项D不符合题意.
故选A.
5、B
【解析】
根据互为倒数的两个数的乘积是1,求出实数4的倒数是多少即可.
【详解】
解:实数4的倒数是:
1÷4=.
故选:B.
【点睛】
此题主要考查了一个数的倒数的求法,要熟练掌握,解答此题的关键是要明确:互为倒数的两个数的乘积是1.
6、B
【解析】
根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.
【详解】
解:由题意,得
a=-4,b=1.
(a+b)2017=(-1)2017=-1,
故选B.
【点睛】
本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的纵坐标相等,横坐标互为相反数得出a,b是解题关键.
7、B
【解析】
根据三视图的定义即可解答.
【详解】
正方体的三视图都是正方形,故(1)不符合题意;
圆柱的主视图、左视图都是矩形,俯视图是圆,故(2)符合题意;
圆锥的主视图、左视图都是三角形,俯视图是圆形,故(3)符合题意;
三棱锥主视图是、左视图是,俯视图是三角形,故(4)不符合题意;
故选B.
【点睛】
本题考查了简单几何体的三视图,熟知三视图的定义是解决问题的关键.
8、D
【解析】
分析:根据平行线的性质求得∠BEC的度数,再由角平分线的性质即可求得∠CFE 的度数.
详解:
又∵EF平分∠BEC,
.
故选D.
点睛:本题主要考查了平行线的性质和角平分线的定义,熟知平行线的性质和角平分线的定义是解题的关键.
9、C
【解析】
根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.
【详解】
由题意可得:PB=3﹣t,BQ=2t,
则△PBQ的面积S=PB•BQ=(3﹣t)×2t=﹣t2+3t,
故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.
故选C.
【点睛】
此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键.
10、C
【解析】
试题分析:举出矩形和平行四边形的所有性质,找出矩形具有而平行四边形不具有的性质即可.
解:矩形的性质有:①矩形的对边相等且平行,②矩形的对角相等,且都是直角,③矩形的对角线互相平分、相等;
平行四边形的性质有:①平行四边形的对边分别相等且平行,②平行四边形的对角分别相等,③平行四边形的对角线互相平分;
∴矩形具有而平行四边形不一定具有的性质是对角线相等,
故选C.
二、填空题(共7小题,每小题3分,满分21分)
11、一4
【解析】
分析:利用特殊三角函数值,解直角三角形,AM=MD,再用正切函数,利用MB求CM,作差可求DC.
【详解】
因为∠MAD=45°, AM=4,所以MD=4,
因为AB=8,所以MB=12,
因为∠MBC=30°,所以CM=MBtan30°=4.
所以CD=4-4.
【点睛】
本题考查了解直角三角形的应用,熟练掌握三角函数的相关定义以及变形是解题的关键.
12、6y2-5y+2=0
【解析】
根据y=,将方程变形即可.
【详解】
根据题意得:3y+,
得到6y2-5y+2=0
故答案为6y2-5y+2=0
【点睛】
此题考查了换元法解分式方程,利用了整体的思想,将方程进行适当的变形是解本题的关键.
13、-1或1
【解析】
利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+2时函数有最大值1,即可得出关于a的一元一次方程,解之即可得出结论.
【详解】
解:当y=1时,x2-2x-2=1,
解得:x1=-1,x2=3,
∵当a≤x≤a+2时,函数有最大值1,
∴a=-1或a+2=3,即a=1.
故答案为-1或1.
【点睛】
本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键.
14、
【解析】
设圆锥的底面圆的半径为r,由于∠AOB=90°得到AB为圆形纸片的直径,则OB=cm,根据弧长公式计算出扇形OAB的弧AB的长,然后根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长进行计算.
【详解】
解:设圆锥的底面圆的半径为r,
连结AB,如图,
∵扇形OAB的圆心角为90°,
∴∠AOB=90°,
∴AB为圆形纸片的直径,
∴AB=4cm,
∴OB=cm,
∴扇形OAB的弧AB的长=π,
∴2πr=π,
∴r=(cm).
故答案为.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理和弧长公式.
15、1
【解析】
根据比例中项的定义,列出比例式即可得出中项,注意线段长度不能为负.
【详解】
根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.
所以c2=2×8,
解得c=±1(线段是正数,负值舍去),
故答案为1.
【点睛】
此题考查了比例线段.理解比例中项的概念,这里注意线段长度不能是负数.
16、36°或37°.
【解析】
分析:先过E作EG∥AB,根据平行线的性质可得∠AEF=∠BAE+∠DFE,再设∠CEF=x,则∠AEC=2x,根据6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x<25°,进而得到∠C的度数.
详解:如图,过E作EG∥AB,
∵AB∥CD,
∴GE∥CD,
∴∠BAE=∠AEG,∠DFE=∠GEF,
∴∠AEF=∠BAE+∠DFE,
设∠CEF=x,则∠AEC=2x,
∴x+2x=∠BAE+60°,
∴∠BAE=3x-60°,
又∵6°<∠BAE<15°,
∴6°<3x-60°<15°,
解得22°<x<25°,
又∵∠DFE是△CEF的外角,∠C的度数为整数,
∴∠C=60°-23°=37°或∠C=60°-24°=36°,
故答案为:36°或37°.
点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.
17、-
【解析】
根据二次根式的运算法则即可求出答案.
【详解】
原式=2.
故答案为-.
【点睛】
本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
三、解答题(共7小题,满分69分)
18、不会有触礁的危险,理由见解析.
【解析】
分析:作AH⊥BC,由∠CAH=45°,可设AH=CH=x,根据可得关于x的方程,解之可得.
详解:过点A作AH⊥BC,垂足为点H.
由题意,得∠BAH=60°,∠CAH=45°,BC=1.
设AH=x,则CH=x.
在Rt△ABH中,∵,
解得:.
∵13.65>11,∴货轮继续向正东方向航行,不会有触礁的危险.
点睛:本题考查了解直角三角形的应用﹣方向角问题,解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
19、﹣2,﹣1,0,1,2;
【解析】
首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集;再确定解集中的所有整数解即可.
【详解】
解:解不等式(1),得
解不等式(2),得x≤2
所以不等式组的解集:-3<x≤2
它的整数解为:-2,-1,0,1,2
20、(1)答案见解析;(2).
【解析】
(1)k可能的取值为-1、-2、-3,b可能的取值为-1、-2、3、4,所以将所有等可能出现的情况用列表方式表示出来即可.
(2)判断出一次函数y=kx+b经过一、二、四象限时k、b的正负,在列表中找出满足条件的情况,利用概率的基本概念即可求出一次函数y=kx+b经过一、二、四象限的概率.
【详解】
解:(1)列表如下:
所有等可能的情况有12种;
(2)一次函数y=kx+b的图象经过一、二、四象限时,k<0,b>0,情况有4种,
则P== .
21、(1)144°;(2)补图见解析;(3)160人;(4)这个说法不正确,理由见解析.
【解析】
试题分析:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案为144°;
(2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120﹣27﹣33﹣20=120﹣80=40人;补全统计图如图所示;
(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200×=160人;
(4)这个说法不正确.理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人.
考点:①条形统计图;②扇形统计图.
22、(1);(2)
【解析】
试题分析:(1)利用概率公式直接计算即可;
(2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率.
试题解析:
(1)∵对第二个字是选“重”还是选“穷”难以抉择,∴若随机选择其中一个正确的概率=,故答案为;
(2)画树形图得:
由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=.
考点:列表法与树状图法;概率公式.
23、(1)y=﹣,y=﹣x﹣2(2)3(3)﹣4<x<0或x>2
【解析】
试题分析:(1)将B坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;将A坐标代入反比例解析式求出n的值,确定出A的坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;
(2)对于直线AB,令y=0求出x的值,即可确定出C坐标,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可;
(3)由两函数交点A与B的横坐标,利用图象即可求出所求不等式的解集.
试题解析:(1)∵B(2,﹣4)在y=上,
∴m=﹣1.
∴反比例函数的解析式为y=﹣.
∵点A(﹣4,n)在y=﹣上,
∴n=2.
∴A(﹣4,2).
∵y=kx+b经过A(﹣4,2),B(2,﹣4),
∴,
解之得.
∴一次函数的解析式为y=﹣x﹣2.
(2)∵C是直线AB与x轴的交点,
∴当y=0时,x=﹣2.
∴点C(﹣2,0).
∴OC=2.
∴S△AOB=S△ACO+S△BCO=×2×2+×2×4=3.
(3)不等式的解集为:﹣4<x<0或x>2.
24、(1)90°;(1)证明见解析;(3)1.
【解析】
(1)根据圆周角定理即可得∠CDE的度数;(1)连接DO,根据直角三角形的性质和等腰三角形的性质易证∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,即可判定DF是⊙O的切线;(3)根据已知条件易证△CDE∽△ADC,利用相似三角形的性质结合勾股定理表示出AD,DC的长,再利用圆周角定理得出tan∠ABD的值即可.
【详解】
解:(1)解:∵对角线AC为⊙O的直径,
∴∠ADC=90°,
∴∠EDC=90°;
(1)证明:连接DO,
∵∠EDC=90°,F是EC的中点,
∴DF=FC,
∴∠FDC=∠FCD,
∵OD=OC,
∴∠OCD=∠ODC,
∵∠OCF=90°,
∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,
∴DF是⊙O的切线;
(3)解:如图所示:可得∠ABD=∠ACD,
∵∠E+∠DCE=90°,∠DCA+∠DCE=90°,
∴∠DCA=∠E,
又∵∠ADC=∠CDE=90°,
∴△CDE∽△ADC,
∴,
∴DC1=AD•DE
∵AC=1DE,
∴设DE=x,则AC=1x,
则AC1﹣AD1=AD•DE,
期(1x)1﹣AD1=AD•x,
整理得:AD1+AD•x﹣10x1=0,
解得:AD=4x或﹣4.5x(负数舍去),
则DC=,
故tan∠ABD=tan∠ACD=.
2024年北京市朝阳区陈经纶中学中考数学一模模拟试卷(含详细答案解析): 这是一份2024年北京市朝阳区陈经纶中学中考数学一模模拟试卷(含详细答案解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年北京市东直门中学中考零模数学试题(含解析): 这是一份2024年北京市东直门中学中考零模数学试题(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年北京市东城区汇文中学中考数学一模试卷(含解析): 这是一份2024年北京市东城区汇文中学中考数学一模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。