终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022届成都市教科院附属学校重点中学中考数学模试卷含解析

    立即下载
    加入资料篮
    2022届成都市教科院附属学校重点中学中考数学模试卷含解析第1页
    2022届成都市教科院附属学校重点中学中考数学模试卷含解析第2页
    2022届成都市教科院附属学校重点中学中考数学模试卷含解析第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届成都市教科院附属学校重点中学中考数学模试卷含解析

    展开

    这是一份2022届成都市教科院附属学校重点中学中考数学模试卷含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,下列运算正确的是,把直线l等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.若点都是反比例函数的图象上的点,并且,则下列各式中正确的是(( )
    A. B. C. D.
    2.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-,y1),(,y2)是抛物线上两点,则y1<y2,其中结论正确的是( )

    A.①② B.②③ C.②④ D.①③④
    3.如图,在射线AB上顺次取两点C,D,使AC=CD=1,以CD为边作矩形CDEF,DE=2,将射线AB绕点A沿逆时针方向旋转,旋转角记为α(其中0°<α<45°),旋转后记作射线AB′,射线AB′分别交矩形CDEF的边CF,DE于点G,H.若CG=x,EH=y,则下列函数图象中,能反映y与x之间关系的是(  )

    A. B. C. D.
    4.如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是( )

    A. B. C. D.
    5.如图,两个转盘A,B都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形).小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:

    转盘总次数
    10
    20
    30
    50
    100
    150
    180
    240
    330
    450
    “和为7”出现频数
    2
    7
    10
    16
    30
    46
    59
    81
    110
    150
    “和为7”出现频率
    0.20
    0.35
    0.33
    0.32
    0.30
    0.30
    0.33
    0.34
    0.33
    0.33
    如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率为( )
    A.0.33 B.0.34 C.0.20 D.0.35
    6.下列运算正确的是(  )
    A.a6÷a2=a3 B.(2a+b)(2a﹣b)=4a2﹣b2 C.(﹣a)2•a3=a6 D.5a+2b=7ab
    7.把直线l:y=kx+b绕着原点旋转180°,再向左平移1个单位长度后,经过点A(-2,0)和点B(0,4),则直线l的表达式是( )
    A.y=2x+2 B.y=2x-2 C.y=-2x+2 D.y=-2x-2
    8.如图,在△ABC中,AB=AC=3,BC=4,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的周长是(  )

    A.3 B.4 C.5 D.6
    9.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为(  )

    A.75° B.60° C.55° D.45°
    10.若正比例函数y=kx的图象上一点(除原点外)到x轴的距离与到y轴的距离之比为3,且y值随着x值的增大而减小,则k的值为(  )
    A.﹣ B.﹣3 C. D.3
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1-k2=________.

    12.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D为AB的中点,将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,则D′B长为_____.

    13.如下图,在直径AB的半圆O中,弦AC、BD相交于点E,EC=2,BE=1. 则cos∠BEC=________.

    14.如图,菱形ABCD和菱形CEFG中,∠ABC=60°,点B,C,E在同一条直线上,点D在CG上,BC=1,CE=3,H是AF的中点,则CH的长为________.

    15.如图是一本折扇,其中平面图是一个扇形,扇面ABDC的宽度AC是管柄长OA的一半,已知OA=30cm,∠AOB=120°,则扇面ABDC的周长为_____cm

    16.阅读材料:如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.设CD=x,若AB=4,DE=2,BD=8,则可用含x的代数式表示AC+CE的长为.然后利用几何知识可知:当A、C、E在一条直线上时,x=时,AC+CE的最小值为1.根据以上阅读材料,可构图求出代数式的最小值为_____.

    17.如图,已知是的高线,且,,则_________.

    三、解答题(共7小题,满分69分)
    18.(10分)赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为________米.

    19.(5分)如图是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD上,转轴B到地面的距离BD=3m.小亮在荡秋千过程中,当秋千摆动到最高点A时,测得点A到BD的距离AC=2m,点A到地面的距离AE=1.8m;当他从A处摆动到A′处时,有A'B⊥AB.
    (1)求A′到BD的距离;
    (2)求A′到地面的距离.

    20.(8分)如图,在中,,以边为直径作⊙交边于点,过点作于点,、的延长线交于点.
    求证:是⊙的切线;若,且,求⊙的半径与线段的长.
    21.(10分)(1)如图1,正方形ABCD中,点E,F分别在边CD,AD上,AE⊥BF于点G,求证:AE=BF;
    (2)如图2,矩形ABCD中,AB=2,BC=3,点E,F分别在边CD,AD上,AE⊥BF于点M,探究AE与BF的数量关系,并证明你的结论;
    (3)在(2)的基础上,若AB=m,BC=n,其他条件不变,请直接写出AE与BF的数量关系;   .

    22.(10分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).

    请解答下列问题:请补全条形统计图和扇形统计图;在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?

    23.(12分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?
    24.(14分)(1)问题发现:
    如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为   ;
    (2)深入探究:
    如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;
    (3)拓展延伸:
    如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN=,试求EF的长.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    解:根据题意可得:
    ∴反比例函数处于二、四象限,则在每个象限内为增函数,
    且当x<0时y>0,当x>0时,y<0,
    ∴<<.
    2、C
    【解析】
    试题分析:根据题意可得:a0,b0,c0,则abc0,则①错误;根据对称轴为x=1可得:=1,则-b=2a,即2a+b=0,则②正确;根据函数的轴对称可得:当x=2时,y0,即4a+2b+c0,则③错误;对于开口向下的函数,离对称轴越近则函数值越大,则,则④正确.
    点睛:本题主要考查的就是二次函数的性质,属于中等题.如果开口向上,则a0,如果开口向下,则a0;如果对称轴在y轴左边,则b的符号与a相同,如果对称轴在y轴右边,则b的符号与a相反;如果题目中出现2a+b和2a-b的时候,我们要看对称轴与1或者-1的大小关系再进行判定;如果出现a+b+c,则看x=1时y的值;如果出现a-b+c,则看x=-1时y的值;如果出现4a+2b+c,则看x=2时y的值,以此类推;对于开口向上的函数,离对称轴越远则函数值越大,对于开口向下的函数,离对称轴越近则函数值越大.
    3、D
    【解析】
    ∵四边形CDEF是矩形,∴CF∥DE,∴△ACG∽△ADH,∴,
    ∵AC=CD=1,∴AD=2,∴,∴DH=2x,∵DE=2,∴y=2﹣2x,
    ∵0°<α<45°,∴0<x<1,
    故选D.
    【点睛】本题主要考查了旋转、相似等知识,解题的关键是根据已知得出△ACG∽△ADH.
    4、B
    【解析】
    根据俯视图中每列正方形的个数,再画出从正面看得到的图形即可.
    【详解】
    解:主视图,如图所示:

    故选B.
    【点睛】
    本题考查由三视图判断几何体;简单组合体的三视图.用到的知识点为:主视图是从物体的正面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数.
    5、A
    【解析】
    根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率即可.
    【详解】
    由表中数据可知,出现“和为7”的概率为0.33.
    故选A.
    【点睛】
    本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.
    6、B
    【解析】
    A选项:利用同底数幂的除法法则,底数不变,只把指数相减即可;
    B选项:利用平方差公式,应先把2a看成一个整体,应等于(2a)2-b2而不是2a2-b2,故本选项错误;
    C选项:先把(-a)2化为a2,然后利用同底数幂的乘法法则,底数不变,只把指数相加,即可得到;
    D选项:两项不是同类项,故不能进行合并.
    【详解】
    A选项:a6÷a2=a4,故本选项错误;
    B选项:(2a+b)(2a-b)=4a2-b2,故本选项正确;
    C选项:(-a)2•a3=a5,故本选项错误;
    D选项:5a与2b不是同类项,不能合并,故本选项错误;
    故选:B.
    【点睛】
    考查学生同底数幂的乘除法法则的运用以及对平方差公式的掌握,同时要求学生对同类项进行正确的判断.
    7、B
    【解析】
    先利用待定系数法求出直线AB的解析式,再求出将直线AB向右平移1个单位长度后得到的解析式,然后将所得解析式绕着原点旋转180°即可得到直线l.
    【详解】
    解:设直线AB的解析式为y=mx+n.
    ∵A(−2,0),B(0,1),
    ∴ ,
    解得 ,
    ∴直线AB的解析式为y=2x+1.
    将直线AB向右平移1个单位长度后得到的解析式为y=2(x−1)+1,即y=2x+2,
    再将y=2x+2绕着原点旋转180°后得到的解析式为−y=−2x+2,即y=2x−2,
    所以直线l的表达式是y=2x−2.
    故选:B.
    【点睛】
    本题考查了一次函数图象平移问题,掌握解析式“左加右减”的规律以及关于原点对称的规律是解题的关键.
    8、C
    【解析】
    根据等腰三角形的性质可得BE=BC=2,再根据三角形中位线定理可求得BD、DE长,根据三角形周长公式即可求得答案.
    【详解】
    解:∵在△ABC中,AB=AC=3,AE平分∠BAC,
    ∴BE=CE=BC=2,
    又∵D是AB中点,
    ∴BD=AB=,
    ∴DE是△ABC的中位线,
    ∴DE=AC=,
    ∴△BDE的周长为BD+DE+BE=++2=5,
    故选C.
    【点睛】
    本题考查了等腰三角形的性质、三角形中位线定理,熟练掌握三角形中位线定理是解题的关键.
    9、B
    【解析】
    由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和定理得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴∠BAD=90°,AB=AD,∠BAF=45°,
    ∵△ADE是等边三角形,
    ∴∠DAE=60°,AD=AE,
    ∴∠BAE=90°+60°=150°,AB=AE,
    ∴∠ABE=∠AEB=(180°﹣150°)=15°,
    ∴∠BFC=∠BAF+∠ABE=45°+15°=60°;
    故选:B.
    【点睛】
    本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.
    10、B
    【解析】
    设该点的坐标为(a,b),则|b|=1|a|,利用一次函数图象上的点的坐标特征可得出k=±1,再利用正比例函数的性质可得出k=-1,此题得解.
    【详解】
    设该点的坐标为(a,b),则|b|=1|a|,
    ∵点(a,b)在正比例函数y=kx的图象上,
    ∴k=±1.
    又∵y值随着x值的增大而减小,
    ∴k=﹣1.
    故选:B.
    【点睛】
    本题考查了一次函数图象上点的坐标特征以及正比例函数的性质,利用一次函数图象上点的坐标特征,找出k=±1是解题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、2
    【解析】
    试题分析:∵反比例函数(x>1)及(x>1)的图象均在第一象限内,
    ∴>1,>1.
    ∵AP⊥x轴,∴S△OAP=,S△OBP=,
    ∴S△OAB=S△OAP﹣S△OBP==2,
    解得:=2.
    故答案为2.
    12、.
    【解析】
    试题分析:
    解:∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,
    ∴AB=5,
    ∵点D为AB的中点,
    ∴CD=AD=BD=AB=2.5,
    过D′作D′E⊥BC,

    ∵将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,
    ∴CD′=AD=A′D′,
    ∴D′E==1.5,
    ∵A′E=CE=2,BC=3,
    ∴BE=1,
    ∴BD′=,
    故答案为.
    考点:旋转的性质.
    13、
    【解析】
    分析:连接BC,则∠BCE=90°,由余弦的定义求解.
    详解:连接BC,根据圆周角定理得,∠BCE=90°,
    所以cos∠BEC=.
    故答案为.
    点睛:本题考查了圆周角定理的余弦的定义,求一个锐角的余弦时,需要把这个锐角放到直角三角形中,再根据余弦的定义求解,而圆中直径所对的圆周角是直角.
    14、
    【解析】
    连接AC、CF,GE,根据菱形性质求出AC、CF,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.
    【详解】
    解:如图,连接AC、CF、GE,CF和GE相交于O点
    ∵在菱形ABCD中, ,BC=1,
    ∴,AC=1,

    ∵在菱形CEFG中,是它的对角线,
    ∴,
    ∴,

    ∵==,
    ∴在,
    又∵H是AF的中点
    ∴.

    【点睛】
    本题考查了直角三角形斜边上的中线等于斜边的一半的性质,菱形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.
    15、1π+1.
    【解析】
    分析:根据题意求出OC,根据弧长公式分别求出AB、CD的弧长,根据扇形周长公式计算.
    详解:由题意得,OC=AC=OA=15,
    的长==20π,
    的长==10π,
    ∴扇面ABDC的周长=20π+10π+15+15=1π+1(cm),
    故答案为1π+1.
    点睛:本题考查的是弧长的计算,掌握弧长公式: 是解题的关键.
    16、4
    【解析】
    根据已知图象,重新构造直角三角形,利用三角形相似得出CD的长,进而利用勾股定理得出最短路径问题.
    【详解】
    如图所示:

    C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.设CD=x,
    若AB=5,DE=3,BD=12,
    当A,C,E,在一条直线上,AE最短,
    ∵AB⊥BD,ED⊥BD,
    ∴AB∥DE,
    ∴△ABC∽EDC,
    ∴,
    ∴,
    解得:DC=.
    即当x=时,代数式有最小值,
    此时为:.
    故答案是:4.
    【点睛】
    考查最短路线问题,利用了数形结合的思想,可通过构造直角三角形,利用勾股定理求解.
    17、4cm
    【解析】
    根据三角形的高线的定义得到,根据直角三角形的性质即可得到结论.
    【详解】
    解:∵是的高线,
    ∴,
    ∵,,
    ∴.
    故答案为:4cm.
    【点睛】
    本题考查了三角形的角平分线、中线、高线,含30°角的直角三角形,熟练掌握直角三角形的性质是解题的关键.

    三、解答题(共7小题,满分69分)
    18、10
    【解析】
    试题分析:根据相似的性质可得:1:1.2=x:9.6,则x=8,则旗杆的高度为8+2=10米.
    考点:相似的应用
    19、(1)A'到BD的距离是1.2m;(2)A'到地面的距离是1m.
    【解析】
    (1)如图2,作A'F⊥BD,垂足为F.根据同角的余角相等证得∠2=∠3;再利用AAS证明△ACB≌△BFA',根据全等三角形的性质即可得A'F=BC,根据BC=BD﹣CD求得BC的长,即可得A'F的长,从而求得A'到BD的距离;(2)作A'H⊥DE,垂足为H,可证得A'H=FD,根据A'H=BD﹣BF求得A'H的长,从而求得A'到地面的距离.
    【详解】
    (1)如图2,作A'F⊥BD,垂足为F.

    ∵AC⊥BD,
    ∴∠ACB=∠A'FB=90°;
    在Rt△A'FB中,∠1+∠3=90°;
    又∵A'B⊥AB,∴∠1+∠2=90°,
    ∴∠2=∠3;
    在△ACB和△BFA'中,

    ∴△ACB≌△BFA'(AAS);
    ∴A'F=BC,
    ∵AC∥DE且CD⊥AC,AE⊥DE,
    ∴CD=AE=1.8;
    ∴BC=BD﹣CD=3﹣1.8=1.2,
    ∴A'F=1.2,即A'到BD的距离是1.2m.
    (2)由(1)知:△ACB≌△BFA',
    ∴BF=AC=2m,
    作A'H⊥DE,垂足为H.
    ∵A'F∥DE,
    ∴A'H=FD,
    ∴A'H=BD﹣BF=3﹣2=1,即A'到地面的距离是1m.
    【点睛】
    本题考查了全等三角形的判定与性质的应用,作出辅助线,证明△ACB≌△BFA'是解决问题的关键.
    20、(1)证明参见解析;(2)半径长为,=.
    【解析】
    (1)已知点D在圆上,要连半径证垂直,连结,则,所以,∵,∴.∴,∴∥.由得出,于是得出结论;(2)由得到,设,则.,,,由,解得值,进而求出圆的半径及AE长.
    【详解】
    解:(1)已知点D在圆上,要连半径证垂直,如图2所示,连结,∵,∴.∵,∴.∴,∴∥.∵,∴.∴是⊙的切线;(2)在和中,∵,∴. 设,则.∴,.∵,∴.∴,解得=,则3x=,AE=6×-=6,∴⊙的半径长为,=.

    【点睛】
    1.圆的切线的判定;2.锐角三角函数的应用.
    21、(1)证明见解析;(2)AE=BF,(3)AE=BF;
    【解析】
    (1)根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AMB的度数,根据直角三角形锐角的关系,可得∠ABM与∠BAM的关系,根据同角的余角相等,可得∠BAM与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到∠ABC=∠C,由余角的性质得到∠BAM=∠CBF,根据相似三角形的性质即可得到结论;(3)结论:AE=BF.证明方法类似(2);
    【详解】
    (1)证明:

    ∵四边形ABCD是正方形,
    ∴∠ABC=∠C,AB=BC.
    ∵AE⊥BF,
    ∴∠AMB=∠BAM+∠ABM=90°,
    ∵∠ABM+∠CBF=90°,
    ∴∠BAM=∠CBF.
    在△ABE和△BCF中,

    ∴△ABE≌△BCF(ASA),
    ∴AE=BF;
    (2)解:如图2中,结论:AE=BF,

    理由:∵四边形ABCD是矩形,
    ∴∠ABC=∠C,
    ∵AE⊥BF,
    ∴∠AMB=∠BAM+∠ABM=90°,
    ∵∠ABM+∠CBF=90°,
    ∴∠BAM=∠CBF,
    ∴△ABE∽△BCF,
    ∴,
    ∴AE=BF.
    (3)结论:AE=BF.
    理由:∵四边形ABCD是矩形,
    ∴∠ABC=∠C,
    ∵AE⊥BF,
    ∴∠AMB=∠BAM+∠ABM=90°,
    ∵∠ABM+∠CBF=90°,
    ∴∠BAM=∠CBF,
    ∴△ABE∽△BCF,
    ∴,
    ∴AE=BF.
    【点睛】
    本题考查了四边形综合题、相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,矩形的性质,熟练掌握全等三角形或相似三角形的判定和性质是解题的关键.
    22、(1)详见解析;(2)40%;(3)105;(4).
    【解析】
    (1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;
    (2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;
    (3)根据样本估计总体的方法计算即可;
    (4)利用概率公式即可得出结论.
    【详解】
    (1)由条形图知,男生共有:10+20+13+9=52人,
    ∴女生人数为100-52=48人,
    ∴参加武术的女生为48-15-8-15=10人,
    ∴参加武术的人数为20+10=30人,
    ∴30÷100=30%,
    参加器乐的人数为9+15=24人,
    ∴24÷100=24%,
    补全条形统计图和扇形统计图如图所示:
    (2)在参加“剪纸”活动项目的学生中,男生所占的百分比是100%=40%.
    答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.
    (3)500×21%=105(人).
    答:估计其中参加“书法”项目活动的有105人.
    (4).
    答:正好抽到参加“器乐”活动项目的女生的概率为.
    【点睛】
    此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    23、(1)本次试点投放的A型车60辆、B型车40辆;(2)3辆;2辆
    【解析】
    分析:(1)设本次试点投放的A型车x辆、B型车y辆,根据“两种款型的单车共100辆,总价值36800元”列方程组求解可得;
    (2)由(1)知A、B型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据“投资总价值不低于184万元”列出关于a的不等式,解之求得a的范围,进一步求解可得.
    详解:(1)设本次试点投放的A型车x辆、B型车y辆,
    根据题意,得:,
    解得:,
    答:本次试点投放的A型车60辆、B型车40辆;
    (2)由(1)知A、B型车辆的数量比为3:2,
    设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,
    根据题意,得:3a×400+2a×320≥1840000,
    解得:a≥1000,
    即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,
    则城区10万人口平均每100人至少享有A型车3000×=3辆、至少享有B型车2000×=2辆.
    点睛:本题主要考查二元一次方程组和一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的相等(或不等)关系,并据此列出方程组.
    24、(1)NC∥AB;理由见解析;(2)∠ABC=∠ACN;理由见解析;(3);
    【解析】
    (1)根据△ABC,△AMN为等边三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,证明△BAM≌△CAN,即可得到BM=CN.
    (2)根据△ABC,△AMN为等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根据相似三角形的性质得到,利用等腰三角形的性质得到∠BAC=∠MAN,根据相似三角形的性质即可得到结论;
    (3)如图3,连接AB,AN,根据正方形的性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形的性质得出,得到BM=2,CM=8,再根据勾股定理即可得到答案.
    【详解】
    (1)NC∥AB,理由如下:
    ∵△ABC与△MN是等边三角形,
    ∴AB=AC,AM=AN,∠BAC=∠MAN=60°,
    ∴∠BAM=∠CAN,
    在△ABM与△ACN中,

    ∴△ABM≌△ACN(SAS),
    ∴∠B=∠ACN=60°,
    ∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,
    ∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,
    ∴CN∥AB;
    (2)∠ABC=∠ACN,理由如下:
    ∵=1且∠ABC=∠AMN,
    ∴△ABC~△AMN
    ∴,
    ∵AB=BC,
    ∴∠BAC=(180°﹣∠ABC),
    ∵AM=MN
    ∴∠MAN=(180°﹣∠AMN),
    ∵∠ABC=∠AMN,
    ∴∠BAC=∠MAN,
    ∴∠BAM=∠CAN,
    ∴△ABM~△ACN,
    ∴∠ABC=∠ACN;
    (3)如图3,连接AB,AN,
    ∵四边形ADBC,AMEF为正方形,
    ∴∠ABC=∠BAC=45°,∠MAN=45°,
    ∴∠BAC﹣∠MAC=∠MAN﹣∠MAC
    即∠BAM=∠CAN,
    ∵,
    ∴,
    ∴△ABM~△ACN
    ∴,
    ∴=cos45°=,
    ∴,
    ∴BM=2,
    ∴CM=BC﹣BM=8,
    在Rt△AMC,
    AM=,
    ∴EF=AM=2.

    【点睛】
    本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.

    相关试卷

    2024年深圳罗湖教科院附属学校中考模拟数学试题+答案:

    这是一份2024年深圳罗湖教科院附属学校中考模拟数学试题+答案,文件包含2024深圳市罗湖教科院附属学校中考模拟数学试题-答案pdf、2024深圳市罗湖教科院附属学校中考模拟数学试题pdf、2024深圳市罗湖教科院附属学校中考模拟数学试题-答题卡-50pdf等3份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。

    2024年深圳罗湖教科院附属学校中考模拟数学试题(含答案):

    这是一份2024年深圳罗湖教科院附属学校中考模拟数学试题(含答案),共26页。

    2023-2024学年成都市教科院附属学校九上数学期末考试模拟试题含答案:

    这是一份2023-2024学年成都市教科院附属学校九上数学期末考试模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,如图,在中,,则劣弧的度数为等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map