2022届广东省惠州仲恺区七校联考中考数学五模试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.关于x的不等式的解集为x>3,那么a的取值范围为( )
A.a>3 B.a<3 C.a≥3 D.a≤3
2.如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为( )
A.m> B.m C.m= D.m=
3.我国古代数学著作《九章算术》卷七“盈不足”中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:几个人合伙买一件物品,每人出8元,则余3元;若每人出7元,则少4元,问几人合买?这件物品多少钱?若设有x人合买,这件物品y元,则根据题意列出的二元一次方程组为( )
A. B. C. D.
4.某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在( )
A.50.5~60.5 分 B.60.5~70.5 分 C.70.5~80.5 分 D.80.5~90.5 分
5.据史料记载,雎水太平桥建于清嘉庆年间,已有200余年历史.桥身为一巨型单孔圆弧,既没有用钢筋,也没有用水泥,全部由石块砌成,犹如一道彩虹横卧河面上,桥拱半径OC为13m,河面宽AB为24m,则桥高CD为( )
A.15m B.17m C.18m D.20m
6.已知一元二次方程x2-8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为( )
A.13 B.11或13 C.11 D.12
7.我们从不同的方向观察同一物体时,可能看到不同的图形,则从正面、左面、上面观察都不可能看到矩形的是( )
A. B. C. D.
8.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( )
A.3.386×108 B.0.3386×109 C.33.86×107 D.3.386×109
9.如图,梯形ABCD中,AD∥BC,AB=DC,DE∥AB,下列各式正确的是( )
A. B. C. D.
10.如图,A,B,C,D,E,G,H,M,N都是方格纸中的格点(即小正方形的顶点),要使△DEF与△ABC相似,则点F应是G,H,M,N四点中的( )
A.H或N B.G或H C.M或N D.G或M
二、填空题(共7小题,每小题3分,满分21分)
11.若,则=_____.
12.如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为____.
13.将一些形状相同的小五角星如图所示的规律摆放,据此规律,第10个图形有_______个五角星.
14.若代数式在实数范围内有意义,则实数x的取值范围为_____.
15.在△ABC中,点D在边BC上,BD=2CD,,,那么= .
16.两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于 ______ 度.
17.若,,则代数式的值为__________.
三、解答题(共7小题,满分69分)
18.(10分)如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF.
(1)判断直线EF与⊙O的位置关系,并说明理由;
(2)若∠A=30°,求证:DG=DA;
(3)若∠A=30°,且图中阴影部分的面积等于2,求⊙O的半径的长.
19.(5分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.
(1)求证:四边形BCFE是菱形;
(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.
20.(8分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).求灯杆CD的高度;求AB的长度(结果精确到0.1米).(参考数据:=1.1.sin37°≈060,cos37°≈0.80,tan37°≈0.75)
21.(10分)某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.求y关于x的函数关系式;该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.
22.(10分)某区教育局为了解今年九年级学生体育测试情况,随机抽查了某班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:
说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下
(1)样本中D级的学生人数占全班学生人数的百分比是 ;
(2)扇形统计图中A级所在的扇形的圆心角度数是 ;
(3)请把条形统计图补充完整;
(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数之和.
23.(12分)先化简,再求值:,其中a满足a2+2a﹣1=1.
24.(14分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长(结果保留小数点后一位,参考数据:).
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
分析:先解第一个不等式得到x>3,由于不等式组的解集为x>3,则利用同大取大可得到a的范围.
详解:解不等式2(x-1)>4,得:x>3,
解不等式a-x<0,得:x>a,
∵不等式组的解集为x>3,
∴a≤3,
故选D.
点睛:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
2、C
【解析】
试题解析:∵一元二次方程2x2+3x+m=0有两个相等的实数根,
∴△=32-4×2m=9-8m=0,
解得:m=.
故选C.
3、D
【解析】
根据题意可以找出题目中的等量关系,列出相应的方程组,从而可以解答本题.
【详解】
由题意可得:,
故选D.
【点睛】
本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.
4、C
【解析】
分析:由频数分布直方图知这组数据共有40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,据此可得.
详解:由频数分布直方图知,这组数据共有3+6+8+8+9+6=40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,所以中位数落在70.5~80.5分.故选C.
点睛:本题主要考查了频数(率)分布直方图和中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
5、C
【解析】
连结OA,如图所示:
∵CD⊥AB,
∴AD=BD=AB=12m.
在Rt△OAD中,OA=13,OD=,
所以CD=OC+OD=13+5=18m.
故选C.
6、B
【解析】
试题解析:x2-8x+15=0,
分解因式得:(x-3)(x-5)=0,
可得x-3=0或x-5=0,
解得:x1=3,x2=5,
若3为底边,5为腰时,三边长分别为3,5,5,周长为3+5+5=1;
若3为腰,5为底边时,三边长分别为3,3,5,周长为3+3+5=11,
综上,△ABC的周长为11或1.
故选B.
考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质.
7、C
【解析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.依此找到从正面、左面、上面观察都不可能看到矩形的图形.
【详解】
A、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;
B、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误;
C、主视图为等腰梯形,左视图为等腰梯形,俯视图为圆环,从正面、左面、上面观察都不可能看到长方形,故本选项正确;
D、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误.
故选C.
【点睛】
本题重点考查了三视图的定义考查学生的空间想象能力,关键是根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答.
8、A
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:数字338 600 000用科学记数法可简洁表示为3.386×108
故选:A
【点睛】
本题考查科学记数法—表示较大的数.
9、D
【解析】
∵AD//BC,DE//AB,∴四边形ABED是平行四边形,
∴ , ,
∴选项A、C错误,选项D正确,
选项B错误,
故选D.
10、C
【解析】
根据两三角形三条边对应成比例,两三角形相似进行解答
【详解】
设小正方形的边长为1,则△ABC的各边分别为3、、,只能F是M或N时,其各边是6、2,2.与△ABC各边对应成比例,故选C
【点睛】
本题考查了相似三角形的判定,相似三角形对应边成比例是解题的关键
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
=.
12、24
【解析】
试题分析:因为四边形ABCD是菱形,根据菱形的性质可知,BD与AC互相垂直且平分,因为,AB=10,所以BD=6,根据勾股定理可求的AC=8,即AC=16;
考点:三角函数、菱形的性质及勾股定理;
13、1.
【解析】
寻找规律:不难发现,第1个图形有3=22-1个小五角星;第2个图形有8=32-1个小五角星;第3个图形有15=42-1个小五角星;…第n个图形有(n+1)2-1个小五角星.
∴第10个图形有112-1=1个小五角星.
14、x≤1
【解析】
根据二次根式有意义的条件可求出x的取值范围.
【详解】
由题意可知:1﹣x≥0,
∴x≤1
故答案为:x≤1.
【点睛】
本题考查二次根式有意义的条件,解题的关键是利用被开方数是非负数解答即可.
15、
【解析】
首先利用平行四边形法则,求得的值,再由BD=2CD,求得的值,即可求得的值.
【详解】
∵,,
∴=-=-,
∵BD=2CD,
∴==,
∴=+==.
故答案为.
16、108°
【解析】
如图,易得△OCD为等腰三角形,根据正五边形内角度数可求出∠OCD,然后求出顶角∠COD,再用360°减去∠AOC、∠BOD、∠COD即可
【详解】
∵五边形是正五边形,
∴每一个内角都是108°,
∴∠OCD=∠ODC=180°-108°=72°,
∴∠COD=36°,
∴∠AOB=360°-108°-108°-36°=108°.
故答案为108°
【点睛】
本题考查正多边形的内角计算,分析出△OCD是等腰三角形,然后求出顶角是关键.
17、-12
【解析】
分析:对所求代数式进行因式分解,把,,代入即可求解.
详解:,,
,
故答案为:
点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键.
三、解答题(共7小题,满分69分)
18、(1)EF是⊙O的切线,理由详见解析;(1)详见解析;(3)⊙O的半径的长为1.
【解析】
(1)连接OE,根据等腰三角形的性质得到∠A=∠AEO,∠B=∠BEF,于是得到∠
OEG=90°,即可得到结论;
(1)根据含30°的直角三角形的性质证明即可;
(3)由AD是⊙O的直径,得到∠AED=90°,根据三角形的内角和得到∠EOD=60°,求得
∠EGO=30°,根据三角形和扇形的面积公式即可得到结论.
【详解】
解:(1)连接OE,
∵OA=OE,
∴∠A=∠AEO,
∵BF=EF,
∴∠B=∠BEF,
∵∠ACB=90°,
∴∠A+∠B=90°,
∴∠AEO+∠BEF=90°,
∴∠OEG=90°,
∴EF是⊙O的切线;
(1)∵∠AED=90°,∠A=30°,
∴ED=AD,
∵∠A+∠B=90°,
∴∠B=∠BEF=60°,
∵∠BEF+∠DEG=90°,
∴∠DEG=30°,
∵∠ADE+∠A=90°,
∴∠ADE=60°,
∵∠ADE=∠EGD+∠DEG,
∴∠DGE=30°,
∴∠DEG=∠DGE,
∴DG=DE,
∴DG=DA;
(3)∵AD是⊙O的直径,
∴∠AED=90°,
∵∠A=30°,
∴∠EOD=60°,
∴∠EGO=30°,
∵阴影部分的面积
解得:r1=4,即r=1,
即⊙O的半径的长为1.
【点睛】
本题考查了切线的判定,等腰三角形的性质,圆周角定理,扇形的面积的计算,正确的作出辅助线是解题的关键.
19、(1)见解析;(2)见解析
【解析】
(1)从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以四边形BCFE是菱形.
(2)因为∠BCF=120°,所以∠EBC=60°,所以菱形的边长也为4,求出菱形的高面积就可.
【详解】
解:(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.
又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC.
∴四边形BCFE是平行四边形.
又∵BE=FE,∴四边形BCFE是菱形.
(2)∵∠BCF=120°,∴∠EBC=60°.
∴△EBC是等边三角形.
∴菱形的边长为4,高为.
∴菱形的面积为4×=.
20、(1)10米;(2)11.4米
【解析】
(1)延长DC交AN于H.只要证明BC=CD即可;
(2)在Rt△BCH中,求出BH、CH,在 Rt△ADH中求出AH即可解决问题.
【详解】
(1)如图,延长DC交AN于H,
∵∠DBH=60°,∠DHB=90°,
∴∠BDH=30°,
∵∠CBH=30°,
∴∠CBD=∠BDC=30°,
∴BC=CD=10(米);
(2)在Rt△BCH中,CH=BC=5,BH=5≈8.65,
∴DH=15,
在Rt△ADH中,AH=≈=20,
∴AB=AH﹣BH=20﹣8.65=11.4(米).
【点睛】
本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
21、 (1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.
【解析】
【分析】(1)根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式;
(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;
(3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x的增大而增大,分别进行求解.
【详解】(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;
(2)∵100﹣x≤2x,
∴x≥,
∵y=﹣100x+50000中k=﹣100<0,
∴y随x的增大而减小,
∵x为正数,
∴x=34时,y取得最大值,最大值为46600,
答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;
(3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,
33≤x≤60,
①当0<a<100时,y随x的增大而减小,
∴当x=34时,y取最大值,
即商店购进34台A型电脑和66台B型电脑的销售利润最大.
②a=100时,a﹣100=0,y=50000,
即商店购进A型电脑数量满足33≤x≤60的整数时,均获得最大利润;
③当100<a<200时,a﹣100>0,y随x的增大而增大,
∴当x=60时,y取得最大值.
即商店购进60台A型电脑和40台B型电脑的销售利润最大.
【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.
22、(1)10%; (2)72; (3)5,见解析; (4)330.
【解析】
解:(1)根据题意得:
D级的学生人数占全班人数的百分比是:
1-20%-46%-24%=10%;
(2)A级所在的扇形的圆心角度数是:20%×360°=72°;
(3)∵A等人数为10人,所占比例为20%,
∴抽查的学生数=10÷20%=50(人),
∴D级的学生人数是50×10%=5(人),
补图如下:
(4)根据题意得:
体育测试中A级和B级的学生人数之和是:500×(20%+46%)=330(名),
答:体育测试中A级和B级的学生人数之和是330名.
【点睛】
本题考查统计的知识,要求考生会识别条形统计图和扇形统计图.
23、a2+2a,2
【解析】
根据分式的减法和除法可以化简题目中的式子,然后根据a2+2a−2=2,即可解答本题.
【详解】
解:
=
=
=a(a+2)
=a2+2a,
∵a2+2a﹣2=2,
∴a2+2a=2,
∴原式=2.
【点睛】
本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
24、5.7米.
【解析】
试题分析:由题意,过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.
试题解析:解:如答图,过点A作AH⊥CD,垂足为H,
由题意可知四边形ABDH为矩形,∠CAH=30°,
∴AB=DH=1.5,BD=AH=6.
在Rt△ACH中,CH=AH•tan∠CAH=6tan30°=6×,
∵DH=1.5,∴CD=+1.5.
在Rt△CDE中,∵∠CED=60°,∴CE=(米).
答:拉线CE的长约为5.7米.
考点:1.解直角三角形的应用(仰角俯角问题);2.锐角三角函数定义;3.特殊角的三角函数值;4.矩形的判定和性质.
2024年广东省惠州市仲恺高新区中考数学二模试卷(含答案): 这是一份2024年广东省惠州市仲恺高新区中考数学二模试卷(含答案),共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年广东省惠州仲恺区七校联考数学九上期末综合测试试题含答案: 这是一份2023-2024学年广东省惠州仲恺区七校联考数学九上期末综合测试试题含答案,共8页。试卷主要包含了下列方程中,为一元二次方程的是,下列事件是随机事件的是等内容,欢迎下载使用。
2023-2024学年广东省惠州仲恺区七校联考八上数学期末经典试题含答案: 这是一份2023-2024学年广东省惠州仲恺区七校联考八上数学期末经典试题含答案,共7页。试卷主要包含了化简的结果为,在平面直角坐标系中,点M等内容,欢迎下载使用。