|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届广东省广州白云广雅实验校中考数学五模试卷含解析
    立即下载
    加入资料篮
    2022届广东省广州白云广雅实验校中考数学五模试卷含解析01
    2022届广东省广州白云广雅实验校中考数学五模试卷含解析02
    2022届广东省广州白云广雅实验校中考数学五模试卷含解析03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届广东省广州白云广雅实验校中考数学五模试卷含解析

    展开
    这是一份2022届广东省广州白云广雅实验校中考数学五模试卷含解析,共18页。试卷主要包含了“绿水青山就是金山银山”等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.当x=1时,代数式x3+x+m的值是7,则当x=﹣1时,这个代数式的值是(  )
    A.7 B.3 C.1 D.﹣7
    2.如图,△ABC是⊙O的内接三角形,∠BOC=120°,则∠A等于(  )

    A.50° B.60° C.55° D.65°
    3.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:

    下列说法正确的是( )
    A.这10名同学体育成绩的中位数为38分
    B.这10名同学体育成绩的平均数为38分
    C.这10名同学体育成绩的众数为39分
    D.这10名同学体育成绩的方差为2
    4.小苏和小林在如图①所示的跑道上进行米折返跑.在整个过程中,跑步者距起跑线的距离(单位:)与跑步时间(单位:)的对应关系如图②所示.下列叙述正确的是( ).

    A.两人从起跑线同时出发,同时到达终点
    B.小苏跑全程的平均速度大于小林跑全程的平均速度
    C.小苏前跑过的路程大于小林前跑过的路程
    D.小林在跑最后的过程中,与小苏相遇2次
    5.如图,正方形ABCD的边长为4,点M是CD的中点,动点E从点B出发,沿BC运动,到点C时停止运动,速度为每秒1个长度单位;动点F从点M出发,沿M→D→A远动,速度也为每秒1个长度单位:动点G从点D出发,沿DA运动,速度为每秒2个长度单位,到点A后沿AD返回,返回时速度为每秒1个长度单位,三个点的运动同时开始,同时结束.设点E的运动时间为x,△EFG的面积为y,下列能表示y与x的函数关系的图象是(  )

    A. B.
    C. D.
    6.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是(  )

    A.48 B.60
    C.76 D.80
    7.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是( )

    A.10,15 B.13,15 C.13,20 D.15,15
    8.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是(  )
    A. B.
    C. D.
    9.若⊙O的半径为5cm,OA=4cm,则点A与⊙O的位置关系是( )
    A.点A在⊙O内 B.点A在⊙O上 C.点A在⊙O外 D.内含
    10.在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.对于一条直线,当它与一个圆的公共点都是整点时,我们把这条直线称为这个圆的“整点直线”.已知⊙O是以原点为圆心,半径为 圆,则⊙O的“整点直线”共有( )条
    A.7 B.8 C.9 D.10
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,在菱形ABCD中,于E,,,则菱形ABCD的面积是______.

    12.计算的结果等于_____________.
    13.若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为 .
    14.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,BE与CD相交于点G,且OE=OD,则AP的长为__________.

    15.如图,矩形ABCD的对角线BD经过的坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(﹣2,﹣3),则k的值为_____.

    16.计算:(a2)2=_____.
    17.如图,某城市的电视塔AB坐落在湖边,数学老师带领学生隔湖测量电视塔AB的高度,在点M处测得塔尖点A的仰角∠AMB为22.5°,沿射线MB方向前进200米到达湖边点N处,测得塔尖点A在湖中的倒影A′的俯角∠A′NB为45°,则电视塔AB的高度为______米(结果保留根号).

    三、解答题(共7小题,满分69分)
    18.(10分)计算:sin30°•tan60°+..
    19.(5分)如图,在平行四边形ABCD中,BD是对角线,∠ADB=90°,E、F分别为边AB、CD的中点.
    (1)求证:四边形DEBF是菱形;
    (2)若BE=4,∠DEB=120°,点M为BF的中点,当点P在BD边上运动时,则PF+PM的最小值为   ,并在图上标出此时点P的位置.

    20.(8分)已知动点P以每秒2 cm的速度沿图(1)的边框按从B⇒C⇒D⇒E⇒F⇒A的路径移动,相应的△ABP的面积S与时间t之间的关系如图(2)中的图象表示.若AB=6 cm,试回答下列问题:

    (1)图(1)中的BC长是多少?
    (2)图(2)中的a是多少?
    (3)图(1)中的图形面积是多少?
    (4)图(2)中的b是多少?
    21.(10分)如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.求、的值;如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.
    22.(10分)已知,关于x的方程x2﹣mx+m2﹣1=0,
    (1)不解方程,判断此方程根的情况;
    (2)若x=2是该方程的一个根,求m的值.
    23.(12分)如图,△ABC内接于⊙O,过点C作BC的垂线交⊙O于D,点E在BC的延长线上,且∠DEC=∠BAC.求证:DE是⊙O的切线;若AC∥DE,当AB=8,CE=2时,求⊙O直径的长.

    24.(14分)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.
    求证:DE是⊙O的切线;若DE=3,CE=2. ①求的值;②若点G为AE上一点,求OG+EG最小值.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    因为当x=1时,代数式的值是7,所以1+1+m=7,所以m=5,当x=-1时,=-1-1+5=3,
    故选B.
    2、B
    【解析】
    由圆周角定理即可解答.
    【详解】
    ∵△ABC是⊙O的内接三角形,
    ∴∠A= ∠BOC,
    而∠BOC=120°,
    ∴∠A=60°.
    故选B.
    【点睛】
    本题考查了圆周角定理,熟练运用圆周角定理是解决问题的关键.
    3、C
    【解析】
    试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;
    第5和第6名同学的成绩的平均值为中位数,中位数为:=39;
    平均数==38.4
    方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;
    ∴选项A,B、D错误;
    故选C.
    考点:方差;加权平均数;中位数;众数.
    4、D
    【解析】
    A.由图可看出小林先到终点,A错误;
    B.全程路程一样,小林用时短,所以小林的平均速度大于小苏的平均速度,B错误;
    C.第15 秒时,小苏距离起点较远,两人都在返回起点的过程中,据此可判断小林跑的路程大于小苏跑的路程,C错误;
    D.由图知两条线的交点是两人相遇的点,所以是相遇了两次,正确.
    故选D.
    5、A
    【解析】
    当点F在MD上运动时,0≤x<2;当点F在DA上运动时,2<x≤4.再按相关图形面积公式列出表达式即可.
    【详解】
    解:当点F在MD上运动时,0≤x<2,则:
    y=S梯形ECDG-S△EFC-S△GDF=,
    当点F在DA上运动时,2<x≤4,则:
    y=,
    综上,只有A选项图形符合题意,故选择A.
    【点睛】
    本题考查了动点问题的函数图像,抓住动点运动的特点是解题关键.
    6、C
    【解析】
    试题解析:∵∠AEB=90°,AE=6,BE=8,
    ∴AB=
    ∴S阴影部分=S正方形ABCD-SRt△ABE=102-
    =100-24
    =76.
    故选C.
    考点:勾股定理.
    7、D
    【解析】
    将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.
    【详解】
    将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.
    【点睛】
    本题考查中位数和众数的概念,熟记概念即可快速解答.
    8、C
    【解析】
    分析:设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x的分式方程.
    详解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为万平方米,
    依题意得:,即.
    故选C.
    点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.
    9、A
    【解析】
    直接利用点与圆的位置关系进而得出答案.
    【详解】
    解:∵⊙O的半径为5cm,OA=4cm,
    ∴点A与⊙O的位置关系是:点A在⊙O内.
    故选A.
    【点睛】
    此题主要考查了点与圆的位置关系,正确①点P在圆外⇔d>r,②点P在圆上⇔d=r,③点P在圆内⇔d<r是解题关键.
    10、D
    【解析】
    试题分析:根据圆的半径可知:在圆上的整数点为(2,2)、(2,-2),(-2,-2),(-2,2)这四个点,经过任意两点的“整点直线”有6条,经过其中的任意一点且圆相切的“整点直线”有4条,则合计共有10条.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    根据题意可求AD的长度,即可得CD的长度,根据菱形ABCD的面积=CD×AE,可求菱形ABCD的面积.
    【详解】
    ∵sinD=

    ∴AD=11
    ∵四边形ABCD是菱形
    ∴AD=CD=11
    ∴菱形ABCD的面积=11×8=96cm1.
    故答案为:96cm1.
    【点睛】
    本题考查了菱形的性质,解直角三角形,熟练运用菱形性质解决问题是本题的关键.
    12、a3
    【解析】
    试题解析:x5÷x2=x3.
    考点:同底数幂的除法.
    13、1
    【解析】
    设反比例函数解析式为y=,根据反比例函数图象上点的坐标特征得到k=3×(﹣4)=﹣2m,然后解关于m的方程即可.
    【详解】
    解:设反比例函数解析式为y=,
    根据题意得k=3×(﹣4)=﹣2m,
    解得m=1.
    故答案为1.
    考点:反比例函数图象上点的坐标特征.
    14、4.1
    【解析】
    解:如图所示:∵四边形ABCD是矩形,
    ∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=1,
    根据题意得:△ABP≌△EBP,
    ∴EP=AP,∠E=∠A=90°,BE=AB=1,
    在△ODP和△OEG中,

    ∴△ODP≌△OEG(ASA),
    ∴OP=OG,PD=GE,
    ∴DG=EP,
    设AP=EP=x,则PD=GE=6﹣x,DG=x,
    ∴CG=1﹣x,BG=1﹣(6﹣x)=2+x,
    根据勾股定理得:BC2+CG2=BG2,
    即62+(1﹣x)2=(x+2)2,
    解得:x=4.1,
    ∴AP=4.1;
    故答案为4.1.

    15、1或﹣1
    【解析】
    根据矩形的对角线将矩形分成面积相等的两个直角三角形,找到图中的所有矩形及相等的三角形,即可推出S四边形CEOF=S四边形HAGO,根据反比例函数比例系数的几何意义即可求出k2+4k+1=6,再解出k的值即可.
    【详解】
    如图:
    ∵四边形ABCD、HBEO、OECF、GOFD为矩形,
    又∵BO为四边形HBEO的对角线,OD为四边形OGDF的对角线,
    ∴S△BEO=S△BHO,S△OFD=S△OGD,S△CBD=S△ADB,
    ∴S△CBD﹣S△BEO﹣S△OFD=S△ADB﹣S△BHO﹣S△OGD,
    ∴S四边形CEOF=S四边形HAGO=2×3=6,
    ∴xy=k2+4k+1=6,
    解得k=1或k=﹣1.
    故答案为1或﹣1.

    【点睛】
    本题考查了反比例函数k的几何意义、矩形的性质、一元二次方程的解法,解题的关键是判断出S四边形CEOF=S四边形HAGO.
    16、a1.
    【解析】
    根据幂的乘方法则进行计算即可.
    【详解】

    故答案为
    【点睛】
    考查幂的乘方,掌握运算法则是解题的关键.
    17、.
    【解析】
    解:如图,连接AN,由题意知,BM⊥AA',BA=BA',∴AN=A'N,∴∠ANB=∠A'NB=45°,∵∠AMB=22.5°,∴∠MAN=∠ANB﹣∠AMB=22.5°=∠AMN,∴AN=MN=200米,在Rt△ABN中,∠ANB=45°,∴AB=AN=(米),故答案为.

    点睛:此题是解直角三角形的应用﹣﹣﹣仰角和俯角,主要考查了垂直平分线的性质,等腰三角形的性质,解本题的关键是求出∠ANB=45°.

    三、解答题(共7小题,满分69分)
    18、
    【解析】
    试题分析:把相关的特殊三角形函数值代入进行计算即可.
    试题解析:原式=.
    19、(1)详见解析;(2).
    【解析】
    (1)根据直角三角形斜边上的中线等于斜边的一半,以及平行四边形的对边相等证明四边形DEBF的四边相等即可证得;
    (2)连接EM,EM与BD的交点就是P,FF+PM的最小值就是EM的长,证明△BEF是等边三角形,利用三角函数求解.
    【详解】
    (1)∵平行四边形ABCD中,AD∥BC,∴∠DBC=∠ADB=90°.
    ∵△ABD中,∠ADB=90°,E时AB的中点,∴DE=AB=AE=BE.
    同理,BF=DF.
    ∵平行四边形ABCD中,AB=CD,∴DE=BE=BF=DF,∴四边形DEBF是菱形;
    (2)连接BF.
    ∵菱形DEBF中,∠DEB=120°,∴∠EFB=60°,∴△BEF是等边三角形.
    ∵M是BF的中点,∴EM⊥BF.
    则EM=BE•sin60°=4×=2.
    即PF+PM的最小值是2.
    故答案为:2.

    【点睛】
    本题考查了菱形的判定与性质以及图形的对称,根据菱形的对称性,理解PF+PM的最小值就是EM的长是关键.
    20、 (1)8cm(2)24cm2(3)60cm2(4) 17s
    【解析】
    (1)根据题意得:动点P在BC上运动的时间是4秒,又由动点的速度,可得BC的长;
    (2)由(1)可得BC的长,又由AB=6cm,可以计算出△ABP的面积,计算可得a的值;
    (3)分析图形可得,甲中的图形面积等于AB×AF-CD×DE,根据图象求出CD和DE的长,代入数据计算可得答案,
    (4)计算BC+CD+DE+EF+FA的长度,又由P的速度,计算可得b的值.
    【详解】
    (1)由图象知,当t由0增大到4时,点P由B C,∴BC==4×2=8(㎝) ;
    (2) a=S△ABC=×6×8=24(㎝2) ;
    (3) 同理,由图象知 CD=4㎝,DE=6㎝,则EF=2㎝,AF=14㎝
    ∴图1中的图象面积为6×14-4×6=60㎝2 ;
    (4) 图1中的多边形的周长为(14+6)×2=40㎝ b=(40-6)÷2=17秒.
    21、(1),;(2)点的坐标为;(3)点的坐标为和
    【解析】
    (1)根据二次函数的对称轴公式,抛物线上的点代入,即可;
    (2)先求F的对称点,代入直线BE,即可;(3)构造新的二次函数,利用其性质求极值.
    【详解】
    解:(1)轴,,抛物线对称轴为直线
    点的坐标为
    解得或(舍去),
    (2)设点的坐标为对称轴为直线点关于直线的对称点的坐标为.
    直线经过点利用待定系数法可得直线的表达式为.
    因为点在上,即点的坐标为
    (3)存在点满足题意.设点坐标为,则
    作垂足为
    ①点在直线的左侧时,点的坐标为点的坐标为点的坐标为在中,时,取最小值.此时点的坐标为
    ②点在直线的右侧时,点的坐标为同理,时,取最小值.此时点的坐标为
    综上所述:满足题意得点的坐标为和
    考点:二次函数的综合运用.
    22、(1)证明见解析;(2)m=2或m=1.
    【解析】
    (1)由△=(-m)2-4×1×(m2-1)=4>0即可得;
    (2)将x=2代入方程得到关于m的方程,解之可得.
    【详解】
    (1)∵△=(﹣m)2﹣4×1×(m2﹣1)
    =m2﹣m2+4
    =4>0,
    ∴方程有两个不相等的实数根;
    (2)将x=2代入方程,得:4﹣2m+m2﹣1=0,
    整理,得:m2﹣8m+12=0,
    解得:m=2或m=1.
    【点睛】
    本题考查了根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)将x=2代入原方程求出m值.
    23、(1)见解析;(2)⊙O直径的长是4.
    【解析】
    (1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;
    (2)先判断出AC⊥BD,进而求出BC=AB=8,进而判断出△BDC∽△BED,求出BD,即可得出结论.
    【详解】
    证明:(1)连接BD,交AC于F,

    ∵DC⊥BE,
    ∴∠BCD=∠DCE=90°,
    ∴BD是⊙O的直径,
    ∴∠DEC+∠CDE=90°,
    ∵∠DEC=∠BAC,
    ∴∠BAC+∠CDE=90°,
    ∵弧BC=弧BC,
    ∴∠BAC=∠BDC,
    ∴∠BDC+∠CDE=90°,
    ∴BD⊥DE,
    ∴DE是⊙O切线;
    解:(2)∵AC∥DE,BD⊥DE,
    ∴BD⊥AC.
    ∵BD是⊙O直径,
    ∴AF=CF,
    ∴AB=BC=8,
    ∵BD⊥DE,DC⊥BE,
    ∴∠BCD=∠BDE=90°,∠DBC=∠EBD,
    ∴△BDC∽△BED,
    ∴=,
    ∴BD2=BC•BE=8×10=80,
    ∴BD=4.
    即⊙O直径的长是4.
    【点睛】
    此题主要考查圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,第二问中求出BC=8是解本题的关键.
    24、(1)证明见解析(2)① ②3
    【解析】
    (1)作辅助线,连接OE.根据切线的判定定理,只需证DE⊥OE即可;
    (2)①连接BE.根据BC、DE两切线的性质证明△ADE∽△BEC;又由角平分线的性质、等腰三角形的两个底角相等求得△ABE∽△AFD,所以;
    ②连接OF,交AD于H,由①得∠FOE=∠FOA=60°,连接EF,则△AOF、△EOF都是等边三角形,故四边形AOEF是菱形,由对称性可知GO=GF,过点G作GM⊥OE于M,则GM=EG,OG+EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+EG=GF+GM=FM最小,此时FM =3.故OG+EG最小值是3.
    【详解】
    (1)连接OE

    ∵OA=OE,∴∠AEO=∠EAO
    ∵∠FAE=∠EAO,∴∠FAE=∠AEO
    ∴OE∥AF
    ∵DE⊥AF,∴OE⊥DE
    ∴DE是⊙O的切线
    (2)①解:连接BE
    ∵直径AB ∴∠AEB=90°
    ∵圆O与BC相切
    ∴∠ABC=90°
    ∵∠EAB+∠EBA=∠EBA+∠CBE=90°
    ∴∠EAB=∠CBE
    ∴∠DAE=∠CBE
    ∵∠ADE=∠BEC=90°
    ∴△ADE∽△BEC

    ②连接OF,交AE于G,
    由①,设BC=2x,则AE=3x
    ∵△BEC∽△ABC ∴

    解得:x1=2,(不合题意,舍去)
    ∴AE=3x=6,BC=2x=4,AC=AE+CE=8
    ∴AB=,∠BAC=30°
    ∴∠AEO=∠EAO=∠EAF=30°,∴∠FOE=2∠FAE=60°
    ∴∠FOE=∠FOA=60°,连接EF,则△AOF、△EOF都是等边三角形,∴四边形AOEF是菱形
    由对称性可知GO=GF,过点G作GM⊥OE于M,则GM=EG,OG+EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+EG=GF+GM=FM最小,此时FM=FOsin60o=3.
    故OG+EG最小值是3.
    【点睛】
    本题考查了切线的性质、相似三角形的判定与性质.比较复杂,解答此题的关键是作出辅助线,利用数形结合解答.

    相关试卷

    广东省广州市白云区广州白云广雅实验学校2023-2024学年数学八上期末达标测试试题含答案: 这是一份广东省广州市白云区广州白云广雅实验学校2023-2024学年数学八上期末达标测试试题含答案,共8页。试卷主要包含了下列命题是假命题的是,如图,直线等内容,欢迎下载使用。

    2023年广东省广州市广雅中学中考数学二模试卷: 这是一份2023年广东省广州市广雅中学中考数学二模试卷,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    广东省广州市白云区广雅实验校2022年中考适应性考试数学试题含解析: 这是一份广东省广州市白云区广雅实验校2022年中考适应性考试数学试题含解析,共25页。试卷主要包含了如果,那么代数式的值是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map