2022届广东省惠州市第一中学中考五模数学试题含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AB=c,∠A=α,则CD长为( )
A.c•sin2α B.c•cos2α C.c•sinα•tanα D.c•sinα•cosα
2.如图,在下列条件中,不能判定直线a与b平行的是( )
A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°
3.若点A(1,a)和点B(4,b)在直线y=-2x+m上,则a与b的大小关系是( )
A.a>b B.a<b
C.a=b D.与m的值有关
4.如图是正方体的表面展开图,则与“前”字相对的字是( )
A.认 B.真 C.复 D.习
5.如图是某个几何体的三视图,该几何体是()
A.三棱柱 B.三棱锥 C.圆柱 D.圆锥
6.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是( )
A.36° B.54° C.72° D.108°
7.下列立体图形中,主视图是三角形的是( )
A. B. C. D.
8.已知一次函数y=kx+3和y=k1x+5,假设k<0且k1>0,则这两个一次函数的图像的交点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
9.下列式子中,与互为有理化因式的是( )
A. B. C. D.
10.下列计算正确的是
A.a2·a2=2a4 B.(-a2)3=-a6 C.3a2-6a2=3a2 D.(a-2)2=a2-4
二、填空题(共7小题,每小题3分,满分21分)
11.已知代数式2x﹣y的值是,则代数式﹣6x+3y﹣1的值是_____.
12.如果一个三角形两边为3cm,7cm,且第三边为奇数,则三角形的周长是_________.
13.如图,边长一定的正方形ABCD,Q是CD上一动点,AQ交BD于点M,过M作MN⊥AQ交BC于N点,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;
②MP=BD;③BN+DQ=NQ;④为定值。其中一定成立的是_______.
14.图,A,B是反比例函数y=图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.若D为OB的中点,△AOD的面积为3,则k的值为________.
15.在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,1.则这位选手五次射击环数的方差为 .
16.已知A、B两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A地到B地匀速前行,甲、乙行进的路程s与x(小时)的函数图象如图所示.(1)乙比甲晚出发___小时;(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,x的取值范围是___.
17.已知是二元一次方程组的解,则m+3n的立方根为__.
三、解答题(共7小题,满分69分)
18.(10分)已知:如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B两点(A在B左),y轴交于点C(0,-3).
(1)求抛物线的解析式;
(2)若点D是线段BC下方抛物线上的动点,求四边形ABCD面积的最大值;
(3)若点E在x轴上,点P在抛物线上.是否存在以B、C、E、P为顶点且以BC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
19.(5分)如图,在平面直角坐标系中,抛物线的图象经过和两点,且与轴交于,直线是抛物线的对称轴,过点的直线与直线相交于点,且点在第一象限.
(1)求该抛物线的解析式;
(2)若直线和直线、轴围成的三角形面积为6,求此直线的解析式;
(3)点在抛物线的对称轴上,与直线和轴都相切,求点的坐标.
20.(8分)如图所示是一幢住房的主视图,已知:,房子前后坡度相等,米,米,设后房檐到地面的高度为米,前房檐到地面的高度米,求的值.
21.(10分)计算:(﹣)0﹣|﹣3|+(﹣1)2015+()﹣1.
22.(10分)如图,已知在中,,是的平分线.
(1)作一个使它经过两点,且圆心在边上;(不写作法,保留作图痕迹)
(2)判断直线与的位置关系,并说明理由.
23.(12分)某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分别直方图和扇形统计图:
根据图中提供的信息,解答下列问题:
(1)补全频数分布直方图
(2)求扇形统计图中m的值和E组对应的圆心角度数
(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数
24.(14分)如图,有长为14m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm1.求S与x的函数关系式及x值的取值范围;要围成面积为45m1的花圃,AB的长是多少米?当AB的长是多少米时,围成的花圃的面积最大?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
根据锐角三角函数的定义可得结论.
【详解】
在Rt△ABC中,∠ACB=90°,AB=c,∠A=a,根据锐角三角函数的定义可得sinα= ,
∴BC=c•sinα,
∵∠A+∠B=90°,∠DCB+∠B=90°,
∴∠DCB=∠A=α
在Rt△DCB中,∠CDB=90°,
∴cos∠DCB= ,
∴CD=BC•cosα=c•sinα•cosα,
故选D.
2、C
【解析】
解:A.∵∠1与∠2是直线a,b被c所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不符合题意
B.∵∠2与∠3是直线a,b被c所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不符合题意,
C.∵∠3与∠5既不是直线a,b被任何一条直线所截的一组同位角,内错角,∴∠3=∠5,不能得到a∥b,∴符合题意,
D.∵∠3与∠4是直线a,b被c所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不符合题意,
故选C.
【点睛】
本题考查平行线的判定,难度不大.
3、A
【解析】
【分析】根据一次函数性质:中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.由-2<0得,当x12时,y1>y2.
【详解】因为,点A(1,a)和点B(4,b)在直线y=-2x+m上,-2<0,
所以,y随x的增大而减小.
因为,1<4,
所以,a>b.
故选A
【点睛】本题考核知识点:一次函数性质. 解题关键点:判断一次函数中y与x的大小关系,关键看k的符号.
4、B
【解析】
分析:由平面图形的折叠以及正方体的展开图解题,罪域正方体的平面展开图中相对的面一定相隔一个小正方形.
详解:由图形可知,与“前”字相对的字是“真”.
故选B.
点睛:本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手分析及解答问题.
5、A
【解析】
试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A.
考点:由三视图判定几何体.
6、C
【解析】
正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是=72度,
故选C.
7、A
【解析】
考查简单几何体的三视图.根据从正面看得到的图形是主视图,可得图形的主视图
【详解】
A、圆锥的主视图是三角形,符合题意;
B、球的主视图是圆,不符合题意;
C、圆柱的主视图是矩形,不符合题意;
D、正方体的主视图是正方形,不符合题意.
故选A.
【点睛】
主视图是从前往后看,左视图是从左往右看,俯视图是从上往下看
8、B
【解析】
依题意在同一坐标系内画出图像即可判断.
【详解】
根据题意可作两函数图像,由图像知交点在第二象限,故选B.
【点睛】
此题主要考查一次函数的图像,解题的关键是根据题意作出相应的图像.
9、B
【解析】
直接利用有理化因式的定义分析得出答案.
【详解】
∵()(,)
=12﹣2,
=10,
∴与互为有理化因式的是:,
故选B.
【点睛】
本题考查了有理化因式,如果两个含有二次根式的非零代数式相乘,它们的积不含有二次根式,就说这两个非零代数式互为有理化因式. 单项二次根式的有理化因式是它本身或者本身的相反数;其他代数式的有理化因式可用平方差公式来进行分步确定.
10、B
【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.
【详解】A. a2·a2=a4 ,故A选项错误;
B. (-a2)3=-a6 ,正确;
C. 3a2-6a2=-3a2 ,故C选项错误;
D. (a-2)2=a2-4a+4,故D选项错误,
故选B.
【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
由题意可知:2x-y=,然后等式两边同时乘以-3得到-6x+3y=-,然后代入计算即可.
【详解】
∵2x-y=,
∴-6x+3y=-.
∴原式=--1=-.
故答案为-.
【点睛】
本题主要考查的是求代数式的值,利用等式的性质求得-6x+3y=-是解题的关键.
12、15cm、17cm、19cm.
【解析】
试题解析:设三角形的第三边长为xcm,由题意得:
7-3<x<7+3,
即4<x<10,
则x=5,7,9,
三角形的周长:3+7+5=15(cm),
3+7+7=17(cm),
3+7+9=19(cm).
考点:三角形三边关系.
13、①②③④
【解析】
①如图1,作AU⊥NQ于U,交BD于H,连接AN,AC,
∵∠AMN=∠ABC=90°,
∴A,B,N,M四点共圆,
∴∠NAM=∠DBC=45°,∠ANM=∠ABD=45°,
∴∠ANM=∠NAM=45°,
∴AM=MN;
②由同角的余角相等知,∠HAM=∠PMN,
∴Rt△AHM≌Rt△MPN,
∴MP=AH=AC=BD;
③∵∠BAN+∠QAD=∠NAQ=45°,
∴在∠NAM作AU=AB=AD,且使∠BAN=∠NAU,∠DAQ=∠QAU,
∴△ABN≌△UAN,△DAQ≌△UAQ,有∠UAN=∠UAQ,BN=NU,DQ=UQ,
∴点U在NQ上,有BN+DQ=QU+UN=NQ;
④如图2,作MS⊥AB,垂足为S,作MW⊥BC,垂足为W,点M是对角线BD上的点,
∴四边形SMWB是正方形,有MS=MW=BS=BW,
∴△AMS≌△NMW
∴AS=NW,
∴AB+BN=SB+BW=2BW,
∵BW:BM=1: ,
∴.
故答案为:①②③④
点睛:本题考查了正方形的性质,四点共圆的判定,圆周角定理,等腰直角三角形的性质,全等三角形的判定和性质;熟练掌握正方形的性质,正确作出辅助线并运用有关知识理清图形中西安段间的关系,证明三角形全等是解决问题的关键.
14、1.
【解析】
先设点D坐标为(a,b),得出点B的坐标为(2a,2b),A的坐标为(4a,b),再根据△AOD的面积为3,列出关系式求得k的值.
解:设点D坐标为(a,b),
∵点D为OB的中点,
∴点B的坐标为(2a,2b),
∴k=4ab,
又∵AC⊥y轴,A在反比例函数图象上,
∴A的坐标为(4a,b),
∴AD=4a﹣a=3a,
∵△AOD的面积为3,
∴×3a×b=3,
∴ab=2,
∴k=4ab=4×2=1.
故答案为1
“点睛”本题主要考查了反比例函数系数k的几何意义,以及运用待定系数法求反比例函数解析式,根据△AOD的面积为1列出关系式是解题的关键.
15、2.
【解析】
试题分析:五次射击的平均成绩为=(5+7+8+6+1)=7,
方差S2=[(5﹣7)2+(8﹣7)2+(7﹣7)2+(6﹣7)2+(1﹣7)2]=2.
考点:方差.
16、2, 0≤x≤2或≤x≤2.
【解析】
(2)由图象直接可得答案;
(2)根据图象求出甲乙的函数解析式,再求出方程组的解集即可解答
【详解】
(2)由 函数图象可知,乙比甲晚出发2小时.
故答案为2.
(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,有两种情况:
一是甲出发,乙还未出发时:此时0≤x≤2;
二是乙追上甲后,直至乙到达终点时:
设甲的函数解析式为:y=kx,由图象可知,(4,20)在函数图象上,代入得:20=4k,
∴k=5,
∴甲的函数解析式为:y=5x①
设乙的函数解析式为:y=k′x+b,将坐标(2,0),(2,20)代入得: ,
解得 ,
∴乙的函数解析式为:y=20x﹣20 ②
由①②得 ,
∴ ,
故 ≤x≤2符合题意.
故答案为0≤x≤2或≤x≤2.
【点睛】
此题考查函数的图象和二元一次方程组的解,解题关键在于看懂图中数据
17、3
【解析】
把x与y的值代入方程组求出m与n的值,即可确定出所求.
【详解】
解:把代入方程组得:
相加得:m+3n=27,
则27的立方根为3,
故答案为3
【点睛】
此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程左右两边相等的未知数的值.
三、解答题(共7小题,满分69分)
18、(1);(2);(3)P1(3,-3),P2(,3),P3(,3).
【解析】
(1)将的坐标代入抛物线中,求出待定系数的值,即可得出抛物线的解析式;
(2)根据的坐标,易求得直线的解析式.由于都是定值,则 的面积不变,若四边形面积最大,则的面积最大;过点作轴交于,则 可得到当面积有最大值时,四边形的面积最大值;
(3)本题应分情况讨论:①过作轴的平行线,与抛物线的交点符合点的要求,此时的纵坐标相同,代入抛物线的解析式中即可求出点坐标;②将平移,令点落在轴(即点)、点落在抛物线(即点)上;可根据平行四边形的性质,得出点纵坐标(纵坐标的绝对值相等),代入抛物线的解析式中即可求得点坐标.
【详解】
解:(1)把代入,
可以求得
∴
(2)过点作轴分别交线段和轴于点,
在中,令,得
设直线的解析式为
可求得直线的解析式为:
∵S四边形ABCD
设
当时,有最大值
此时四边形ABCD面积有最大值
(3)如图所示,
如图:①过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥BC交x轴于点E1,此时四边形BP1CE1为平行四边形,
∵C(0,-3)
∴设P1(x,-3)
∴x2-x-3=-3,解得x1=0,x2=3,
∴P1(3,-3);
②平移直线BC交x轴于点E,交x轴上方的抛物线于点P,当BC=PE时,四边形BCEP为平行四边形,
∵C(0,-3)
∴设P(x,3),
∴x2-x-3=3,
x2-3x-8=0
解得x=或x=,
此时存在点P2(,3)和P3(,3),
综上所述存在3个点符合题意,坐标分别是P1(3,-3),P2(,3),P3(,3).
【点睛】
此题考查了二次函数解析式的确定、图形面积的求法、平行四边形的判定和性质、二次函数的应用等知识,综合性强,难度较大.
19、(1);(2);(3)或.
【解析】
(1)根据图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),可利用待定系数法求出二次函数解析式;
(2)根据直线AB与抛物线的对称轴和x轴围成的三角形面积为6,得出AC,BC的长,得出B点的坐标,即可利用待定系数法求出一次函数解析式;
(3)利用三角形相似求出△ABC∽△PBF,即可求出圆的半径,即可得出P点的坐标.
【详解】
(1)抛物线的图象经过,,,
把,,代入得:
解得:,
抛物线解析式为;
(2)抛物线改写成顶点式为,
抛物线对称轴为直线,
∴对称轴与轴的交点C的坐标为
,
,
设点B的坐标为,,
则,
,
∴
∴点B的坐标为,
设直线解析式为:,
把,代入得:,
解得:,
直线解析式为:.
(3)①∵当点P在抛物线的对称轴上,⊙P与直线AB和x轴都相切,
设⊙P与AB相切于点F,与x轴相切于点C,如图1;
∴PF⊥AB,AF=AC,PF=PC,
∵AC=1+2=3,BC=4,
∴AB==5,AF=3,
∴BF=2,
∵∠FBP=∠CBA,
∠BFP=∠BCA=90,
∴△ABC∽△PBF,
∴,
∴,
解得:,
∴点P的坐标为(2,);
②设⊙P与AB相切于点F,与轴相切于点C,如图2:
∴PF⊥AB,PF=PC,
∵AC=3,BC=4, AB=5,
∵∠FBP=∠CBA,
∠BFP=∠BCA=90,
∴△ABC∽△PBF,
∴,
∴,
解得:,
∴点P的坐标为(2,-6),
综上所述,与直线和都相切时,
或.
【点睛】
本题考查了二次函数综合题,涉及到用待定系数法求一函数的解析式、二次函数的解析式及相似三角形的判定和性质、切线的判定和性质,根据题意画出图形,利用数形结合求解是解答此题的关键.
20、
【解析】
过A作一条水平线,分别过B,C两点作这条水平线的垂线,垂足分别为D,E,由后坡度AB与前坡度AC相等知∠BAD=∠CAE=30°,从而得出BD=2、CE=3,据此可得.
【详解】
解:过A作一条水平线,分别过B,C两点作这条水平线的垂线,垂足分别为D,E,
∵房子后坡度AB与前坡度AC相等,
∴∠BAD=∠CAE,
∵∠BAC=120°,
∴∠BAD=∠CAE=30°,
在直角△ABD中,AB=4米,
∴BD=2米,
在直角△ACE中,AC=6米,
∴CE=3米,
∴a-b=1米.
【点睛】
本题考查了解直角三角形的应用-坡度坡角问题,解题的关键是根据题意构建直角三角形,并熟练掌握坡度坡角的概念.
21、-1
【解析】
分析:根据零次幂、绝对值以及负指数次幂的计算法则求出各式的值,然后进行求和得出答案.
详解:解:(﹣)0﹣|﹣3|+(﹣1)2015+()﹣1=1﹣3+(﹣1)+2=﹣1.
点睛:本题主要考查的是实数的计算法则,属于基础题型.理解各种计算法则是解决这个问题的关键.
22、(1)见解析;(2)与相切,理由见解析.
【解析】
(1)作出AD的垂直平分线,交AB于点O,进而利用AO为半径求出即可;
(2)利用半径相等结合角平分线的性质得出OD∥AC,进而求出OD⊥BC,进而得出答案.
【详解】
(1)①分别以为圆心,大于的长为半径作弧,两弧相交于点和,
②作直线,与相交于点,
③以为圆心,为半径作圆,如图即为所作;
(2)与相切,理由如下:
连接OD,
为半径,
,
是等腰三角形,
,
平分,
,
,
,
,
,
,
为半径,
与相切.
【点睛】
本题主要考查了切线的判定以及线段垂直平分线的作法与性质等知识,掌握切线的判定方法是解题关键.
23、略;m=40, 1.4°;870人.
【解析】
试题分析:根据A组的人数和比例得出总人数,然后得出D组的人数,补全条形统计图;根据C组的人数和总人数得出m的值,根据E组的人数求出E的百分比,然后计算圆心角的度数;根据D组合E组的百分数总和,估算出该校的每周的课外阅读时间不小于6小时的人数.
试题解析:(1)补全频数分布直方图,如图所示.
(2)∵10÷10%=100 ∴40÷100=40% ∴m=40
∵4÷100=4% ∴“E”组对应的圆心角度数=4%×360°=1.4°
(3)3000×(25%+4%)=870(人).
答:估计该校学生中每周的课外阅读时间不小于6小时的人数是870人.
考点:统计图.
24、(1)S=﹣3x1+14x,≤x< 8;(1) 5m;(3)46.67m1
【解析】
(1)设花圃宽AB为xm,则长为(14-3x),利用长方形的面积公式,可求出S与x关系式,根据墙的最大长度求出x的取值范围;
(1)根据(1)所求的关系式把S=2代入即可求出x,即AB;
(3)根据二次函数的性质及x的取值范围求出即可.
【详解】
解:(1)根据题意,得S=x(14﹣3x),
即所求的函数解析式为:S=﹣3x1+14x,
又∵0<14﹣3x≤10,
∴;
(1)根据题意,设花圃宽AB为xm,则长为(14-3x),
∴﹣3x1+14x=2.
整理,得x1﹣8x+15=0,
解得x=3或5,
当x=3时,长=14﹣9=15>10不成立,
当x=5时,长=14﹣15=9<10成立,
∴AB长为5m;
(3)S=14x﹣3x1=﹣3(x﹣4)1+48
∵墙的最大可用长度为10m,0≤14﹣3x≤10,
∴,
∵对称轴x=4,开口向下,
∴当x=m,有最大面积的花圃.
【点睛】
二次函数在实际生活中的应用是本题的考点,根据题目给出的条件,找出合适的等量关系,列出方程是解题的关键.
2023年广东省惠州市综合高级中学中考三模数学试题(含解析): 这是一份2023年广东省惠州市综合高级中学中考三模数学试题(含解析),共25页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2023年广东省惠州市中考数学一模试卷(含解析): 这是一份2023年广东省惠州市中考数学一模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年广东省惠州市综合高级中学中考数学一模试卷(含解析): 这是一份2023年广东省惠州市综合高级中学中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。