|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届广东省深圳市翠园初级中学中考冲刺卷数学试题含解析
    立即下载
    加入资料篮
    2022届广东省深圳市翠园初级中学中考冲刺卷数学试题含解析01
    2022届广东省深圳市翠园初级中学中考冲刺卷数学试题含解析02
    2022届广东省深圳市翠园初级中学中考冲刺卷数学试题含解析03
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届广东省深圳市翠园初级中学中考冲刺卷数学试题含解析

    展开
    这是一份2022届广东省深圳市翠园初级中学中考冲刺卷数学试题含解析,共17页。试卷主要包含了已知,下列命题是假命题的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.一个多边形的每个内角均为120°,则这个多边形是( )
    A.四边形 B.五边形 C.六边形 D.七边形
    2.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为( )
    A. B. C. D.
    3.下列4个点,不在反比例函数图象上的是( )
    A.( 2,-3) B.(-3,2) C.(3,-2) D.( 3,2)
    4.在平面直角坐标系中,点是线段上一点,以原点为位似中心把放大到原来的两倍,则点的对应点的坐标为( )
    A. B.或
    C. D.或
    5.在0,-2,5,,-0.3中,负数的个数是( ).
    A.1 B.2 C.3 D.4
    6.已知:如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为(  )

    A.3:2 B.9:4 C.2:3 D.4:9
    7.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为(  )
    A. B.
    C. D.
    8.下列命题是假命题的是(  )
    A.有一个外角是120°的等腰三角形是等边三角形
    B.等边三角形有3条对称轴
    C.有两边和一角对应相等的两个三角形全等
    D.有一边对应相等的两个等边三角形全等
    9.吉林市面积约为27100平方公里,将27100这个数用科学记数法表示为(  )
    A.27.1×102 B.2.71×103 C.2.71×104 D.0.271×105
    10.下列汽车标志中,不是轴对称图形的是( )
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.若不等式组有解,则m的取值范围是______.
    12.一组数据4,3,5,x,4,5的众数和中位数都是4,则x=_____.
    13.在实数﹣2、0、﹣1、2、中,最小的是_______.
    14.如图,某数学兴趣小组为了测量河对岸l1的两棵古树A、B之间的距离,他们在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则古树A、B之间的距离为_____m.

    15.满足的整数x的值是_____.
    16.如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是______.

    三、解答题(共8题,共72分)
    17.(8分)某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整.

    (1)按如下分数段整理、描述这两组数据:
    成绩x
    学生
    70≤x≤74
    75≤x≤79
    80≤x≤84
    85≤x≤89
    90≤x≤94
    95≤x≤100

    ______
    ______
    ______
    ______
    ______
    ______

    1
    1
    4
    2
    1
    1
    (2)两组数据的极差、平均数、中位数、众数、方差如下表所示:
    学生
    极差
    平均数
    中位数
    众数
    方差

    ______
    83.7
    ______
    86
    13.21

    24
    83.7
    82
    ______
    46.21
    (3)若从甲、乙两人中选择一人参加知识竞赛,你会选______(填“甲”或“乙),理由为______.
    18.(8分)(感知)如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.
    (拓展)如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.
    (应用)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,菱形CEFG的面积是_______.(只填结果)

    19.(8分)某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率.
    20.(8分) “机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A.非常了解,B.比较了解,C.基本了解,D.不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.

    请结合图中所给信息解答下列问题:
    (1)本次共调查  名学生;扇形统计图中C所对应扇形的圆心角度数是  ;
    (2)补全条形统计图;
    (3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?
    (4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率.
    21.(8分)计算:(π﹣1)0+|﹣1|﹣÷+(﹣1)﹣1.
    22.(10分)如图1在正方形ABCD的外侧作两个等边三角形ADE和DCF,连接AF,BE.
    请判断:AF与BE的数量关系是 ,位置关系 ;如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明;若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.
    23.(12分)解方程组:
    24.某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.

    请结合以上信息解答下列问题:m=   ;请补全上面的条形统计图;在图2中,“乒乓球”所对应扇形的圆心角的度数为   ;已知该校共有1200名学生,请你估计该校约有   名学生最喜爱足球活动.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    由题意得,180°(n-2)=120°,
    解得n=6.故选C.
    2、D
    【解析】
    先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.
    【详解】
    随机掷一枚均匀的硬币两次,落地后情况如下:

    至少有一次正面朝上的概率是,
    故选:D.
    【点睛】
    本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
    3、D
    【解析】
    分析:根据得k=xy=-6,所以只要点的横坐标与纵坐标的积等于-6,就在函数图象上.
    解答:解:原式可化为:xy=-6,
    A、2×(-3)=-6,符合条件;
    B、(-3)×2=-6,符合条件;
    C、3×(-2)=-6,符合条件;
    D、3×2=6,不符合条件.
    故选D.
    4、B
    【解析】
    分析:根据位似变换的性质计算即可.
    详解:点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,
    则点P的对应点的坐标为(m×2,n×2)或(m×(-2),n×(-2)),即(2m,2n)或(-2m,-2n),
    故选B.
    点睛:本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.
    5、B
    【解析】
    根据负数的定义判断即可
    【详解】
    解:根据负数的定义可知,这一组数中,负数有两个,即-2和-0.1.
    故选B.
    6、A
    【解析】
    试题解析:过点D作DE⊥AB于E,DF⊥AC于F.

    ∵AD为∠BAC的平分线,
    ∴DE=DF,又AB:AC=3:2,

    故选A.
    点睛:角平分线上的点到角两边的距离相等.
    7、C
    【解析】
    根据2013年我省财政收入和2014年我省财政收入比2013年增长8.9%,求出2014年我省财政收入,再根据出2015年比2014年增长9.5%,2015年我省财政收为b亿元,
    即可得出a、b之间的关系式.
    【详解】
    ∵2013年我省财政收入为a亿元,2014年我省财政收入比2013年增长8.9%,
    ∴2014年我省财政收入为a(1+8.9%)亿元,
    ∵2015年比2014年增长9.5%,2015年我省财政收为b亿元,
    ∴2015年我省财政收为b=a(1+8.9%)(1+9.5%);
    故选C.
    【点睛】
    此题考查了列代数式,关键是根据题意求出2014年我省财政的收入,是一道基础题.
    8、C
    【解析】
    解:A. 外角为120°,则相邻的内角为60°,根据有一个角为60°的等腰三角形是等边三角形可以判断,故A选项正确;
    B. 等边三角形有3条对称轴,故B选项正确;
    C.当两个三角形中两边及一角对应相等时,其中如果角是这两边的夹角时,可用SAS来判定两个三角形全等,如果角是其中一边的对角时,则可不能判定这两个三角形全等,故此选项错误;
    D.利用SSS.可以判定三角形全等.故D选项正确;
    故选C.
    9、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    将27100用科学记数法表示为:. 2.71×104.
    故选:C.
    【点睛】
    本题考查科学记数法—表示较大的数。
    10、C
    【解析】
    根据轴对称图形的概念求解.
    【详解】
    A、是轴对称图形,故错误;
    B、是轴对称图形,故错误;
    C、不是轴对称图形,故正确;
    D、是轴对称图形,故错误.
    故选C.
    【点睛】
    本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    分析:解出不等式组的解集,然后根据解集的取值范围来确定m的取值范围.
    解答:解:由1-x≤2得x≥-1又∵x>m
    根据同大取大的原则可知:
    若不等式组的解集为x≥-1时,则m≤-1
    若不等式组的解集为x≥m时,则m≥-1.
    故填m≤-1或m≥-1.
    点评:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集再利用不等式组的解集的确定原则来确定未知数的取值范围.
    12、1
    【解析】
    一组数据中出现次数最多的数据叫做众数,由此可得出答案.
    【详解】
    ∵一组数据1,3,5,x,1,5的众数和中位数都是1,
    ∴x=1,
    故答案为1.
    【点睛】
    本题考查了众数的知识,解答本题的关键是掌握众数的定义.
    13、﹣1.
    【解析】
    解:在实数﹣1、0、﹣1、1、中,最小的是﹣1,
    故答案为﹣1.
    【点睛】
    本题考查实数大小比较.
    14、(50﹣).
    【解析】
    过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AM=BN.通过解直角△ACM和△BCN分别求得CM、CN的长度,则易得MN=AB.
    【详解】
    解:如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N,

    则AB=MN,AM=BN.
    在直角△ACM,∵∠ACM=45°,AM=50m,
    ∴CM=AM=50m.
    ∵在直角△BCN中,∠BCN=∠ACB+∠ACD=60°,BN=50m,
    ∴CN===(m),
    ∴MN=CM−CN=50−(m).
    则AB=MN=(50−)m.
    故答案是:(50−).
    【点睛】
    本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.
    15、3,1
    【解析】
    直接得出2<<3,1<<5,进而得出答案.
    【详解】
    解:∵2<<3,1<<5,
    ∴的整数x的值是:3,1.
    故答案为:3,1.
    【点睛】
    此题主要考查了估算无理数的大小,正确得出接近的有理数是解题关键.
    16、
    【解析】
    求出黑色区域面积与正方形总面积之比即可得答案.
    【详解】
    图中有9个小正方形,其中黑色区域一共有3个小正方形,
    所以随意投掷一个飞镖,击中黑色区域的概率是,
    故答案为.
    【点睛】
    本题考查了几何概率,熟练掌握概率的计算公式是解题的关键.注意面积之比几何概率.

    三、解答题(共8题,共72分)
    17、(1)0,1,4,5,0,0;(2)14,84.5,1;(3)甲,理由见解析
    【解析】
    (1)根据折线统计图数字进行填表即可;
    (2)根据稽查,中位数,众数的计算方法,求得甲成绩的极差,中位数,乙成绩的极差,众数即可;
    (3)可分别从平均数、方差、极差三方面进行比较.
    【详解】
    (1)由图可知:甲的成绩为:75,84,89,82,86,1,86,83,85,86,
    ∴70⩽x⩽74无,共0个;
    75⩽x⩽79之间有75,共1个;
    80⩽x⩽84之间有84,82,1,83,共4个;
    85⩽x⩽89之间有89,86,86,85,86,共5个;
    90⩽x⩽94之间和95⩽x⩽100无,共0个.
    故答案为0;1;4;5;0;0;
    (2)由图可知:甲的最高分为89分,最低分为75分,极差为89−75=14分;
    ∵甲的成绩为从低到高排列为:75,1,82,83,84,85,86,86,86,89,
    ∴中位数为(84+85)=84.5;
    ∵乙的成绩为从低到高排列为:72,76,1,1,1,83,87,89,91,96,
    1出现3次,乙成绩的众数为1.
    故答案为14;84.5;1;
    (3)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小.
    或:乙,理由:在90≤x≤100的分数段中,乙的次数大于甲.(答案不唯一,理由须支撑推断结论)
    故答案为:甲,两人的平均数相同且甲的方差小于乙,说明甲成绩稳定.
    【点睛】
    此题考查折线统计图,统计表,平均数,中位数,众数,方差,极差,解题关键在于掌握运算法则以及会用这些知识来评价这组数据.
    18、见解析
    【解析】
    试题分析:探究:由四边形ABCD、四边形CEFG均为菱形,利用SAS易证得△BCE≌△DCG,则可得BE=DG;
    应用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面积,继而求得答案.
    试题解析:
    探究:∵四边形ABCD、四边形CEFG均为菱形,
    ∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.
    ∵∠A=∠F,
    ∴∠BCD=∠ECG.
    ∴∠BCD-∠ECD=∠ECG-∠ECD,
    即∠BCE=∠DCG.
    在△BCE和△DCG中,

    ∴△BCE≌△DCG(SAS),
    ∴BE=DG.
    应用:∵四边形ABCD为菱形,
    ∴AD∥BC,
    ∵BE=DG,
    ∴S△ABE+S△CDE=S△BEC=S△CDG=8,
    ∵AE=3ED,
    ∴S△CDE= ,
    ∴S△ECG=S△CDE+S△CDG=10
    ∴S菱形CEFG=2S△ECG=20.
    19、25%
    【解析】
    首先设这两年中获奖人次的平均年增长率为x,则可得八年级的获奖人数为48(1+x),九年级的获奖人数为48(1+x)2;故根据题意可得48(1+x)2=183,即可求得x的值,即可求解本题.
    【详解】
    设这两年中获奖人次的平均年增长率为x,
    根据题意得:48+48(1+x)+48(1+x)2=183,
    解得:x1==25%,x2=﹣(不符合题意,舍去).
    答:这两年中获奖人次的年平均年增长率为25%
    20、(1)60、90°;(2)补全条形图见解析;(3)估计全校学生中对这些交通法规“非常了解”的有320名;(4)甲和乙两名学生同时被选中的概率为.
    【解析】
    【分析】(1)用A的人数以及所占的百分比就可以求出调查的总人数,用C的人数除以调查的总人数后再乘以360度即可得;
    (2)根据D的百分比求出D的人数,继而求出B的人数,即可补全条形统计图;
    (3)用“非常了解”所占的比例乘以800即可求得;
    (4)画树状图得到所有可能的情况,然后找出符合条件的情况用,利用概率公式进行求解即可得.
    【详解】(1)本次调查的学生总人数为24÷40%=60人,
    扇形统计图中C所对应扇形的圆心角度数是360°×=90°,
    故答案为60、90°;
    (2)D类型人数为60×5%=3,则B类型人数为60﹣(24+15+3)=18,
    补全条形图如下:

    (3)估计全校学生中对这些交通法规“非常了解”的有800×40%=320名;
    (4)画树状图为:

    共有12种等可能的结果数,其中甲和乙两名学生同时被选中的结果数为2,所以甲和乙两名学生同时被选中的概率为.
    【点睛】本题考查了条形统计图、扇形统计图、列表法或树状图法求概率、用样本估计总体等,读懂统计图,从不同的统计图中找到必要的有关联的信息进行解题是关键.
    21、2
    【解析】
    先根据0次幂的意义、绝对值的意义、二次根式的除法、负整数指数幂的意义化简,然后进一步计算即可.
    【详解】
    解:原式=2+2﹣+2
    =2﹣2+2
    =2.
    【点睛】
    本题考查了0次幂的意义、绝对值的意义、二次根式的除法、负整数指数幂的意义,熟练掌握各知识点是解答本题的关键.
    22、(1)AF=BE,AF⊥BE;(2)证明见解析;(3)结论仍然成立
    【解析】
    试题分析:(1)根据正方形和等边三角形可证明△ABE≌△DAF,然后可得BE=AF,∠ABE=∠DAF,进而通过直角可证得BE⊥AF;
    (2)类似(1)的证法,证明△ABE≌△DAF,然后可得AF=BE,AF⊥BE,因此结论还成立;
    (3)类似(1)(2)证法,先证△AED≌△DFC,然后再证△ABE≌△DAF,因此可得证结论.
    试题解析:解:(1)AF=BE,AF⊥BE.
    (2)结论成立.

    证明:∵四边形ABCD是正方形,
    ∴BA="AD" =DC,∠BAD =∠ADC = 90°.
    在△EAD和△FDC中,

    ∴△EAD≌△FDC.
    ∴∠EAD=∠FDC.
    ∴∠EAD+∠DAB=∠FDC+∠CDA,
    即∠BAE=∠ADF.
    在△BAE和△ADF中,

    ∴△BAE≌△ADF.
    ∴BE = AF,∠ABE=∠DAF.
    ∵∠DAF +∠BAF=90°,
    ∴∠ABE +∠BAF=90°,
    ∴AF⊥BE.
    (3)结论都能成立.
    考点:正方形,等边三角形,三角形全等
    23、
    【解析】
    设=a, =b,则原方程组化为,求出方程组的解,再求出原方程组的解即可.
    【详解】
    设=a, =b,
    则原方程组化为:,
    ①+②得:4a=4,
    解得:a=1,
    把a=1代入①得:1+b=3,
    解得:b=2,
    即,
    解得:,
    经检验是原方程组的解,
    所以原方程组的解是.
    【点睛】
    此题考查利用换元法解方程组,注意要根据方程组的特点灵活选用合适的方法. 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.
    24、(1)150,(2)36°,(3)1.
    【解析】
    (1)根据图中信息列式计算即可;
    (2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;
    (3)360°×乒乓球”所占的百分比即可得到结论;
    (4)根据题意计算即可.
    【详解】
    (1)m=21÷14%=150,
    (2)“足球“的人数=150×20%=30人,
    补全上面的条形统计图如图所示;
    (3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;
    (4)1200×20%=1人,
    答:估计该校约有1名学生最喜爱足球活动.
    故答案为150,36°,1.

    【点睛】
    本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.

    相关试卷

    2024年广东省深圳市罗湖区翠园东晓中学中考数学模拟试卷(含解析): 这是一份2024年广东省深圳市罗湖区翠园东晓中学中考数学模拟试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年广东省深圳市罗湖区翠园中学中考模拟数学试题(原卷版+解析版): 这是一份2024年广东省深圳市罗湖区翠园中学中考模拟数学试题(原卷版+解析版),文件包含2024年广东省深圳市罗湖区翠园中学中考模拟数学试题原卷版docx、2024年广东省深圳市罗湖区翠园中学中考模拟数学试题解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。

    2023年广东省深圳市罗湖区翠园文锦中学中考数学预测试卷(含解析): 这是一份2023年广东省深圳市罗湖区翠园文锦中学中考数学预测试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map