


2022届广东省深圳市龙岗区新梓校中考一模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列计算正确的是( )
A.()2=±8 B.+=6 C.(﹣)0=0 D.(x﹣2y)﹣3=
2.分式的值为0,则x的取值为( )
A.x=-3 B.x=3 C.x=-3或x=1 D.x=3或x=-1
3.如图,A、B、C、D是⊙O上的四点,BD为⊙O的直径,若四边形ABCO是平行四边形,则∠ADB的大小为( )
A.30° B.45° C.60° D.75°
4.中华人民共和国国家统计局网站公布,2016年国内生产总值约为74300亿元,将74300亿用科学计数法可以表示为( )
A. B. C. D.
5.如图,取一张长为、宽为的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边应满足的条件是( )
A. B. C. D.
6.国家主席习近平在2018年新年贺词中说道:“安得广厦千万间,大庇天下寒士俱欢颜!2017年我国3400000贫困人口实现易地扶贫搬迁、有了温暖的新家.”其中3400000用科学记数法表示为( )
A.0.34×107 B.3.4×106 C.3.4×105 D.34×105
7.已知一元二次方程1–(x–3)(x+2)=0,有两个实数根x1和x2(x1
如图,△ABC中,AB=4,AC=3,BC=2,将△ABC绕点A顺时针旋转60°得到△AED,则BE的长为( )
A.5 B.4 C.3 D.2
9.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为( )
A.1.05×105 B.0.105×10﹣4 C.1.05×10﹣5 D.105×10﹣7
10.等腰三角形三边长分别为,且是关于的一元二次方程的两根,则的值为( )
A.9 B.10 C.9或10 D.8或10
11.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为( ).
A.60 ° B.75° C.85° D.90°
12.若x是2的相反数,|y|=3,则的值是( )
A.﹣2 B.4 C.2或﹣4 D.﹣2或4
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在边长为6的菱形ABCD中,分别以各顶点为圆心,以边长的一半为半径,在菱形内作四条圆弧,则图中阴影部分的周长是___结果保留
14.已知实数m,n满足,,且,则= .
15.如图,长方形内有两个相邻的正方形,面积分别为3和9,那么阴影部分的面积为_____.
16.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2016的值为_____.
17.某花店有单位为10元、18元、25元三种价格的花卉,如图是该花店某月三种花卉销售量情况的扇形统计图,根据该统计图可算得该花店销售花卉的平均单价为_____元.
18.让我们轻松一下,做一个数字游戏:
第一步:取一个自然数,计算得;
第二步:算出的各位数字之和得,计算得;
第三步:算出的各位数字之和得,再计算得;
依此类推,则____________
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)观察下列各式:
①
②
③
由此归纳出一般规律__________.
20.(6分)某校团委为研究该校学生的课余活动情况,采取抽样调查的方法,从阅读、运动、娱乐、其他等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图,请你根据图中提供的信息解答下列各题:
(1)在这次研究中,一共调查了多少名学生?
(2)“其他”在扇形统计图中所占的圆心角是多少度?
(3)补全频数分布直方图;
(4)该校共有3200名学生,请你估计一下全校大约有多少学生课余爱好是阅读.
21.(6分) “大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:
请根据图中提供的信息,解答下列问题:
(1)求被调查的学生总人数;
(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.
22.(8分)如图,在矩形ABCD中,对角线AC,BD相交于点O.画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.
23.(8分)为响应国家“厉行节约,反对浪费”的号召,某班一课外活动小组成员在全校范围内随机抽取了若干名学生,针对“你每天是否会节约粮食”这个问题进行了调查,并将调查结果分成三组(A.会;B.不会;C.有时会),绘制了两幅不完整的统计图(如图)
(1)这次被抽查的学生共有______人,扇形统计图中,“A组”所对应的圆心度数为______;
(2)补全两个统计图;
(3)如果该校学生共有2000人,请估计“每天都会节约粮食”的学生人数;
(4)若不节约零食造成的浪费,按平均每人每天浪费5角钱计算,小江认为,该校学生一年(365天)共将浪费:2000×20%×0.5×365=73000(元),你认为这种说法正确吗?并说明理由.
24.(10分)关于x的一元二次方程有两个实数根,则m的取值范围是( )
A.m≤1 B.m<1 C.﹣3≤m≤1 D.﹣3<m<1
25.(10分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求AC和AB的长(结果保留小数点后一位)(参考数据:sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)
26.(12分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3,4,5,x,甲,乙两人每次同时从袋中各随机取出1个小球,并计算2个小球上的数字之和.记录后将小球放回袋中搅匀,进行重复试验,试验数据如下表:
摸球总
次数
10
20
30
60
90
120
180
240
330
450
“和为8”出
现的频数
2
10
13
24
30
37
58
82
110
150
“和为8”出
现的频率
0.20
0.50
0.43
0.40
0.33
0.31
0.32
0.34
0.33
0.33
解答下列问题:如果试验继续进行下去,根据上表提供的数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是________;如果摸出的2个小球上数字之和为9的概率是,那么x的值可以为7吗?为什么?
27.(12分)关于x的一元二次方程x2+(m-1)x-(2m+3)=1.
(1)求证:方程总有两个不相等的实数根;
(2)写出一个m的值,并求出此时方程的根.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
各项中每项计算得到结果,即可作出判断.
【详解】
解:A.原式=8,错误;
B.原式=2+4,错误;
C.原式=1,错误;
D.原式=x6y﹣3= ,正确.
故选D.
【点睛】
此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
2、A
【解析】
分式的值为2的条件是:(2)分子等于2;(2)分母不为2.两个条件需同时具备,缺一不可.据此可以解答本题.
【详解】
∵原式的值为2,
∴,
∴(x-2)(x+3)=2,即x=2或x=-3;
又∵|x|-2≠2,即x≠±2.
∴x=-3.
故选:A.
【点睛】
此题考查的是对分式的值为2的条件的理解,该类型的题易忽略分母不为2这个条件.
3、A
【解析】
解:∵四边形ABCO是平行四边形,且OA=OC,
∴四边形ABCO是菱形,
∴AB=OA=OB,
∴△OAB是等边三角形,
∴∠AOB=60°,
∵BD是⊙O的直径,
∴点B、D、O在同一直线上,
∴∠ADB=∠AOB=30°
故选A.
4、D
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:74300亿=7.43×1012,
故选:D.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
5、B
【解析】
由题图可知:得对折两次后得到的小长方形纸片的长为,宽为,然后根据相似多边形的定义,列出比例式即可求出结论.
【详解】
解:由题图可知:得对折两次后得到的小长方形纸片的长为,宽为,
∵小长方形与原长方形相似,
故选B.
【点睛】
此题考查的是相似三角形的性质,根据相似三角形的定义列比例式是解决此题的关键.
6、B
【解析】
解:3400000=.
故选B.
7、B
【解析】
设y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)根据二次函数的图像性质可知y1=1﹣(x﹣3)(x+2)的图像可看做y=-(x﹣3)(x+2)的图像向上平移1个单位长度,根据图像的开口方向即可得出答案.
【详解】
设y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)
∵y=0时,x=-2或x=3,
∴y=-(x﹣3)(x+2)的图像与x轴的交点为(-2,0)(3,0),
∵1﹣(x﹣3)(x+2)=0,
∴y1=1﹣(x﹣3)(x+2)的图像可看做y=-(x﹣3)(x+2)的图像向上平移1,与x轴的交点的横坐标为x1、x2,
∵-1<0,
∴两个抛物线的开口向下,
∴x1<﹣2<3<x2,
故选B.
【点睛】
本题考查二次函数图像性质及平移的特点,根据开口方向确定函数的增减性是解题关键.
8、B
【解析】
根据旋转的性质可得AB=AE,∠BAE=60°,然后判断出△AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB.
【详解】
解:∵△ABC绕点A顺时针旋转 60°得到△AED,
∴AB=AE,∠BAE=60°,
∴△AEB是等边三角形,
∴BE=AB,
∵AB=1,
∴BE=1.
故选B.
【点睛】
本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义.
9、C
【解析】
试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以0.0000105=1.05×10﹣5,故选C.
考点:科学记数法.
10、B
【解析】
由题意可知,等腰三角形有两种情况:当a,b为腰时,a=b,由一元二次方程根与系数的关系可得a+b=6,所以a=b=3,ab=9=n-1,解得n=1;当2为腰时,a=2(或b=2),此时2+b=6(或a+2=6),解得b=4(a=4),这时三边为2,2,4,不符合三角形三边关系:两边之和大于第三边,两边之差小于第三边,故不合题意.所以n只能为1.
故选B
11、C
【解析】
试题分析:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.
如图,设AD⊥BC于点F.则∠AFB=90°,
∴在Rt△ABF中,∠B=90°-∠BAD=25°,
∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,
即∠BAC的度数为85°.故选C.
考点: 旋转的性质.
12、D
【解析】
直接利用相反数以及绝对值的定义得出x,y的值,进而得出答案.
【详解】
解:∵x是1的相反数,|y|=3,
∴x=-1,y=±3,
∴y-x=4或-1.
故选D.
【点睛】
此题主要考查了有理数的混合运算,正确得出x,y的值是解题关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
直接利用已知得出所有的弧的半径为3,所有圆心角的和为:菱形的内角和,即可得出答案.
【详解】
由题意可得:所有的弧的半径为3,所有圆心角的和为:菱形的内角和,故图中阴影部分的周长是:6π.
故答案为6π.
【点睛】
本题考查了弧长的计算以及菱形的性质,正确得出圆心角是解题的关键.
14、.
【解析】
试题分析:由时,得到m,n是方程的两个不等的根,根据根与系数的关系进行求解.
试题解析:∵时,则m,n是方程3x2﹣6x﹣5=0的两个不相等的根,∴,.
∴原式===,故答案为.
考点:根与系数的关系.
15、1-1
【解析】
设两个正方形的边长是x、y(x<y),得出方程x2=1,y2=9,求出x=,y=1,代入阴影部分的面积是(y﹣x)x求出即可.
【详解】
设两个正方形的边长是x、y(x<y),则x2=1,y2=9,x,y=1,则阴影部分的面积是(y﹣x)x=(11.
故答案为11.
【点睛】
本题考查了二次根式的应用,主要考查学生的计算能力.
16、2.
【解析】
把x=m代入方程,求出2m2﹣3m=2,再变形后代入,即可求出答案.
【详解】
解:∵m是方程2x2﹣3x﹣2=0的一个根,
∴代入得:2m2﹣3m﹣2=0,
∴2m2﹣3m=2,
∴6m2﹣9m+2026=3(2m2﹣3m)+2026=3×2+2026=2,
故答案为:2.
【点睛】
本题考查了求代数式的值和一元二次方程的解,解此题的关键是能求出2m2﹣3m=2.
17、17
【解析】
根据饼状图求出25元所占比重为20%,再根据加权平均数求法即可解题.
【详解】
解:1-30%-50%=20%,
∴.
【点睛】
本题考查了加权平均数的计算方法,属于简单题,计算25元所占权比是解题关键.
18、1
【解析】
根据题意可以分别求得a1,a2,a3,a4,从而可以发现这组数据的特点,三个一循环,从而可以求得a2019的值.
【详解】
解:由题意可得,
a1=52+1=26,
a2=(2+6)2+1=65,
a3=(6+5)2+1=1,
a4=(1+2+2)2+1=26,
…
∴2019÷3=673,
∴a2019= a3=1,
故答案为:1.
【点睛】
本题考查数字变化类规律探索,解题的关键是明确题意,求出前几个数,观察数的变化特点,求出a2019的值.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、xn+1-1
【解析】
试题分析:观察其右边的结果:第一个是﹣1;第二个是﹣1;…依此类推,则第n个的结果即可求得.
试题解析:(x﹣1)(++…x+1)=.
故答案为.
考点:平方差公式.
20、(1)总调查人数是100人;(2)在扇形统计图中“其它”类的圆心角是36°;(3)补全频数分布直方图见解析;(4)估计一下全校课余爱好是阅读的学生约为960人.
【解析】
(1)利用参加运动的人数除以其所占的比例即可求得这次调查的总人数;(2)用360°乘以“其它”类的人数所占的百分比即可求解;(3)求得“其它”类的人数、“娱乐”类的人数,补全统计图即可;(4)用总人数乘以课余爱好是阅读的学生人数所占的百分比即可求解.
【详解】
(1)从条形统计图中得出参加运动的人数为20人,所占的比例为20%,
∴总调查人数=20÷20%=100人;
(2)参加娱乐的人数=100×40%=40人,
从条形统计图中得出参加阅读的人数为30人,
∴“其它”类的人数=100﹣40﹣30﹣20=10人,所占比例=10÷100=10%,
在扇形统计图中“其它”类的圆心角=360×10%=36°;
(3)如图
(4)估计一下全校课余爱好是阅读的学生约为3200×=960(人).
【点睛】
本题考查了条形统计图、扇形统计图的应用,从条形统计图、扇形统计图中获取必要的信息是解决问题的关键.
21、(1)40;(2)72;(3)1.
【解析】
(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;
(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
(3)用800乘以样本中最想去A景点的人数所占的百分比即可.
【详解】
(1)被调查的学生总人数为8÷20%=40(人);
(2)最想去D景点的人数为40﹣8﹣14﹣4﹣6=8(人),补全条形统计图为:
扇形统计图中表示“最想去景点D”的扇形圆心角的度数为×360°=72°;
(3)800×=1,所以估计“最想去景点B“的学生人数为1人.
22、(1)如图所示见解析;(2)四边形OCED是菱形.理由见解析.
【解析】
(1)根据图形平移的性质画出平移后的△DEC即可;
(2)根据图形平移的性质得出AC∥DE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论.
【详解】
(1)如图所示;
(2)四边形OCED是菱形.
理由:∵△DEC由△AOB平移而成,
∴AC∥DE,BD∥CE,OA=DE,OB=CE,
∴四边形OCED是平行四边形.
∵四边形ABCD是矩形,
∴OA=OB,
∴DE=CE,
∴四边形OCED是菱形.
【点睛】
本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.
23、(1)50 ,108°(2)见解析;(3)600人;(4)不正确,见解析.
【解析】
(1)由C组人数及其所占百分比可得总人数,用360°乘以A组人数所占比例可得;
(2)根据百分比之和为1求得A组百分比补全图1,总人数乘以B的百分比求得其人数即可补全图2;
(3)总人数乘以样本中A所占百分比可得;
(4)由样本中浪费粮食的人数所占比例不是20%即可作出判断.
【详解】
(1)这次被抽查的学生共有25÷50%=50人,
扇形统计图中,“A组”所对应的圆心度数为360°×=108°,
故答案为50、108°;
(2)图1中A对应的百分比为1-20%-50%=30%,图2中B类别人数为50×20%=5,
补全图形如下:
(3)估计“每天都会节约粮食”的学生人数为2000×30%=600人;
(4)不正确,
因为在样本中浪费粮食的人数所占比例不是20%,
所以这种说法不正确.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时本题还考查了通过样本来估计总体.
24、C
【解析】
利用二次根式有意义的条件和判别式的意义得到,然后解不等式组即可.
【详解】
根据题意得,
解得-3≤m≤1.
故选C.
【点睛】
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.
25、AC= 6.0km,AB= 1.7km;
【解析】
在Rt△AOC, 由∠的正切值和OC的长求出OA, 在Rt△BOC, 由∠BCO的大小和OC的长求出OA,而AB=OB-0A,即可得到答案。
【详解】
由题意可得:∠AOC=90°,OC=5km.
在Rt△AOC中,
∵AC=,
∴AC=≈6.0km,
∵tan34°=,
∴OA=OC•tan34°=5×0.67=3.35km,
在Rt△BOC中,∠BCO=45°,
∴OB=OC=5km,
∴AB=5﹣3.35=1.65≈1.7km.
答:AC的长为6.0km,AB的长为1.7km.
【点睛】
本题主要考查三角函数的知识。
26、(1)出现“和为8”的概率是0.33;(2)x的值不能为7.
【解析】
(1)利用频率估计概率结合表格中数据得出答案即可;
(2)假设x=7,根据题意先列出树状图,得出和为9的概率,再与进行比较,即可得出答案.
【详解】
解:(1)随着试验次数不断增加,出现“和为8”的频率逐渐稳定在0.33,
故出现“和为8”的概率是0.33.
(2)x的值不能为7.理由:假设x=7,
则P(和为9)=≠,所以x的值不能为7.
【点睛】
此题主要考查了利用频率估计概率以及树状图法求概率,正确画出树状图是解题关键.
27、(1)见解析;(2)x1=1,x2=2
【解析】
(1)根据根的判别式列出关于m的不等式,求解可得;
(2)取m=-2,代入原方程,然后解方程即可.
【详解】
解:(1)根据题意,△=(m-1)2-4[-(2m+2)]=m2+6m+12=(m+2)2+4,
∵(m+2)2+4>1,
∴方程总有两个不相等的实数根;
(2)当m=-2时,由原方程得:x2-4x+2=1.
整理,得(x-1)(x-2)=1,
解得x1=1,x2=2.
【点睛】
本题主要考查根的判别式与韦达定理,一元二次方程ax2+bx+c=1(a≠1)的根与△=b2-4ac有如下关系:①当△>1时,方程有两个不相等的两个实数根;②当△=1时,方程有两个相等的两个实数根;③当△<1时,方程无实数根.
广东省深圳市龙岗区南湾校2022年中考三模数学试题含解析: 这是一份广东省深圳市龙岗区南湾校2022年中考三模数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,化简,下列运算正确的是,如图,内接于,若,则等内容,欢迎下载使用。
广东省深圳市龙岗区六约校2022年中考联考数学试题含解析: 这是一份广东省深圳市龙岗区六约校2022年中考联考数学试题含解析,共22页。
2021-2022学年广东省深圳市龙岗区龙岗街道新梓校中考数学押题试卷含解析: 这是一份2021-2022学年广东省深圳市龙岗区龙岗街道新梓校中考数学押题试卷含解析,共19页。试卷主要包含了答题时请按要求用笔,计算等内容,欢迎下载使用。