|试卷下载
搜索
    上传资料 赚现金
    2022届广西南宁市邕宁区中学和中学中考适应性考试数学试题含解析
    立即下载
    加入资料篮
    2022届广西南宁市邕宁区中学和中学中考适应性考试数学试题含解析01
    2022届广西南宁市邕宁区中学和中学中考适应性考试数学试题含解析02
    2022届广西南宁市邕宁区中学和中学中考适应性考试数学试题含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届广西南宁市邕宁区中学和中学中考适应性考试数学试题含解析

    展开
    这是一份2022届广西南宁市邕宁区中学和中学中考适应性考试数学试题含解析,共20页。试卷主要包含了答题时请按要求用笔,下列计算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.下列运算正确的是(  )
    A.a﹣3a=2a B.(ab2)0=ab2 C.= D.×=9
    2.如图,,且.、是上两点,,.若,,,则的长为( )

    A. B. C. D.
    3.如图,平行四边形 ABCD 中, E为 BC 边上一点,以 AE 为边作正方形AEFG,若 ,,则 的度数是

    A. B. C. D.
    4.如图所示的几何体,它的左视图与俯视图都正确的是( )

    A. B. C. D.
    5.如图,是的直径,弦,,,则阴影部分的面积为( )

    A.2π B.π C. D.
    6.下列计算正确的是(  )
    A.a3﹣a2=a B.a2•a3=a6
    C.(a﹣b)2=a2﹣b2 D.(﹣a2)3=﹣a6
    7.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6,则S6的值为(  )
    A. B.2 C. D.
    8.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为( )

    A. B.2 C. D.3
    9.为喜迎党的十九大召开,乐陵某中学剪纸社团进行了剪纸大赛,下列作品既是轴对称图形又是中心对称图形的是(  )
    A. B.
    C. D.
    10.如图,已知数轴上的点A、B表示的实数分别为a,b,那么下列等式成立的是( )

    A. B.
    C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.当a,b互为相反数,则代数式a2+ab﹣2的值为_____.
    12.已知 a、b 是方程 x2﹣2x﹣1=0 的两个根,则 a2﹣a+b 的值是_______.
    13.函数y=中,自变量x的取值范围是_________.
    14.如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,AB长为半径画圆弧交边DC于点E,则的长度为______.

    15.一个布袋里装有10个只有颜色不同的球,这10个球中有m个红球,从布袋中摸出一个球,记下颜色后放回,搅匀,再摸出一个球,通过大量重复试验后发现,摸到红球的频率稳定在0.3左右,则m的值约为__________.
    16.如果两圆的半径之比为,当这两圆内切时圆心距为3,那么当这两圆相交时,圆心距d的取值范围是__________.
    三、解答题(共8题,共72分)
    17.(8分)先化简,再求值:,再从的范围内选取一个你最喜欢的值代入,求值.
    18.(8分)AB为⊙O直径,C为⊙O上的一点,过点C的切线与AB的延长线相交于点D,CA=CD.
    (1)连接BC,求证:BC=OB;
    (2)E是中点,连接CE,BE,若BE=2,求CE的长.

    19.(8分)如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙O相交于点F.若的长为,则图中阴影部分的面积为_____.

    20.(8分)如图,半圆D的直径AB=4,线段OA=7,O为原点,点B在数轴的正半轴上运动,点B在数轴上所表示的数为m.当半圆D与数轴相切时,m=  .半圆D与数轴有两个公共点,设另一个公共点是C.
    ①直接写出m的取值范围是  .
    ②当BC=2时,求△AOB与半圆D的公共部分的面积.当△AOB的内心、外心与某一个顶点在同一条直线上时,求tan∠AOB的值.

    21.(8分)阅读
    (1)阅读理解:

    如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.
    解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.
    中线AD的取值范围是________;
    (2)问题解决:
    如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;
    (3)问题拓展:
    如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.
    22.(10分)进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:

    通过这段对话,请你求出该地驻军原来每天加固的米数.
    23.(12分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.若∠ABC=70°,则∠NMA的度数是   度.若AB=8cm,△MBC的周长是14cm.
    ①求BC的长度;
    ②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.

    24.如图,A,B,C 三个粮仓的位置如图所示,A 粮仓在 B 粮仓北偏东26°,180 千米处;C 粮仓在 B 粮仓的正东方,A 粮仓的正南方.已知 A,B两个粮仓原有存粮共 450 吨,根据灾情需要,现从 A 粮仓运出该粮仓存粮的支援 C 粮仓,从 B 粮仓运出该粮仓存粮的支援 C 粮仓,这时 A,B 两处粮仓的存粮吨数相等.(tan26°=0.44,cos26°=0.90,tan26°=0.49)
    (1)A,B 两处粮仓原有存粮各多少吨?
    (2)C 粮仓至少需要支援 200 吨粮食,问此调拨计划能满足 C 粮仓的需求吗?
    (3)由于气象条件恶劣,从 B 处出发到 C 处的车队来回都限速以每小时 35 公里的速度匀速行驶,而司机小王的汽车油箱的油量最多可行驶 4 小时,那么小王在途中是否需要加油才能安全的回到 B 地?请你说明理由.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    直接利用合并同类项法则以及二次根式的性质、二次根式乘法、零指数幂的性质分别化简得出答案.
    【详解】
    解:A、a﹣3a=﹣2a,故此选项错误;
    B、(ab2)0=1,故此选项错误;
    C、故此选项错误;
    D、×=9,正确.
    故选D.
    【点睛】
    此题主要考查了合并同类项以及二次根式的性质、二次根式乘法、零指数幂的性质,正确把握相关性质是解题关键.
    2、D
    【解析】
    分析:
    详解:如图,

    ∵AB⊥CD,CE⊥AD,
    ∴∠1=∠2,
    又∵∠3=∠4,
    ∴180°-∠1-∠4=180°-∠2-∠3,
    即∠A=∠C.
    ∵BF⊥AD,
    ∴∠CED=∠BFD=90°,
    ∵AB=CD,
    ∴△ABF≌△CDE,
    ∴AF=CE=a,ED=BF=b,
    又∵EF=c,
    ∴AD=a+b-c.
    故选:D.
    点睛:本题主要考查全等三角形的判定与性质,证明△ABF≌△CDE是关键.
    3、A
    【解析】
    分析:首先求出∠AEB,再利用三角形内角和定理求出∠B,最后利用平行四边形的性质得∠D=∠B即可解决问题.
    详解:∵四边形ABCD是正方形,
    ∴∠AEF=90°,
    ∵∠CEF=15°,
    ∴∠AEB=180°-90°-15°=75°,
    ∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,
    ∵四边形ABCD是平行四边形,
    ∴∠D=∠B=65°
    故选A.
    点睛:本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.
    4、D
    【解析】
    试题分析:该几何体的左视图是边长分别为圆的半径和直径的矩形,俯视图是边长分别为圆的直径和半径的矩形,故答案选D.
    考点:D.
    5、D
    【解析】
    分析:连接OD,则根据垂径定理可得出CE=DE,继而将阴影部分的面积转化为扇形OBD的面积,代入扇形的面积公式求解即可.
    详解:连接OD,
    ∵CD⊥AB,
    ∴ (垂径定理),

    即可得阴影部分的面积等于扇形OBD的面积,
    又∵
    ∴ (圆周角定理),
    ∴OC=2,
    故S扇形OBD=
    即阴影部分的面积为.
    故选D.

    点睛:考查圆周角定理,垂径定理,扇形面积的计算,熟记扇形的面积公式是解题的关键.
    6、D
    【解析】
    各项计算得到结果,即可作出判断.
    解:A、原式不能合并,不符合题意;
    B、原式=a5,不符合题意;
    C、原式=a2﹣2ab+b2,不符合题意;
    D、原式=﹣a6,符合题意,
    故选D
    7、C
    【解析】
    根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.
    【详解】
    如图所示,

    单位圆的半径为1,则其内接正六边形ABCDEF中,
    △AOB是边长为1的正三角形,
    所以正六边形ABCDEF的面积为
    S6=6××1×1×sin60°=.
    故选C.
    【点睛】
    本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答.
    8、A
    【解析】
    设AC=a,由特殊角的三角函数值分别表示出BC、AB的长度,进而得出BD、CD的长度,由公式求出tan∠DAC的值即可.
    【详解】
    设AC=a,则BC==a,AB==2a,
    ∴BD=BA=2a,
    ∴CD=(2+)a,
    ∴tan∠DAC=2+.
    故选A.
    【点睛】
    本题主要考查特殊角的三角函数值.
    9、C
    【解析】
    根据轴对称和中心对称的定义去判断即可得出正确答案.
    【详解】
    解:A、是轴对称图形,不是中心对称图形,故此选项错误;
    B、不是轴对称图形,也不是中心对称图形,故此选项错误;
    C、是轴对称图形,也是中心对称图形,故此选项正确;
    D、是轴对称图形,不是中心对称图形,故此选项错误.
    故选:C.
    【点睛】
    本题考查的是轴对称和中心对称的知识点,解题关键在于对知识点的理解和把握.
    10、B
    【解析】
    根据图示,可得:b<0<a,|b|>|a|,据此判断即可.
    【详解】
    ∵b<0<a,|b|>|a|,
    ∴a+b<0,
    ∴|a+b|= -a-b.
    故选B.
    【点睛】
    此题主要考查了实数与数轴的特征和应用,以及绝对值的含义和求法,要熟练掌握.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、﹣1.
    【解析】
    分析:
    由已知易得:a+b=0,再把代数式a1+ab-1化为为a(a+b)-1即可求得其值了.
    详解:
    ∵a与b互为相反数,
    ∴a+b=0,
    ∴a1+ab-1=a(a+b)-1=0-1=-1.
    故答案为:-1.
    点睛:知道“互为相反数的两数的和为0”及“能够把a1+ab-1化为为a(a+b)-1”是正确解答本题的关键.
    12、1
    【解析】
    根据一元二次方程的解及根与系数的关系,可得出a2-2a=1、a+b=2,将其代入a2-a+b中即可求出结论.
    【详解】
    ∵a、b是方程x2-2x-1=0的两个根,
    ∴a2-2a=1,a+b=2,
    ∴a2-a+b=a2-2a+(a+b)=1+2=1.
    故答案为1.
    【点睛】
    本题考查根与系数的关系以及一元二次方程的解,牢记两根之和等于-、两根之积等于是解题的关键.
    13、x≤1且x≠﹣1
    【解析】
    由二次根式中被开方数为非负数且分母不等于零求解可得结论.
    【详解】
    根据题意,得:,解得:x≤1且x≠﹣1.
    故答案为x≤1且x≠﹣1.
    【点睛】
    本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:
    (1)当函数表达式是整式时,自变量可取全体实数;
    (1)当函数表达式是分式时,考虑分式的分母不能为0;
    (3)当函数表达式是二次根式时,被开方数非负.
    14、
    【解析】
    试题解析:连接AE,

    在Rt三角形ADE中,AE=4,AD=2,
    ∴∠DEA=30°,
    ∵AB∥CD,
    ∴∠EAB=∠DEA=30°,
    ∴的长度为:=.
    考点:弧长的计算.
    15、3
    【解析】
    在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.
    【详解】
    解:根据题意得,=0.3,解得m=3.
    故答案为:3.
    【点睛】
    本题考查随机事件概率的意义,关键是要知道在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近.
    16、.
    【解析】
    先根据比例式设两圆半径分别为,根据内切时圆心距列出等式求出半径,然后利用相交时圆心距与半径的关系求解.
    【详解】
    解:设两圆半径分别为,
    由题意,得3x-2x=3,解得,
    则两圆半径分别为,
    所以当这两圆相交时,圆心距d的取值范围是,
    即,
    故答案为.
    【点睛】
    本题考查了圆和圆的位置与两圆的圆心距、半径的数量之间的关系,熟练掌握圆心距与圆位置关系的数量关系是解决本题的关键.

    三、解答题(共8题,共72分)
    17、原式=,把x=2代入的原式=1.
    【解析】
    试题分析:先对原分式的分子、分母进行因式分解,然后按顺序进行乘除法运算、加减法运算,最后选取有意义的数值代入计算即可.
    试题解析:原式= =
    当x=2时,原式=1
    18、(2)见解析;(2)2+.
    【解析】
    (2)连接OC,根据圆周角定理、切线的性质得到∠ACO=∠DCB,根据CA=CD得到∠CAD=∠D,证明∠COB=∠CBO,根据等角对等边证明;
    (2)连接AE,过点B作BF⊥CE于点F,根据勾股定理计算即可.
    【详解】
    (2)证明:连接OC,

    ∵AB为⊙O直径,
    ∴∠ACB=90°,
    ∵CD为⊙O切线
    ∴∠OCD=90°,
    ∴∠ACO=∠DCB=90°﹣∠OCB,
    ∵CA=CD,
    ∴∠CAD=∠D.
    ∴∠COB=∠CBO.
    ∴OC=BC.
    ∴OB=BC;
    (2)连接AE,过点B作BF⊥CE于点F,
    ∵E是AB中点,
    ∴,
    ∴AE=BE=2.
    ∵AB为⊙O直径,
    ∴∠AEB=90°.
    ∴∠ECB=∠BAE=45°,,
    ∴.
    ∴CF=BF=2.
    ∴.
    ∴.
    【点睛】
    本题考查的是切线的性质、圆周角定理、勾股定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
    19、S阴影=2﹣.
    【解析】
    由切线的性质和平行四边形的性质得到BA⊥AC,∠ACB=∠B=45°,∠DAC=∠ACB=45°=∠FAE,根据弧长公式求出弧长,得到半径,即可求出结果.
    【详解】
    如图,连接AC,∵CD与⊙A相切,
    ∴CD⊥AC,
    在平行四边形ABCD中,∵AB=DC,AB∥CD∥BC,
    ∴BA⊥AC,∵AB=AC,
    ∴∠ACB=∠B=45°,
    ∵AD∥BC,
    ∴∠FAE=∠B=45°,
    ∴∠DAC=∠ACB=45°=∠FAE,

    ∴的长度为
    解得R=2,
    S阴=S△ACD-S扇形=

    【点睛】
    此题主要考查圆内的面积计算,解题的关键是熟知平行四边形的性质、切线的性质、弧长计算及扇形面积的计算.
    20、(1);(2)①;②△AOB与半圆D的公共部分的面积为;(3)tan∠AOB的值为或.
    【解析】
    (1)根据题意由勾股定理即可解答
    (2)①根据题意可知半圆D与数轴相切时,只有一个公共点,和当O、A、B三点在数轴上时,求出两种情况m的值即可
    ②如图,连接DC,得出△BCD为等边三角形,可求出扇形ADC的面积,即可解答
    (3)根据题意如图1,当OB=AB时,内心、外心与顶点B在同一条直线上,作AH⊥OB于点H,设BH=x,列出方程求解即可解答
    如图2,当OB=OA时,内心、外心与顶点O在同一条直线上,作AH⊥OB于点H,设BH=x,列出方程求解即可解答
    【详解】
    (1)当半圆与数轴相切时,AB⊥OB,
    由勾股定理得m= ,
    故答案为 .
    (2)①∵半圆D与数轴相切时,只有一个公共点,此时m=,
    当O、A、B三点在数轴上时,m=7+4=11,
    ∴半圆D与数轴有两个公共点时,m的取值范围为.
    故答案为.
    ②如图,连接DC,当BC=2时,

    ∵BC=CD=BD=2,
    ∴△BCD为等边三角形,
    ∴∠BDC=60°,
    ∴∠ADC=120°,
    ∴扇形ADC的面积为 ,

    ∴△AOB与半圆D的公共部分的面积为 ;
    (3)如图1,

    当OB=AB时,内心、外心与顶点B在同一条直线上,作AH⊥OB于点H,设BH=x,则72﹣(4+x)2=42﹣x2,
    解得x= ,OH= ,AH= ,
    ∴tan∠AOB=,
    如图2,当OB=OA时,内心、外心与顶点O在同一条直线上,作AH⊥OB于点H,

    设BH=x,则72﹣(4﹣x)2=42﹣x2,
    解得x= ,OH=,AH=,
    ∴tan∠AOB=.
    综合以上,可得tan∠AOB的值为或.
    【点睛】
    此题此题考勾股定理,切线的性质,等边三角形的判定和性质,三角形的内心和外心,解题关键在于作辅助线
    21、(1)2<AD<8;(2)证明见解析;(3)BE+DF=EF;理由见解析.
    【解析】
    试题分析:(1)延长AD至E,使DE=AD,由SAS证明△ACD≌△EBD,得出BE=AC=6,在△ABE中,由三角形的三边关系求出AE的取值范围,即可得出AD的取值范围;
    (2)延长FD至点M,使DM=DF,连接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在△BME中,由三角形的三边关系得出BE+BM>EM即可得出结论;
    (3)延长AB至点N,使BN=DF,连接CN,证出∠NBC=∠D,由SAS证明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,证出∠ECN=70°=∠ECF,再由SAS证明△NCE≌△FCE,得出EN=EF,即可得出结论.
    试题解析:(1)解:延长AD至E,使DE=AD,连接BE,如图①所示:
    ∵AD是BC边上的中线,
    ∴BD=CD,
    在△BDE和△CDA中,BD=CD,∠BDE=∠CDA,DE=AD,
    ∴△BDE≌△CDA(SAS),
    ∴BE=AC=6,
    在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,
    ∴10﹣6<AE<10+6,即4<AE<16,
    ∴2<AD<8;
    故答案为2<AD<8;
    (2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图②所示:
    同(1)得:△BMD≌△CFD(SAS),
    ∴BM=CF,
    ∵DE⊥DF,DM=DF,
    ∴EM=EF,
    在△BME中,由三角形的三边关系得:BE+BM>EM,
    ∴BE+CF>EF;
    (3)解:BE+DF=EF;理由如下:
    延长AB至点N,使BN=DF,连接CN,如图3所示:
    ∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,
    ∴∠NBC=∠D,
    在△NBC和△FDC中,
    BN=DF,∠NBC =∠D,BC=DC,
    ∴△NBC≌△FDC(SAS),
    ∴CN=CF,∠NCB=∠FCD,
    ∵∠BCD=140°,∠ECF=70°,
    ∴∠BCE+∠FCD=70°,
    ∴∠ECN=70°=∠ECF,
    在△NCE和△FCE中,
    CN=CF,∠ECN=∠ECF,CE=CE,
    ∴△NCE≌△FCE(SAS),
    ∴EN=EF,
    ∵BE+BN=EN,
    ∴BE+DF=EF.

    考点:全等三角形的判定和性质;三角形的三边关系定理.
    22、300米
    【解析】
    解:设原来每天加固x米,根据题意,得

    去分母,得 1200+4200=18x(或18x=5400)
    解得.
    检验:当时,(或分母不等于0).
    ∴是原方程的解.
    答:该地驻军原来每天加固300米.
    23、(1)50;(2)①6;②1
    【解析】
    试题分析:(1)根据等腰三角形的性质和线段垂直平分线的性质即可得到结论;
    (2)①根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM=BM,然后求出△MBC的周长=AC+BC,再代入数据进行计算即可得解;
    ②当点P与M重合时,△PBC周长的值最小,于是得到结论.
    试题解析:解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°.∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°.故答案为50;
    (2)①∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC.∵AB=8,△MBC的周长是1,∴BC=1﹣8=6;
    ②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PC=PA+PC,PA+PC≥AC,∴P与M重合时,PA+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=1.

    24、(1)A、B 两处粮仓原有存粮分别是 270,1 吨;(2)此次调拨能满足 C 粮仓需求;(3)小王途中须加油才能安全回到 B 地.
    【解析】
    (1)由题意可知要求A,B两处粮仓原有存粮各多少吨需找等量关系,即A处存粮+B处存粮=450吨,A处存粮的五分之二=B处存粮的五分之三,据等量关系列方程组求解即可;
    (2)分别求出A处和B处支援C处的粮食,将其加起来与200吨比较即可;
    (3)由题意可知由已知可得△ABC中∠A=26°∠ACB=90°且AB=1Km,sin∠BAC=,要求BC的长,可以运用三角函数解直角三角形.
    【详解】
    (1)设A,B两处粮仓原有存粮x,y吨
    根据题意得:
    解得:x=270,y=1.
    答:A,B两处粮仓原有存粮分别是270,1吨.
    (2)A粮仓支援C粮仓的粮食是×270=162(吨),
    B粮仓支援C粮仓的粮食是×1=72(吨),
    A,B两粮仓合计共支援C粮仓粮食为162+72=234(吨).
    ∵234>200,
    ∴此次调拨能满足C粮仓需求.
    (3)如图,

    根据题意知:∠A=26°,AB=1千米,∠ACB=90°.
    在Rt△ABC中,sin∠BAC=,
    ∴BC=AB•sin∠BAC=1×0.44=79.2.
    ∵此车最多可行驶4×35=140(千米)<2×79.2,
    ∴小王途中须加油才能安全回到B地.
    【点睛】
    求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.

    相关试卷

    广西南宁市邕宁区中学和中学2023-2024学年数学九上期末经典模拟试题含答案: 这是一份广西南宁市邕宁区中学和中学2023-2024学年数学九上期末经典模拟试题含答案,共8页。试卷主要包含了若点,,在反比例函数等内容,欢迎下载使用。

    广西南宁市邕宁区邕宁民族中学2022-2023学年七年级下学期期末数学试题: 这是一份广西南宁市邕宁区邕宁民族中学2022-2023学年七年级下学期期末数学试题,共6页。

    广西自治区南宁市邕宁区2023年中考数学全真模拟试卷含解析及点睛: 这是一份广西自治区南宁市邕宁区2023年中考数学全真模拟试卷含解析及点睛,共19页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map