2022届广西省北海市中考数学押题试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.已知在四边形ABCD中,AD//BC,对角线AC、BD交于点O,且AC=BD,下列四个命题中真命题是( )
A.若AB=CD,则四边形ABCD一定是等腰梯形;
B.若∠DBC=∠ACB,则四边形ABCD一定是等腰梯形;
C.若,则四边形ABCD一定是矩形;
D.若AC⊥BD且AO=OD,则四边形ABCD一定是正方形.
2.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是( )
A. B.
C. D.
3.如图,已知菱形ABCD,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( )
A.16 B.12 C.24 D.18
4.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为4m的正方形,使不规则区域落在正方形内.现向正方形内随机投掷小球(假设小球落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小球落在不规则区域的频率稳定在常数0.65附近,由此可估计不规则区域的面积约为( )
A.2.6m2 B.5.6m2 C.8.25m2 D.10.4m2
5.估算的运算结果应在( )
A.2到3之间 B.3到4之间
C.4到5之间 D.5到6之间
6.2017年牡丹区政府工作报告指出:2012年以来牡丹区经济社会发展取得显著成就,综合实力明显提升,地区生产总值由156.3亿元增加到338亿元,年均可比增长11.4%,338亿用科学记数法表示为( )
A.3.38×107 B.33.8×109 C.0.338×109 D.3.38×1010
7.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为( )
A.6 B.5 C.2 D.3
8.若关于的一元二次方程有两个不相等的实数根,则的取值范围( )
A. B. C.且 D.
9.在一组数据:1,2,4,5中加入一个新数3之后,新数据与原数据相比,下列说法正确的是( )
A.中位数不变,方差不变 B.中位数变大,方差不变
C.中位数变小,方差变小 D.中位数不变,方差变小
10.气象台预报“本市明天下雨的概率是85%”,对此信息,下列说法正确的是( )
A.本市明天将有的地区下雨 B.本市明天将有的时间下雨
C.本市明天下雨的可能性比较大 D.本市明天肯定下雨
二、填空题(本大题共6个小题,每小题3分,共18分)
11.等腰中,是BC边上的高,且,则等腰底角的度数为__________.
12.标号分别为1,2,3,4,……,n的n张标签(除标号外其它完全相同),任摸一张,若摸得奇数号标签的概率大于0.5,则n可以是_____.
13.如图,用10 m长的铁丝网围成一个一面靠墙的矩形养殖场,其养殖场的最大面积________m1.
14.如图,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B在x轴上,∠ABO=90°,OA与反比例函数y=的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C.若S四边形ABCD=10,则k的值为 .
15.函数中自变量x的取值范围是_____;函数中自变量x的取值范围是______.
16.因式分解:__________.
三、解答题(共8题,共72分)
17.(8分)某新建成学校举行美化绿化校园活动,九年级计划购买A,B两种花木共100棵绿化操场,其中A花木每棵50元,B花木每棵100元.
(1)若购进A,B两种花木刚好用去8000元,则购买了A,B两种花木各多少棵?
(2)如果购买B花木的数量不少于A花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用.
18.(8分)九(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.
根据以上信息解决下列问题: , ;扇形统计图中机器人项目所对应扇形的圆心角度数为 °;从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.
19.(8分)在△ABC中,,以边AB上一点O为圆心,OA为半径的圈与BC相切于点D,分别交AB,AC于点E,F如图①,连接AD,若,求∠B的大小;如图②,若点F为的中点,的半径为2,求AB的长.
20.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.
组别
分数段
频次
频率
A
60≤x<70
17
0.17
B
70≤x<80
30
a
C
80≤x<90
b
0.45
D
90≤x<100
8
0.08
请根据所给信息,解答以下问题:
(1)表中a=______,b=______;
(2)请计算扇形统计图中B组对应扇形的圆心角的度数;
(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.
21.(8分)在中,,以为直径的圆交于,交于.过点的切线交的延长线于.求证:是的切线.
22.(10分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.该商家购进的第一批衬衫是多少件?若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?
23.(12分)如图,已知▱ABCD.作∠B的平分线交AD于E点。(用尺规作图法,保留作图痕迹,不要求写作法);若▱ABCD的周长为10,CD=2,求DE的长。
24.2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风景线.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海地隧道,西人工岛上的点和东人工岛上的点间的距离约为5.6千米,点是与西人工岛相连的大桥上的一点,,,在一条直线上.如图,一艘观光船沿与大桥段垂直的方向航行,到达点时观测两个人工岛,分别测得,与观光船航向的夹角,,求此时观光船到大桥段的距离的长(参考数据:,,,,,).
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
A、因为满足本选项条件的四边形ABCD有可能是矩形,因此A中命题不一定成立;
B、因为满足本选项条件的四边形ABCD有可能是矩形,因此B中命题不一定成立;
C、因为由结合AO+CO=AC=BD=BO+OD可证得AO=CO,BO=DO,由此即可证得此时四边形ABCD是矩形,因此C中命题一定成立;
D、因为满足本选项条件的四边形ABCD有可能是等腰梯形,由此D中命题不一定成立.
故选C.
2、B
【解析】
首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,
【详解】
设学校购买文学类图书平均每本书的价格是x元,可得:
故选B.
【点睛】
此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.
3、A
【解析】
由菱形ABCD,∠B=60°,易证得△ABC是等边三角形,继而可得AC=AB=4,则可求得以AC为边长的正方形ACEF的周长.
【详解】
解:∵四边形ABCD是菱形,∴AB=BC.
∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=BC=4,∴以AC为边长的正方形ACEF的周长为:4AC=1.
故选A.
【点睛】
本题考查了菱形的性质、正方形的性质以及等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.
4、D
【解析】
首先确定小石子落在不规则区域的概率,然后利用概率公式求得其面积即可.
【详解】
∵经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.65附近,
∴小石子落在不规则区域的概率为0.65,
∵正方形的边长为4m,
∴面积为16 m2
设不规则部分的面积为s m2
则=0.65
解得:s=10.4
故答案为:D.
【点睛】
利用频率估计概率.
5、D
【解析】
解:= ,∵2<<3,∴在5到6之间.
故选D.
【点睛】
此题主要考查了估算无理数的大小,正确进行计算是解题关键.
6、D
【解析】
根据科学记数法的定义可得到答案.
【详解】
338亿=33800000000=,
故选D.
【点睛】
把一个大于10或者小于1的数表示为的形式,其中1≤|a|<10,这种记数法叫做科学记数法.
7、C
【解析】
由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易证得△OAB是等边三角形,继而求得∠BAE的度数,由△OAB是等边三角形,求出∠ADE的度数,又由AE=3,即可求得AB的长.
【详解】
∵四边形ABCD是矩形,
∴OB=OD,OA=OC,AC=BD,
∴OA=OB,
∵BE:ED=1:3,
∴BE:OB=1:2,
∵AE⊥BD,
∴AB=OA,
∴OA=AB=OB,
即△OAB是等边三角形,
∴∠ABD=60°,
∵AE⊥BD,AE=3,
∴AB=,
故选C.
【点睛】
此题考查了矩形的性质、等边三角形的判定与性质以及含30°角的直角三角形的性质,结合已知条件和等边三角形的判定方法证明△OAB是等边三角形是解题关键.
8、C
【解析】
根据一元二次方程的定义结合根的判别式即可得出关于a的一元一次不等式组,解之即可得出结论.
【详解】
解:∵关于x的一元二次方程有两个不相等的实数根,
∴ ,
解得:k<1且k≠1.
故选:C.
【点睛】
本题考查了一元二次方程的定义、根的判别式以及解一元一次不等式组,根据一元二次方程的定义结合根的判别式列出关于a的一元一次不等式组是解题的关键.
9、D
【解析】
根据中位数和方差的定义分别计算出原数据和新数据的中位数和方差,从而做出判断.
【详解】
∵原数据的中位数是=3,平均数为=3,
∴方差为×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=;
∵新数据的中位数为3,平均数为=3,
∴方差为×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2;
所以新数据与原数据相比中位数不变,方差变小,
故选:D.
【点睛】
本题考查了中位数和方差,解题的关键是掌握中位数和方差的定义.
10、C
【解析】
试题解析:根据概率表示某事情发生的可能性的大小,分析可得:
A、明天降水的可能性为85%,并不是有85%的地区降水,错误;
B、本市明天将有85%的时间降水,错误;
C、明天降水的可能性为90%,说明明天降水的可能性比较大,正确;
D、明天肯定下雨,错误.
故选C.
考点:概率的意义.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、,,
【解析】
分三种情况:①点A是顶角顶点时,②点A是底角顶点,且AD在△ABC外部时,③点A是底角顶点,且AD在△ABC内部时,再结合直角三角形中,30°的角所对的直角边等于斜边的一半即可求解.
【详解】
①如图,若点A是顶角顶点时,
∵AB=AC,AD⊥BC,
∴BD=CD,∵,
∴AD=BD=CD,
在Rt△ABD中,∠B=∠BAD=
;
②如图,若点A是底角顶点,且AD在△ABC外部时,
∵,AC=BC,
∴,
∴∠ACD=30°,
∴∠BAC=∠ABC=×30°=15°;
③如图,若点A是底角顶点,且AD在△ABC内部时,
∵,AC=BC,
∴,
∴∠C=30°,
∴∠BAC=∠ABC=(180°-30°)=75°;
综上所述,△ABC底角的度数为45°或15°或75°;
故答案为,,.
【点睛】
本题考查了等腰三角形的性质和直角三角形中30°的角所对的直角边等于斜边的一半的性质,解题的关键是要分情况讨论.
12、奇数.
【解析】
根据概率的意义,分n是偶数和奇数两种情况分析即可.
【详解】
若n为偶数,则奇数与偶数个数相等,即摸得奇数号标签的概率为0.5,
若n为奇数,则奇数比偶数多一个,此时摸得奇数号标签的概率大于0.5,
故答案为:奇数.
【点睛】
本题考查概率公式,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
13、2
【解析】
设与墙平行的一边长为xm,则另一面为 ,
其面积=,
∴最大面积为 ;
即最大面积是2m1.
故答案是2.
【点睛】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=-x1-1x+5,y=3x1-6x+1等用配方法求解比较简单.
14、﹣1
【解析】
∵OD=2AD,
∴,
∵∠ABO=90°,DC⊥OB,
∴AB∥DC,
∴△DCO∽△ABO,
∴,
∴,
∵S四边形ABCD=10,
∴S△ODC=8,
∴OC×CD=8,
OC×CD=1,
∴k=﹣1,
故答案为﹣1.
15、x≠2 x≥3
【解析】
根据分式的意义和二次根式的意义,分别求解.
【详解】
解:根据分式的意义得2-x≠0,解得x≠2;
根据二次根式的意义得2x-6≥0,解得x≥3.
故答案为: x≠2, x≥3.
【点睛】
数自变量的范围一般从几个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数为非负数.
16、
【解析】
先提取公因式x,再对余下的多项式利用完全平方公式继续分解.
【详解】
解:原式,
故答案为:
【点睛】
本题考查提公因式,熟练掌握运算法则是解题关键.
三、解答题(共8题,共72分)
17、(1)购买A种花木40棵,B种花木60棵;(2)当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元.
【解析】
(1)设购买A种花木x棵,B种花木y棵,根据“A,B两种花木共100棵、购进A,B两种花木刚好用去8000元”列方程组求解可得;
(2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,根据“B花木的数量不少于A花木的数量”求得a的范围,再设购买总费用为W,列出W关于a的解析式,利用一次函数的性质求解可得.
【详解】
解析:(1)设购买A种花木x棵,B种花木y棵,
根据题意,得:,解得:,
答:购买A种花木40棵,B种花木60棵;
(2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,
根据题意,得:100﹣a≥a,解得:a≤50,
设购买总费用为W,则W=50a+100(100﹣a)=﹣50a+10000,
∵W随a的增大而减小,∴当a=50时,W取得最小值,最小值为7500元,
答:当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元.
考点:一元一次不等式的应用;二元一次方程组的应用.
18、(1),; (2);(3).
【解析】
试题分析:(1)利用航模小组先求出数据总数,再求出n .(2)小组所占圆心角=;(3)列表格求概率.
试题解析:(1);
(2);
(3)将选航模项目的名男生编上号码,将名女生编上号码. 用表格列出所有可能出现的结果:
由表格可知,共有种可能出现的结果,并且它们都是第可能的,其中“名男生、名女生”有种可能.(名男生、名女生).(如用树状图,酌情相应给分)
考点:统计与概率的综合运用.
19、 (1)∠B=40°;(2)AB= 6.
【解析】
(1)连接OD,由在△ABC中, ∠C=90°,BC是切线,易得AC∥OD ,即可求得∠CAD=∠ADO ,继而求得答案;
(2)首先连接OF,OD,由AC∥OD得∠OFA=∠FOD ,由点F为弧AD的中点,易得△AOF是等边三角形,继而求得答案.
【详解】
解:(1)如解图①,连接OD,
∵BC切⊙O于点D,
∴∠ODB=90°,
∵∠C=90°,
∴AC∥OD,
∴∠CAD=∠ADO,
∵OA=OD,
∴∠DAO=∠ADO=∠CAD=25°,
∴∠DOB=∠CAO=∠CAD+∠DAO=50°,
∵∠ODB=90°,
∴∠B=90°-∠DOB=90°-50°=40°;
(2)如解图②,连接OF,OD,
∵AC∥OD,
∴∠OFA=∠FOD,
∵点F为弧AD的中点,
∴∠AOF=∠FOD,
∴∠OFA=∠AOF,
∴AF=OA,
∵OA=OF,
∴△AOF为等边三角形,
∴∠FAO=60°,则∠DOB=60°,
∴∠B=30°,
∵在Rt△ODB中,OD=2,
∴OB=4,
∴AB=AO+OB=2+4=6.
【点睛】
本题考查了切线的性质,平行线的性质,等腰三角形的性质,弧弦圆心角的关系,等边三角形的判定与性质,含30°角的直角三角形的性质.熟练掌握切线的性质是解(1)的关键,证明△AOF为等边三角形是解(2)的关键.
20、(1)0.3 ,45;(2)108°;(3).
【解析】
(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;
(2)B组的频率乘以360°即可求得答案;
(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;
【详解】
(1)本次调查的总人数为17÷0.17=100(人),则a==0.3,b=100×0.45=45(人).
故答案为0.3,45;
(2)360°×0.3=108°.
答:扇形统计图中B组对应扇形的圆心角为108°.
(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:
∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为=.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
21、证明见解析.
【解析】
连接OE,由OB=OD和AB=AC可得,则OF∥AC,可得,由圆周角定理和等量代换可得,由SAS证得,从而得到,即可证得结论.
【详解】
证明:如图,连接,
∵,
∴,
∵,
∴,
∴,
∴,
∴
∵
∴,则,
∴,
∴,即,
在和中,
∵,
∴,
∴
∵是的切线,则,
∴,
∴,则,
∴是的切线.
【点睛】
本题主要考查了等腰三角形的性质、切线的性质和判定、圆周角定理和全等三角形的判定与性质,熟练掌握圆周角定理和全等三角形的判定与性质是解题的关键.
22、(1)120件;(2)150元.
【解析】
试题分析:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫可设为2x件,由已知可得,,这种衬衫贵10元,列出方程求解即可.(2)设每件衬衫的标价至少为a元,由(1)可得出第一批和第二批的进价,从而求出利润表达式,然后列不等式解答即可.
试题解析:(1)设该商家购进的第一批衬衫是件,则第二批衬衫是件.
由题意可得:,解得,经检验是原方程的根.
(2)设每件衬衫的标价至少是元.
由(1)得第一批的进价为:(元/件),第二批的进价为:(元)
由题意可得:
解得:,所以,,即每件衬衫的标价至少是150元.
考点:1、分式方程的应用 2、一元一次不等式的应用.
23、(1)作图见解析;(2)1
【解析】
(1)以点B为圆心,任意长为半径画弧分别与AB、BC相交。然后再分别以交点为圆心,以交点间的距离为半径分别画弧,两弧相交于一点,画出射线BE即得.
(2)根据平行四边形的对边相等,可得AB+AD=5,由两直线平行内错角相等可得∠AEB=∠EBC,利用角平分线即得∠ABE=∠EBC,即证 ∠AEB=∠ABE .根据等角对等边可得AB=AE=2,从而求出ED的长.
【详解】
(1)解:如图所示:
(2)解:∵平行四边形ABCD的周长为10
∴AB+AD=5
∵AD//BC
∴∠AEB=∠EBC
又∵BE平分∠ABC
∴∠ABE=∠EBC
∴∠AEB=∠ABE
∴AB=AE=2
∴ED=AD-AE=3-2=1
【点睛】
此题考查作图-基本作图和平行四边形的性质,解题关键在于掌握作图法则
24、5.6千米
【解析】
设PD的长为x千米,DA的长为y千米,在Rt△PAD中利用正切的定义得到tan18°=,即y=0.33x,同样在Rt△PDB中得到y+5.6=1.33x,所以0.33x+5.6=1.33x,然后解方程求出x即可.
【详解】
设PD的长为x千米,DA的长为y千米,
在Rt△PAD中,tan∠DPA=,
即tan18°=,
∴y=0.33x,
在Rt△PDB中,tan∠DPB=,
即tan53°=,
∴y+5.6=1.33x,
∴0.33x+5.6=1.33x,解得x=5.6,
答:此时观光船到大桥AC段的距离PD的长为5.6千米.
【点睛】
本题考查了解直角三角形的应用:根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.
广西省南宁市2022-2023学年中考数学押题卷含解析: 这是一份广西省南宁市2022-2023学年中考数学押题卷含解析,共17页。
2023年广西省中考模拟押题卷数学试题(图片版,含答案,含答题卡): 这是一份2023年广西省中考模拟押题卷数学试题(图片版,含答案,含答题卡),文件包含数学-2023年广西初中学业水平考试模拟卷四答案pdf、九年级-数学pdf、九年级-数学答题卡pdf等3份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。
广西北海市合浦县2022年中考数学押题卷含解析: 这是一份广西北海市合浦县2022年中考数学押题卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,关于x的正比例函数,y=,的值是,如图所示的正方体的展开图是等内容,欢迎下载使用。