2022届广西贵港市中考数学最后冲刺模拟试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有( )
A.1对 B.2对 C.3对 D.4对
2.下列各式中正确的是( )
A. =±3 B. =﹣3 C. =3 D.
3.一次函数的图象上有点和点,且,下列叙述正确的是
A.若该函数图象交y轴于正半轴,则
B.该函数图象必经过点
C.无论m为何值,该函数图象一定过第四象限
D.该函数图象向上平移一个单位后,会与x轴正半轴有交点
4.将抛物线向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )
A. B. C. D.
5.的值等于( )
A. B. C. D.
6.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA的值为( )
A. B. C. D.3
7.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为( )
A. B. C. D.
8.要使式子有意义,的取值范围是( )
A. B.且 C.. 或 D. 且
9.如图,已知点 P 是双曲线 y=上的一个动点,连结 OP,若将线段OP 绕点 O 逆时针旋转 90°得到线段 OQ,则经过点 Q 的双曲线的表达式为( )
A.y= B.y=﹣ C.y= D.y=﹣
10.已知x=2是关于x的一元二次方程x2﹣x﹣2a=0的一个解,则a的值为( )
A.0 B.﹣1 C.1 D.2
11.已知,两数在数轴上对应的点如图所示,下列结论正确的是( )
A. B. C. D.
12.若 || =-,则一定是( )
A.非正数 B.正数 C.非负数 D.负数
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,一艘船向正北航行,在A处看到灯塔S在船的北偏东30°的方向上,航行12海里到达B点,在B处看到灯塔S在船的北偏东60°的方向上,此船继续沿正北方向航行过程中距灯塔S的最近距离是_____海里(不近似计算).
14. 如图,已知,要使,还需添加一个条件,则可以添加的条件是 .(只写一个即可,不需要添加辅助线)
15.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为_____.
16.在平面直角坐标系内,一次函数与的图像之间的距离为3,则b的值为__________.
17.若正六边形的边长为2,则此正六边形的边心距为______.
18.⊙O的半径为10cm,AB,CD是⊙O的两条弦,且AB∥CD,AB=16cm,CD=12cm.则AB与CD之间的距离是 cm.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.求一次至少购买多少只计算器,才能以最低价购买?求写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?
20.(6分)如图,在中,,平分,交于点,点在上,经过两点,交于点,交于点.
求证:是的切线;若的半径是,是弧的中点,求阴影部分的面积(结果保留和根号).
21.(6分)庞亮和李强相约周六去登山,庞亮从北坡山脚C处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B处出发.如图,已知小山北坡的坡度,山坡长为240米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A?(将山路AB、AC看成线段,结果保留根号)
22.(8分)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x 的函数关系图象.
(1)求y与x的函数关系式;
(2)直接写出自变量x的取值范围.
23.(8分)由于雾霾天气对人们健康的影响,市场上的空气净化器成了热销产品.某公司经销一种空气净化器,每台净化器的成本价为200元.经过一段时间的销售发现,每月的销售量y(台)与销售单价x(元)的关系为y=﹣2x+1.
(1)该公司每月的利润为w元,写出利润w与销售单价x的函数关系式;
(2)若要使每月的利润为40000元,销售单价应定为多少元?
(3)公司要求销售单价不低于250元,也不高于400元,求该公司每月的最高利润和最低利润分别为多少?
24.(10分)抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.求此抛物线的解析式;已知点D 在第四象限的抛物线上,求点D关于直线BC对称的点D’的坐标;在(2)的条件下,连结BD,问在x轴上是否存在点P,使,若存在,请求出P点的坐标;若不存在,请说明理由.
25.(10分)如图,在▱ABCD中,AE⊥BC交边BC于点E,点F为边CD上一点,且DF=BE.过点F作FG⊥CD,交边AD于点G.求证:DG=DC.
26.(12分)爸爸和小芳驾车去郊外登山,欣赏美丽的达子香(兴安杜鹃),到了山下,爸爸让小芳先出发6min,然后他再追赶,待爸爸出发24min时,妈妈来电话,有急事,要求立即回去.于是爸爸和小芳马上按原路下山返回(中间接电话所用时间不计),二人返回山下的时间相差4min,假设小芳和爸爸各自上、下山的速度是均匀的,登山过程中小芳和爸爸之间的距离s(单位:m)关于小芳出发时间t(单位:min)的函数图象如图,请结合图象信息解答下列问题:
(1)小芳和爸爸上山时的速度各是多少?
(2)求出爸爸下山时CD段的函数解析式;
(3)因山势特点所致,二人相距超过120m就互相看不见,求二人互相看不见的时间有多少分钟?
27.(12分)在平面直角坐标系xOy中,函数(x>0)的图象与直线l1:y=x+b交于点A(3,a-2).
(1)求a,b的值;
(2)直线l2:y=-x+m与x轴交于点B,与直线l1交于点C,若S△ABC≥6,求m的取值范围.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
∵∠ACB=90°,CD⊥AB,
∴△ABC∽△ACD,
△ACD∽CBD,
△ABC∽CBD,
所以有三对相似三角形.
故选C.
2、D
【解析】
原式利用平方根、立方根定义计算即可求出值.
【详解】
解:A、原式=3,不符合题意;
B、原式=|-3|=3,不符合题意;
C、原式不能化简,不符合题意;
D、原式=2-=,符合题意,
故选:D.
【点睛】
此题考查了立方根,以及算术平方根,熟练掌握各自的性质是解本题的关键.
3、B
【解析】
利用一次函数的性质逐一进行判断后即可得到正确的结论.
【详解】
解:一次函数的图象与y轴的交点在y轴的正半轴上,则,,若,则,故A错误;
把代入得,,则该函数图象必经过点,故B正确;
当时,,,函数图象过一二三象限,不过第四象限,故C错误;
函数图象向上平移一个单位后,函数变为,所以当时,,故函数图象向上平移一个单位后,会与x轴负半轴有交点,故D错误,
故选B.
【点睛】
本题考查了一次函数图象上点的坐标特征、一次函数图象与几何变换,解题的关键是熟练掌握一次函数的性质,灵活应用这些知识解决问题,属于中考常考题型.
4、D
【解析】
根据“左加右减、上加下减”的原则,
将抛物线向左平移1个单位所得直线解析式为:;
再向下平移3个单位为:.故选D.
5、C
【解析】
试题解析:根据特殊角的三角函数值,可知:
故选C.
6、B
【解析】
根据勾股定理和三角函数即可解答.
【详解】
解:已知在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,
设a=x,则c=3x,b==2x.
即tanA==.
故选B.
【点睛】
本题考查勾股定理和三角函数,熟悉掌握是解题关键.
7、C
【解析】
看到的棱用实线体现.故选C.
8、D
【解析】
根据二次根式和分式有意义的条件计算即可.
【详解】
解:∵ 有意义,
∴a+2≥0且a≠0,
解得a≥-2且a≠0.
故本题答案为:D.
【点睛】
二次根式和分式有意义的条件是本题的考点,二次根式有意义的条件是被开方数大于等于0,分式有意义的条件是分母不为0.
9、D
【解析】
过P,Q分别作PM⊥x轴,QN⊥x轴,利用AAS得到两三角形全等,由全等三角形对应边相等及反比例函数k的几何意义确定出所求即可.
【详解】
过P,Q分别作PM⊥x轴,QN⊥x轴,
∵∠POQ=90°,
∴∠QON+∠POM=90°,
∵∠QON+∠OQN=90°,
∴∠POM=∠OQN,
由旋转可得OP=OQ,
在△QON和△OPM中,
,
∴△QON≌△OPM(AAS),
∴ON=PM,QN=OM,
设P(a,b),则有Q(-b,a),
由点P在y=上,得到ab=3,可得-ab=-3,
则点Q在y=-上.
故选D.
【点睛】
此题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,以及坐标与图形变化,熟练掌握待定系数法是解本题的关键.
10、C
【解析】
试题分析:把方程的解代入方程,可以求出字母系数a的值.
∵x=2是方程的解,∴4﹣2﹣2a=0,∴a=1.
故本题选C.
【考点】一元二次方程的解;一元二次方程的定义.
11、C
【解析】
根据各点在数轴上位置即可得出结论.
【详解】
由图可知,b A. ∵b B. ∵b0,故本选项错误;
C. ∵bb,故本选项正确;
D. ∵b 故选C.
12、A
【解析】
根据绝对值的性质进行求解即可得.
【详解】
∵|-x|=-x,
又|-x|≥1,
∴-x≥1,
即x≤1,
即x是非正数,
故选A.
【点睛】
本题考查了绝对值的性质,熟练掌握绝对值的性质是解题的关键.
绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;1的绝对值是1.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、6
【解析】
试题分析:过S作AB的垂线,设垂足为C.根据三角形外角的性质,易证SB=AB.在Rt△BSC中,运用正弦函数求出SC的长.
解:过S作SC⊥AB于C.
∵∠SBC=60°,∠A=30°,
∴∠BSA=∠SBC﹣∠A=30°,
即∠BSA=∠A=30°.
∴SB=AB=1.
Rt△BCS中,BS=1,∠SBC=60°,
∴SC=SB•sin60°=1×=6(海里).
即船继续沿正北方向航行过程中距灯塔S的最近距离是6海里.
故答案为:6.
14、可添∠ABD=∠CBD或AD=CD.
【解析】
由AB=BC结合图形可知这两个三角形有两组边对应相等,添加一组边利用SSS证明全等,也可以添加一对夹角相等,利用SAS证明全等,据此即可得答案.
【详解】
.可添∠ABD=∠CBD或AD=CD,
①∠ABD=∠CBD,
在△ABD和△CBD中,
∵,
∴△ABD≌△CBD(SAS);
②AD=CD,
在△ABD和△CBD中,
∵,
∴△ABD≌△CBD(SSS),
故答案为∠ABD=∠CBD或AD=CD.
【点睛】
本题考查了三角形全等的判定,结合图形与已知条件灵活应用全等三角形的判定方法是解题的关键. 熟记全等三角形的判定方法有:SSS,SAS,ASA,AAS.
15、(﹣,1)
【解析】
如图作AF⊥x轴于F,CE⊥x轴于E.
∵四边形ABCD是正方形,
∴OA=OC,∠AOC=90°,
∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,
∴∠COE=∠OAF,
在△COE和△OAF中,
,
∴△COE≌△OAF,
∴CE=OF,OE=AF,
∵A(1,),
∴CE=OF=1,OE=AF=,
∴点C坐标(﹣,1),
故答案为(,1).
点睛:本题考查正方形的性质、全等三角形的判定和性质等知识,坐标与图形的性质,解题的关键是学会添加常用的辅助线,构造全等三角形解决问题,属于中考常考题型.注意:距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.
16、或
【解析】
设直线y=2x-1与x轴交点为C,与y轴交点为A,过点A作AD⊥直线y=2x-b于点D,根据直线的解析式找出点A、B、C的坐标,通过同角的余角相等可得出∠BAD=∠ACO,再利用∠ACO的余弦值即可求出直线AB的长度,从而得出关于b的含绝对值符号的方程,解方程即可得出结论.
【详解】
解:设直线y=2x-1与x轴交点为C,与y轴交点为A,过点A作AD⊥直线y=2x-b于点D,如图所示.
∵直线y=2x-1与x轴交点为C,与y轴交点为A,
∴点A(0,-1),点C(,0),
∴OA=1,OC=,AC==,
∴cos∠ACO==.
∵∠BAD与∠CAO互余,∠ACO与∠CAO互余,
∴∠BAD=∠ACO.
∵AD=3,cos∠BAD==,
∴AB=3.
∵直线y=2x-b与y轴的交点为B(0,-b),
∴AB=|-b-(-1)|=3,
解得:b=1-3或b=1+3.
故答案为1+3或1-3.
【点睛】
本题考查两条直线相交与平行的问题,利用平行线间的距离转化成点到直线的距离得出关于b的方程是解题关键.
17、.
【解析】
连接OA、OB,根据正六边形的性质求出∠AOB,得出等边三角形OAB,求出OA、AM的长,根据勾股定理求出即可.
【详解】
连接OA、OB、OC、OD、OE、OF,
∵正六边形ABCDEF,
∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=60°,OA=OB,
∴△AOB是等边三角形,
∴OA=OB=AB=2,∵AB⊥OM,∴AM=BM=1,
在△OAM中,由勾股定理得:OM=.
18、2或14
【解析】
分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.
【详解】
①当弦AB和CD在圆心同侧时,如图,
∵AB=16cm,CD=12cm,
∴AE=8cm,CF=6cm,
∵OA=OC=10cm,
∴EO=6cm,OF=8cm,
∴EF=OF−OE=2cm;
②当弦AB和CD在圆心异侧时,如图,
∵AB=16cm,CD=12cm,
∴AF=8cm,CE=6cm,
∵OA=OC=10cm,
∴OF=6cm,OE=8cm,
∴EF=OF+OE=14cm.
∴AB与CD之间的距离为14cm或2cm.
故答案为:2或14.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)1;(3);(3)理由见解析,店家一次应卖45只,最低售价为16.5元,此时利润最大.
【解析】
试题分析:(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到30﹣0.1(x﹣10)=16,解方程即可求解;
(3)由于根据(1)得到x≤1,又一次销售x(x>10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;
(3)首先把函数变为y==,然后可以得到函数的增减性,再结合已知条件即可解决问题.
试题解析:(1)设一次购买x只,则30﹣0.1(x﹣10)=16,解得:x=1.
答:一次至少买1只,才能以最低价购买;
(3)当10<x≤1时,y=[30﹣0.1(x﹣10)﹣13]x=,当x>1时,y=(16﹣13)x=4x;
综上所述:;
(3)y==,①当10<x≤45时,y随x的增大而增大,即当卖的只数越多时,利润更大.
②当45<x≤1时,y随x的增大而减小,即当卖的只数越多时,利润变小.
且当x=46时,y1=303.4,当x=1时,y3=3.∴y1>y3.
即出现了卖46只赚的钱比卖1只赚的钱多的现象.
当x=45时,最低售价为30﹣0.1(45﹣10)=16.5(元),此时利润最大.故店家一次应卖45只,最低售价为16.5元,此时利润最大.
考点:二次函数的应用;二次函数的最值;最值问题;分段函数;分类讨论.
20、(1)证明见解析;(2)
【解析】
(1)连接OD,根据角平分线的定义和等腰三角形的性质可得∠ADO=∠CAD,即可证明OD//AC,进而可得∠ODB=90°,即可得答案;(2)根据圆周角定理可得弧弧弧,即可证明∠BOD=60°,在中,利用∠BOD的正切值可求出BD的长,利用S阴影=S△BOD-S扇形DOE即可得答案.
【详解】
(1)连接
∵平分,
∴,
∵ ,
∴,
∴,
∴OD//AC,
∴,
∴
又是的半径,
∴是的切线
(2)由题意得
∵是弧的中点
∴弧弧
∵
∴弧弧
∴弧弧弧
∴
在中
∵
∴
.
【点睛】
本题考查的是切线的判定、圆周角定理及扇形面积,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可;在同圆或等圆中,同弧或等弧所对的圆周角相等,都定义这条弧所对的圆心角的一半.熟练掌握相关定理及公式是解题关键.
21、李强以12米/分钟的速度攀登才能和庞亮同时到达山顶A
【解析】
过点A作AD⊥BC于点D,
在Rt△ADC中,
由得tanC=∴∠C=30°∴AD=AC=×240=120(米)
在Rt△ABD中,∠B=45°∴AB=AD=120(米)
120÷(240÷24)=120÷10=12(米/分钟)
答:李强以12米/分钟的速度攀登才能和庞亮同时到达山顶A
22、(1)y=-2x+31,(2)20≤x≤1
【解析】
试题分析:(1)根据函数图象经过点(20,300)和点(30,280),利用待定系数法即可求出y与x的函数关系式;
(2)根据试销期间销售单价不低于成本单价,也不高于每千克1元,结合草莓的成本价即可得出x的取值范围.
试题解析:
(1)设y与x的函数关系式为y=kx+b,根据题意,得:
解得:
∴y与x的函数解析式为y=-2x+31,
(2) ∵试销期间销售单价不低于成本单价,也不高于每千克1元,且草莓的成本为每千克20元,
∴自变量x的取值范围是20≤x≤1.
23、(1)w=(x﹣200)y=(x﹣200)(﹣2x+1)=﹣2x2+1400x﹣200000;(2)令w=﹣2x2+1400x﹣200000=40000,解得:x=300或x=400,故要使每月的利润为40000元,销售单价应定为300或400元;(3)y=﹣2x2+1400x﹣200000=﹣2(x﹣350)2+45000,当x=250时y=﹣2×2502+1400×250﹣200000=25000;故最高利润为45000元,最低利润为25000元.
【解析】
试题分析:(1)根据销售利润=每天的销售量×(销售单价-成本价),即可列出函数关系式;
(2)令y=40000代入解析式,求出满足条件的x的值即可;
(3)根据(1)得到销售利润的关系式,利用配方法可求最大值.
试题解析:
(1)由题意得:w=(x-200)y=(x-200)(-2x+1)=-2x2+1400x-200000;
(2)令w=-2x2+1400x-200000=40000,
解得:x=300或x=400,
故要使每月的利润为40000元,销售单价应定为300或400元;
(3)y=-2x2+1400x-200000=-2(x-350)2+45000,
当x=250时y=-2×2502+1400×250-200000=25000;
故最高利润为45000元,最低利润为25000元.
24、(1)
(2)(0,-1)
(3)(1,0)(9,0)
【解析】
(1)将A(−1,0)、C(0,−3)两点坐标代入抛物线y=ax2+bx−3a中,列方程组求a、b的值即可;
(2)将点D(m,−m−1)代入(1)中的抛物线解析式,求m的值,再根据对称性求点D关于直线BC对称的点D'的坐标;
(3)分两种情形①过点C作CP∥BD,交x轴于P,则∠PCB=∠CBD,②连接BD′,过点C作CP′∥BD′,交x轴于P′,分别求出直线CP和直线CP′的解析式即可解决问题.
【详解】
解:(1)将A(−1,0)、C(0,−3)代入抛物线y=ax2+bx−3a中,
得 ,
解得
∴y=x2−2x−3;
(2)将点D(m,−m−1)代入y=x2−2x−3中,得
m2−2m−3=−m−1,
解得m=2或−1,
∵点D(m,−m−1)在第四象限,
∴D(2,−3),
∵直线BC解析式为y=x−3,
∴∠BCD=∠BCO=45°,CD′=CD=2,OD′=3−2=1,
∴点D关于直线BC对称的点D'(0,−1);
(3)存在.满足条件的点P有两个.
①过点C作CP∥BD,交x轴于P,则∠PCB=∠CBD,
∵直线BD解析式为y=3x−9,
∵直线CP过点C,
∴直线CP的解析式为y=3x−3,
∴点P坐标(1,0),
②连接BD′,过点C作CP′∥BD′,交x轴于P′,
∴∠P′CB=∠D′BC,
根据对称性可知∠D′BC=∠CBD,
∴∠P′CB=∠CBD,
∵直线BD′的解析式为
∵直线CP′过点C,
∴直线CP′解析式为,
∴P′坐标为(9,0),
综上所述,满足条件的点P坐标为(1,0)或(9,0).
【点睛】
本题考查了二次函数的综合运用.关键是由已知条件求抛物线解析式,根据抛物线的对称性,直线BC的特殊性求点的坐标,学会分类讨论,不能漏解.
25、证明见解析.
【解析】
试题分析:先由平行四边形的性质得到∠B=∠D,AB=CD,再利用垂直的定义得到∠AEB=∠GFD=90°,根据“ASA”判定△AEB≌△GFD,从而得到AB=DC,所以有DG=DC.
试题解析:∵四边形ABCD为平行四边形,∴∠B=∠D,AB=CD,∵AE⊥BC,FG⊥CD,∴∠AEB=∠GFD=90°,在△AEB和△GFD中,∵∠B=∠D,BE=DF,∠AEB=∠GFD,∴△AEB≌△GFD,∴AB=DC,∴DG=DC.
考点:1.全等三角形的判定与性质;2.平行四边形的性质.
26、(1)小芳上山的速度为20m/min,爸爸上山的速度为28m/min;(2)爸爸下山时CD段的函数解析式为y=12x﹣288(24≤x≤40);(3)二人互相看不见的时间有7.1分钟.
【解析】
分析:(1)根据速度=路程÷时间可求出小芳上山的速度;根据速度=路程÷时间+小芳的速度可求出爸爸上山的速度;
(2)根据爸爸及小芳的速度结合点C的横坐标(6+24=30),可得出点C的坐标,由点D的横坐标比点E少4可得出点D的坐标,再根据点C、D的坐标利用待定系数法可求出CD段的函数解析式;
(3)根据点D、E的坐标利用待定系数法可求出DE段的函数解析式,分别求出CD、DE段纵坐标大于120时x的取值范围,结合两个时间段即可求出结论.
详解:(1)小芳上山的速度为120÷6=20(m/min),
爸爸上山的速度为120÷(21﹣6)+20=28(m/min).
答:小芳上山的速度为20m/min,爸爸上山的速度为28m/min.
(2)∵(28﹣20)×(24+6﹣21)=72(m),
∴点C的坐标为(30,72);
∵二人返回山下的时间相差4min,44﹣4=40(min),
∴点D的坐标为(40,192).
设爸爸下山时CD段的函数解析式为y=kx+b,
将C(30,72)、D(40,192)代入y=kx+b,
,解得:.
答:爸爸下山时CD段的函数解析式为y=12x﹣288(24≤x≤40).
(3)设DE段的函数解析式为y=mx+n,
将D(40,192)、E(44,0)代入y=mx+n,
,解得:,
∴DE段的函数解析式为y=﹣48x+2112(40≤x≤44).
当y=12x﹣288>120时,34<x≤40;
当y=﹣48x+2112>120时,40≤x<41.1.
41.1﹣34=7.1(min).
答:二人互相看不见的时间有7.1分钟.
点睛:本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)根据数量关系,列式计算;(2)根据点C、D的坐标,利用待定系数法求出CD段的函数解析式;(3)利用一次函数图象上点的坐标特征分别求出CD、DE段纵坐标大于120时x的取值范围.
27、(1)a=3,b=-2;(2) m≥8或m≤-2
【解析】
(1)把A点坐标代入反比例解析式确定出a的值,确定出A坐标,代入一次函数解析式求出b的值;(2)分别求出直线l1与x轴交于点D,再求出直线l2与x轴交于点B,从而得出直线l2与直线l1交于点C坐标,分两种情况进行讨论:①当S△ABC=S△BCD+S△ABD=6时,利用三角形的面积求出m的值,②当S△ABC=S△BCD−S△ABD=6时,利用三角形的面积求出m的值,从而得出m的取值范围.
【详解】
(1)∵点A在图象上
∴
∴a=3
∴A(3,1)
∵点A在y=x+b图象上
∴1=3+b
∴b=-2
∴解析式y=x-2
(2)设直线y=x-2与x轴的交点为D
∴D(2,0)
①当点C在点A的上方如图(1)
∵直线y=-x+m与x轴交点为B
∴B(m,0)(m>3)
∵直线y=-x+m与直线y=x-2相交于点C
∴
解得:
∴C
∵S△ABC=S△BCD-S△ABD≥6
∴
∴m≥8
②若点C在点A下方如图2
∵S△ABC=S△BCD+S△ABD≥6
∴
∴m≤-2
综上所述,m≥8或m≤-2
【点睛】
此题考查了一次函数与反比例函数的交点问题,三角形的面积,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.
广西贵港市港南区2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份广西贵港市港南区2021-2022学年中考数学最后冲刺模拟试卷含解析,共15页。试卷主要包含了﹣6的倒数是,某班7名女生的体重,估计5﹣的值应在等内容,欢迎下载使用。
2022年广西贵港市港北区重点中学中考数学最后冲刺模拟试卷含解析: 这是一份2022年广西贵港市港北区重点中学中考数学最后冲刺模拟试卷含解析,共19页。
2022届广西防城岗市防城区中考数学最后冲刺模拟试卷含解析: 这是一份2022届广西防城岗市防城区中考数学最后冲刺模拟试卷含解析,共22页。试卷主要包含了计算,﹣18的倒数是等内容,欢迎下载使用。