2022届合肥蜀山区五校联考中考数学最后冲刺模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列几何体中,俯视图为三角形的是( )
A. B. C. D.
2.如图,3个形状大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角为60°,A、B、C都在格点上,点D在过A、B、C三点的圆弧上,若也在格点上,且∠AED=∠ACD,则∠AEC 度数为 ( )
A.75° B.60° C.45° D.30°
3.如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是
A.点A和点C B.点B和点D
C.点A和点D D.点B和点C
4.某校今年共毕业生297人,其中女生人数为男生人数的65%,则该校今年的女毕业生有()
A.180人 B.117人 C.215人 D.257人
5.下列计算中,错误的是( )
A.; B.; C.; D..
6.已知等边三角形的内切圆半径,外接圆半径和高的比是( )
A.1:2: B.2:3:4 C.1::2 D.1:2:3
7.某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资,今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会( )
A.平均数和中位数不变 B.平均数增加,中位数不变
C.平均数不变,中位数增加 D.平均数和中位数都增大
8.下列事件是确定事件的是( )
A.阴天一定会下雨
B.黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门
C.打开电视机,任选一个频道,屏幕上正在播放新闻联播
D.在五个抽屉中任意放入6本书,则至少有一个抽屉里有两本书
9.一、单选题
点P(2,﹣1)关于原点对称的点P′的坐标是( )
A.(﹣2,1) B.(﹣2,﹣1) C.(﹣1,2) D.(1,﹣2)
10.下列命题中错误的有( )个
(1)等腰三角形的两个底角相等
(2)对角线相等且互相垂直的四边形是正方形
(3)对角线相等的四边形为矩形
(4)圆的切线垂直于半径
(5)平分弦的直径垂直于弦
A.1 B.2 C.3 D.4
二、填空题(共7小题,每小题3分,满分21分)
11.设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB的面积记为S2;…,依此类推,则Sn可表示为________.(用含n的代数式表示,其中n为正整数)
12.让我们轻松一下,做一个数字游戏:
第一步:取一个自然数,计算得;
第二步:算出的各位数字之和得,计算得;
第三步:算出的各位数字之和得,再计算得;
依此类推,则____________
13.分解因式:__________.
14.如图,正方形ABCD和正方形OEFG中, 点A和点F的坐标分别为 (3,2),(-1,-1),则两个正方形的位似中心的坐标是_________.
15.比较大小: .(填“>”,“<”或“=”)
16.若一次函数y=kx﹣1(k是常数,k≠0)的图象经过第一、三、四象限,则是k的值可以是_____.(写出一个即可).
17.一组数:2,1,3,,7,,23,…,满足“从第三个数起,前两个数依次为、,紧随其后的数就是”,例如这组数中的第三个数“3”是由“”得到的,那么这组数中表示的数为______.
三、解答题(共7小题,满分69分)
18.(10分)已知如图,直线y=﹣ x+4 与x轴相交于点A,与直线y= x相交于点P.
(1)求点P的坐标;
(2)动点E从原点O出发,沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时, F的坐标为(a,0),矩形EBOF与△OPA重叠部分的面积为S.直接写出: S与a之间的函数关系式
(3)若点M在直线OP上,在平面内是否存在一点Q,使以A,P,M,Q为顶点的四边形为矩形且满足矩形两边AP:PM之比为1: 若存在直接写出Q点坐标。若不存在请说明理由。
19.(5分)下表中给出了变量x,与y=ax2,y=ax2+bx+c之间的部分对应值,(表格中的符号“…”表示该项数据已丢失)
x
﹣1
0
1
ax2
…
…
1
ax2+bx+c
7
2
…
(1)求抛物线y=ax2+bx+c的表达式
(2)抛物线y=ax2+bx+c的顶点为D,与y轴的交点为A,点M是抛物线对称轴上一点,直线AM交对称轴右侧的抛物线于点B,当△ADM与△BDM的面积比为2:3时,求B点坐标;
(3)在(2)的条件下,设线段BD与x轴交于点C,试写出∠BAD和∠DCO的数量关系,并说明理由.
20.(8分)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.
21.(10分)如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.
22.(10分)计算:.
23.(12分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道上确定点D,使CD与垂直,测得CD的长等于21米,在上点D的同侧取点A、B,使∠CAD=30,∠CBD=60.
(1)求AB的长(精确到0.1米,参考数据:);
(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.
24.(14分)如图,在四边形中,为一条对角线,,,.为的中点,连结.
(1)求证:四边形为菱形;
(2)连结,若平分,,求的长.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
俯视图是从上面所看到的图形,可根据各几何体的特点进行判断.
【详解】
A.圆锥的俯视图是圆,中间有一点,故本选项不符合题意,
B.几何体的俯视图是长方形,故本选项不符合题意,
C.三棱柱的俯视图是三角形,故本选项符合题意,
D.圆台的俯视图是圆环,故本选项不符合题意,
故选C.
【点睛】
此题主要考查了由几何体判断三视图,正确把握观察角度是解题关键.
2、B
【解析】
将圆补充完整,利用圆周角定理找出点E的位置,再根据菱形的性质即可得出△CME为等边三角形,进而即可得出∠AEC的值.
【详解】
将圆补充完整,找出点E的位置,如图所示.
∵弧AD所对的圆周角为∠ACD、∠AEC,
∴图中所标点E符合题意.
∵四边形∠CMEN为菱形,且∠CME=60°,
∴△CME为等边三角形,
∴∠AEC=60°.
故选B.
【点睛】
本题考查了菱形的性质、等边三角形的判定依据圆周角定理,根据圆周角定理结合图形找出点E的位置是解题的关键.
3、C
【解析】
根据相反数的定义进行解答即可.
【详解】
解:由A表示-2,B表示-1,C表示0.75,D表示2.
根据相反数和为0的特点,可确定点A和点D表示互为相反数的点.
故答案为C.
【点睛】
本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.
4、B
【解析】
设男生为x人,则女生有65%x人,根据今年共毕业生297人列方程求解即可.
【详解】
设男生为x人,则女生有65%x人,由题意得,
x+65%x=297,
解之得
x=180,
297-180=117人.
故选B.
【点睛】
本题考查了一元一次方程的应用,根据题意找出等量关系列出方程是解答本题的关键.
5、B
【解析】
分析:根据零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义作答即可.
详解:A.,故A正确;
B.,故B错误;
C..故C正确;
D.,故D正确;
故选B.
点睛:本题考查了零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义,需熟练掌握且区分清楚,才不容易出错.
6、D
【解析】
试题分析:图中内切圆半径是OD,外接圆的半径是OC,高是AD,因而AD=OC+OD;
在直角△OCD中,∠DOC=60°,则OD:OC=1:2,因而OD:OC:AD=1:2:1,
所以内切圆半径,外接圆半径和高的比是1:2:1.故选D.
考点:正多边形和圆.
7、B
【解析】
本题考查统计的有关知识,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,平均数是指在一组数据中所有数据之和再除以数据的个数.
【详解】
解:设这家公司除经理外50名员工的工资和为a元,则这家公司所有员工去年工资的平均数是元,今年工资的平均数是元,显然
;
由于这51个数据按从小到大的顺序排列的次序完全没有变化,所以中位数不变.
故选B.
【点睛】
本题主要考查了平均数,中位数的概念,要掌握这些基本概念才能熟练解题.同时注意到个别数据对平均数的影响较大,而对中位数和众数没影响.
8、D
【解析】
试题分析:找到一定发生或一定不发生的事件即可.
A、阴天一定会下雨,是随机事件;
B、黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门,是随机事件;
C、打开电视机,任选一个频道,屏幕上正在播放新闻联播,是随机事件;
D、在学校操场上向上抛出的篮球一定会下落,是必然事件.
故选D.
考点:随机事件.
9、A
【解析】
根据“关于原点对称的点,横坐标与纵坐标都互为相反数”解答.
【详解】
解:点P(2,-1)关于原点对称的点的坐标是(-2,1).
故选A.
【点睛】
本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.
10、D
【解析】分析:根据等腰三角形的性质、正方形的判定定理、矩形的判定定理、切线的性质、垂径定理判断即可.
详解:等腰三角形的两个底角相等,(1)正确;
对角线相等、互相平分且互相垂直的四边形是正方形,(2)错误;
对角线相等的平行四边形为矩形,(3)错误;
圆的切线垂直于过切点的半径,(4)错误;
平分弦(不是直径)的直径垂直于弦,(5)错误.
故选D.
点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
试题解析:如图,连接D1E1,设AD1、BE1交于点M,
∵AE1:AC=1:(n+1),
∴S△ABE1:S△ABC=1:(n+1),
∴S△ABE1=,
∵,
∴,
∴S△ABM:S△ABE1=(n+1):(2n+1),
∴S△ABM:=(n+1):(2n+1),
∴Sn=.
故答案为.
12、1
【解析】
根据题意可以分别求得a1,a2,a3,a4,从而可以发现这组数据的特点,三个一循环,从而可以求得a2019的值.
【详解】
解:由题意可得,
a1=52+1=26,
a2=(2+6)2+1=65,
a3=(6+5)2+1=1,
a4=(1+2+2)2+1=26,
…
∴2019÷3=673,
∴a2019= a3=1,
故答案为:1.
【点睛】
本题考查数字变化类规律探索,解题的关键是明确题意,求出前几个数,观察数的变化特点,求出a2019的值.
13、3(m-1)2
【解析】
试题分析:根据因式分解的方法,先提公因式,再根据完全平方公式分解因式即可,即3m2-6m+3=3(m2-2m+1)=3(m-1)2.
故答案为:3(m-1)2
点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解).
14、(1,0);(﹣5,﹣2).
【解析】
本题主要考查位似变换中对应点的坐标的变化规律.因而本题应分两种情况讨论,一种是当E和C是对应顶点,G和A是对应顶点;另一种是A和E是对应顶点,C和G是对应顶点.
【详解】
∵正方形ABCD和正方形OEFG中A和点F的坐标分别为(3,2),(-1,-1),
∴E(-1,0)、G(0,-1)、D(5,2)、B(3,0)、C(5,0),
(1)当E和C是对应顶点,G和A是对应顶点时,位似中心就是EC与AG的交点,
设AG所在直线的解析式为y=kx+b(k≠0),
∴,解得.
∴此函数的解析式为y=x-1,与EC的交点坐标是(1,0);
(2)当A和E是对应顶点,C和G是对应顶点时,位似中心就是AE与CG的交点,
设AE所在直线的解析式为y=kx+b(k≠0),
,解得,
故此一次函数的解析式为…①,
同理,设CG所在直线的解析式为y=kx+b(k≠0),
,解得,
故此直线的解析式为…②
联立①②得
解得,故AE与CG的交点坐标是(-5,-2).
故答案为:(1,0)、(-5,-2).
15、>
【解析】
试题分析:根据二次根式的性质可知,被开方数越大,所对应的二次根式就越大,因此可判断与=1的大小为>1.
考点:二次根式的大小比较
16、1
【解析】
由一次函数图象经过第一、三、四象限,可知k>0,﹣1<0,在范围内确定k的值即可.
【详解】
解:因为一次函数y=kx﹣1(k是常数,k≠0)的图象经过第一、三、四象限,所以k>0,﹣1<0,所以k可以取1.
故答案为1.
【点睛】
根据一次函数图象所经过的象限,可确定一次项系数,常数项的值的符号,从而确定字母k的取值范围.
17、-9.
【解析】
根据题中给出的运算法则按照顺序求解即可.
【详解】
解:根据题意,得:,.
故答案为:-9.
【点睛】
本题考查了有理数的运算,理解题意、弄清题目给出的运算法则是正确解题的关键.
三、解答题(共7小题,满分69分)
18、(1); (2);(3)
【解析】
(1)联立两直线解析式,求出交点P坐标即可;
(2)由F坐标确定出OF的长,得到E的横坐标为a,代入直线OP解析式表示出E纵坐标,即为EF的长,分两种情况考虑:当时,矩形EBOF与三角形OPA重叠部分为直角三角形OEF,表示出三角形OEF面积S与a的函数关系式;当时,重合部分为直角梯形面积,求出S与a函数关系式.
(3)根据(1)所求,先求得A点坐标,再确定AP和PM的长度分别是2和2,又由OP=2,得到P怎么平移会得到M,按同样的方法平移A即可得到Q.
【详解】
解:(1)联立得:,解得:;
∴P的坐标为;
(2)分两种情况考虑:
当时,由F坐标为(a,0),得到OF=a,
把E横坐标为a,代入得:即
此时
当时,重合的面积就是梯形面积,
F点的横坐标为a,所以E点纵坐标为
M点横坐标为:-3a+12,
∴
所以;
(3)令中的y=0,解得:x=4,则A的坐标为(4,0)
则AP= ,则PM=2
又∵OP=
∴点P向左平移3个单位在向下平移可以得到M1
点P向右平移3个单位在向上平移可以得到M2
∴A向左平移3个单位在向下平移可以得到 Q1(1,-)
A向右平移3个单位在向上平移可以得到 Q1(7,)
所以,存在Q点,且坐标是
【点睛】
本题考查一次函数综合题、勾股定理以及逆定理、矩形的性质、全等三角形的判定和性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.
19、 (1) y=x2﹣4x+2;(2) 点B的坐标为(5,7);(1)∠BAD和∠DCO互补,理由详见解析.
【解析】
(1)由(1,1)在抛物线y=ax2上可求出a值,再由(﹣1,7)、(0,2)在抛物线y=x2+bx+c上可求出b、c的值,此题得解;
(2)由△ADM和△BDM同底可得出两三角形的面积比等于高的比,结合点A的坐标即可求出点B的横坐标,再利用二次函数图象上点的坐标特征即可求出点B的坐标;
(1)利用二次函数图象上点的坐标特征可求出A、D的坐标,过点A作AN∥x轴,交BD于点N,则∠AND=∠DCO,根据点B、D的坐标利用待定系数法可求出直线BD的解析式,利用一次函数图象上点的坐标特征可求出点N的坐标,利用两点间的距离公式可求出BA、BD、BN的长度,由三者间的关系结合∠ABD=∠NBA,可证出△ABD∽△NBA,根据相似三角形的性质可得出∠ANB=∠DAB,再由∠ANB+∠AND=120°可得出∠DAB+∠DCO=120°,即∠BAD和∠DCO互补.
【详解】
(1)当x=1时,y=ax2=1,
解得:a=1;
将(﹣1,7)、(0,2)代入y=x2+bx+c,得:
,解得:,
∴抛物线的表达式为y=x2﹣4x+2;
(2)∵△ADM和△BDM同底,且△ADM与△BDM的面积比为2:1,
∴点A到抛物线的距离与点B到抛物线的距离比为2:1.
∵抛物线y=x2﹣4x+2的对称轴为直线x=﹣=2,点A的横坐标为0,
∴点B到抛物线的距离为1,
∴点B的横坐标为1+2=5,
∴点B的坐标为(5,7).
(1)∠BAD和∠DCO互补,理由如下:
当x=0时,y=x2﹣4x+2=2,
∴点A的坐标为(0,2),
∵y=x2﹣4x+2=(x﹣2)2﹣2,
∴点D的坐标为(2,﹣2).
过点A作AN∥x轴,交BD于点N,则∠AND=∠DCO,如图所示.
设直线BD的表达式为y=mx+n(m≠0),
将B(5,7)、D(2,﹣2)代入y=mx+n,
,解得:,
∴直线BD的表达式为y=1x﹣2.
当y=2时,有1x﹣2=2,
解得:x=,
∴点N的坐标为(,2).
∵A(0,2),B(5,7),D(2,﹣2),
∴AB=5,BD=1,BN=,
∴==.
又∵∠ABD=∠NBA,
∴△ABD∽△NBA,
∴∠ANB=∠DAB.
∵∠ANB+∠AND=120°,
∴∠DAB+∠DCO=120°,
∴∠BAD和∠DCO互补.
【点睛】
本题是二次函数综合题,考查了待定系数法求二次函数和一次函数解析式、等底三角形面积的关系、二次函数的图像与性质、相似三角形的判定与性质.熟练掌握待定系数法是解(1)的关键;熟练掌握等底三角形面积的关系式解(2)的关键;证明△ABD∽△NBA是解(1)的关键.
20、∠DAC=20°.
【解析】
根据角平分线的定义可得∠ABC=2∠ABE,再根据直角三角形两锐角互余求出∠BAD,然后根据∠DAC=∠BAC﹣∠BAD计算即可得解.
【详解】
∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°.
∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.
【点睛】
本题考查了三角形的内角和定理,角平分线的定义,准确识图理清图中各角度之间的关系是解题的关键.
21、证明过程见解析
【解析】
要证明BE=CD,只要证明AB=AC即可,由条件可以求得△AEC和△ADB全等,从而可以证得结论.
【详解】
∵BD⊥AC于点D,CE⊥AB于点E,
∴∠ADB=∠AEC=90°,
在△ADB和△AEC中,
∴△ADB≌△AEC(ASA)
∴AB=AC,
又∵AD=AE,
∴BE=CD.
考点:全等三角形的判定与性质.
22、
【解析】
直接利用负整数指数幂的性质以及绝对值的性质、零指数幂的性质以及特殊角的三角函数值化简进而得出答案.
【详解】
原式=9﹣2+1﹣2=.
【点睛】
本题考查了实数运算,正确化简各数是解题的关键.
23、(1)24.2米(2) 超速,理由见解析
【解析】
(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长.
(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.
【详解】
解:(1)由題意得,
在Rt△ADC中,,
在Rt△BDC中,,
∴AB=AD-BD=(米).
(2)∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),
∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.
∵43.56千米/小时大于40千米/小时,
∴此校车在AB路段超速.
24、(1)证明见解析;(2)AC=;
【解析】
(1)由DE=BC,DE∥BC,推出四边形BCDE是平行四边形,再证明BE=DE即可解决问题;
(2)只要证明△ACD是直角三角形,∠ADC=60°,AD=2即可解决问题;
【详解】
(1)证明:∵AD=2BC,E为AD的中点,
∴DE=BC,
∵AD∥BC,
∴四边形BCDE是平行四边形,
∵∠ABD=90°,AE=DE,
∴BE=DE,
∴四边形BCDE是菱形.
(2)连接AC,如图所示:
∵∠ADB=30°,∠ABD=90°,
∴AD=2AB,
∵AD=2BC,
∴AB=BC,
∴∠BAC=∠BCA,
∵AD∥BC,
∴∠DAC=∠BCA,
∴∠CAB=∠CAD=30°
∴AB=BC=DC=1,AD=2BC=2,
∵∠DAC=30°,∠ADC=60°,
在Rt△ACD中,AC=.
【点睛】
考查菱形的判定和性质、直角三角形斜边中线的性质、锐角三角函数等知识,解题的关键是熟练掌握菱形的判定方法.
2022年上海市闵行区24校联考中考数学最后冲刺模拟试卷含解析: 这是一份2022年上海市闵行区24校联考中考数学最后冲刺模拟试卷含解析
2022届陕西省西安市五校中考数学最后冲刺模拟试卷含解析: 这是一份2022届陕西省西安市五校中考数学最后冲刺模拟试卷含解析,共21页。试卷主要包含了下列运算正确的是,4的平方根是等内容,欢迎下载使用。
2022届山东省枣庄薛城区五校联考中考数学最后冲刺模拟试卷含解析: 这是一份2022届山东省枣庄薛城区五校联考中考数学最后冲刺模拟试卷含解析,共21页。试卷主要包含了如果,那么的值为等内容,欢迎下载使用。