搜索
    上传资料 赚现金
    英语朗读宝

    2022届河北省保定市乐凯中学中考数学模拟预测试卷含解析

    2022届河北省保定市乐凯中学中考数学模拟预测试卷含解析第1页
    2022届河北省保定市乐凯中学中考数学模拟预测试卷含解析第2页
    2022届河北省保定市乐凯中学中考数学模拟预测试卷含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届河北省保定市乐凯中学中考数学模拟预测试卷含解析

    展开

    这是一份2022届河北省保定市乐凯中学中考数学模拟预测试卷含解析,共23页。试卷主要包含了下列说法错误的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°度后得到△AB′C′,点B经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是( )

    A. B. C. D.π
    2.若二次函数y=ax2+bx+c的x与y的部分对应值如下表:
    x
    ﹣2
    ﹣1
    0
    1
    2
    y
    8
    3
    0
    ﹣1
    0
    则抛物线的顶点坐标是(  )
    A.(﹣1,3) B.(0,0) C.(1,﹣1) D.(2,0)
    3.在0,π,﹣3,0.6,这5个实数中,无理数的个数为(  )
    A.1个 B.2个 C.3个 D.4个
    4.如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,…按此规律作下去,若∠A1B1O=α,则∠A10B10O=(  )

    A. B. C. D.
    5.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:
    t
    0
    1
    2
    3
    4
    5
    6
    7

    h
    0
    8
    14
    18
    20
    20
    18
    14

    下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m. 其中正确结论的个数是( )
    A.1 B.2 C.3 D.4
    6.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A,B在围成的正方体中的距离是(  )

    A.0 B.1 C. D.
    7.商场将某种商品按原价的8折出售,仍可获利20元.已知这种商品的进价为140元,那么这种商品的原价是(  )
    A.160元 B.180元 C.200元 D.220元
    8.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得(  )
    A.
    B.
    C.
    D.
    9.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是(  )

    A.15° B.22.5° C.30° D.45°
    10.下列说法错误的是( )
    A.必然事件的概率为1
    B.数据1、2、2、3的平均数是2
    C.数据5、2、﹣3、0的极差是8
    D.如果某种游戏活动的中奖率为40%,那么参加这种活动10次必有4次中奖
    11.计算的正确结果是(  )
    A. B.- C.1 D.﹣1
    12.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为40km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法不正确的是( )

    A.甲的速度是10km/h B.乙的速度是20km/h
    C.乙出发h后与甲相遇 D.甲比乙晚到B地2h
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.在Rt△ABC中,∠C=90°,AB=6,cosB=,则BC的长为_____.
    14.如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,),∠OCB=60°,∠COB=45°,则OC= .

    15.某班有54名学生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新学期准备调整座位,设某个学生原来的座位为(m,n),如果调整后的座位为(i,j),则称该生作了平移[a,b]=[m - i,n - j],并称a+b为该生的位置数.若某生的位置数为10,则当m+n取最小值时,m•n的最大值为_____________.
    16.若分式方程有增根,则m的值为______.
    17.如图,直线y=x+2与反比例函数y=的图象在第一象限交于点P.若OP=,则k的值为________.

    18.为参加2018年“宜宾市初中毕业生升学体育考试”,小聪同学每天进行立定跳远练习,并记录下其中7天的最好成绩(单位:m)分别为:2.21,2.12,2.1,2.39,2.1,2.40,2.1.这组数据的中位数和众数分别是_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E.
    (1)求证:直线CE是⊙O的切线.
    (2)若BC=3,CD=3,求弦AD的长.

    20.(6分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.若某天该商品每件降价3元,当天可获利多少元?设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?
    21.(6分)(1)计算:
    (2)化简:
    22.(8分)计算:(π﹣1)0+|﹣1|﹣÷+(﹣1)﹣1.
    23.(8分)如图,在▱ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,AE=AF.
    (1)求证:四边形ABCD是菱形;
    (2)若∠EAF=60°,CF=2,求AF的长.

    24.(10分)如图①,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.

    (1)求证:BN平分∠ABE;
    (2)若BD=1,连结DN,当四边形DNBC为平行四边形时,求线段BC的长;
    (3)如图②,若点F为AB的中点,连结FN、FM,求证:△MFN∽△BDC.
    25.(10分)如图所示,内接于圆O,于D;
    (1)如图1,当AB为直径,求证:;
    (2)如图2,当AB为非直径的弦,连接OB,则(1)的结论是否成立?若成立请证明,不成立说明由;
    (3)如图3,在(2)的条件下,作于E,交CD于点F,连接ED,且,若,,求CF的长度.

    26.(12分)如图,已知点E,F分别是▱ABCD的对角线BD所在直线上的两点,BF=DE,连接AE,CF,求证:CF=AE,CF∥AE.

    27.(12分)新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w元.
    (1)求w与x之间的函数关系式;
    (2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
    (3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    试题解析:如图,
    ∵在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=1,
    ∴BC=ACtan60°=1×=,AB=2
    ∴S△ABC=AC•BC=.
    根据旋转的性质知△ABC≌△AB′C′,则S△ABC=S△AB′C′,AB=AB′.
    ∴S阴影=S扇形ABB′+S△AB′C′-S△ABC
    =
    =.
    故选A.
    考点:1.扇形面积的计算;2.旋转的性质.
    2、C
    【解析】
    分析:由表中所给数据,可求得二次函数解析式,则可求得其顶点坐标.
    详解:当或时,,当时,,
    ,解得 ,
    二次函数解析式为,
    抛物线的顶点坐标为,
    故选C.
    点睛:本题主要考查二次函数的性质,利用条件求得二次函数的解析式是解题的关键.
    3、B
    【解析】
    分别根据无理数、有理数的定义逐一判断即可得.
    【详解】
    解:在0,π,-3,0.6,这5个实数中,无理数有π、这2个,
    故选B.
    【点睛】
    此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.
    4、B
    【解析】
    根据等腰三角形两底角相等用α表示出∠A2B2O,依此类推即可得到结论.
    【详解】
    ∵B1A2=B1B2,∠A1B1O=α,
    ∴∠A2B2O=α,
    同理∠A3B3O=×α=α,
    ∠A4B4O=α,
    ∴∠AnBnO=α,
    ∴∠A10B10O=,
    故选B.
    【点睛】
    本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键.
    5、B
    【解析】
    试题解析:由题意,抛物线的解析式为y=ax(x﹣9),把(1,8)代入可得a=﹣1,∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故①错误,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,∵t=1.5时,y=11.25,故④错误,∴正确的有②③,故选B.
    6、C
    【解析】
    试题分析: 本题考查了勾股定理、展开图折叠成几何体、正方形的性质;熟练掌握正方形的性质和勾股定理,并能进行推理计算是解决问题的关键.由正方形的性质和勾股定理求出AB的长,即可得出结果.
    解:连接AB,如图所示:
    根据题意得:∠ACB=90°,
    由勾股定理得:AB==;
    故选C.

    考点:1.勾股定理;2.展开图折叠成几何体.
    7、C
    【解析】
    利用打折是在标价的基础之上,利润是在进价的基础上,进而得出等式求出即可.
    【详解】
    解:设原价为x元,根据题意可得:
    80%x=140+20,
    解得:x=1.
    所以该商品的原价为1元;
    故选:C.
    【点睛】
    此题主要考查了一元一次方程的应用,根据题意列出方程是解决问题的关键.
    8、D
    【解析】
    根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.
    【详解】
    设每枚黄金重x两,每枚白银重y两,
    由题意得:,
    故选:D.
    【点睛】
    此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.
    9、A
    【解析】
    试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.

    考点:平行线的性质.
    10、D
    【解析】
    试题分析:A.概率值反映了事件发生的机会的大小,必然事件是一定发生的事件,所以概率为1,本项正确;
    B.数据1、2、2、3的平均数是=2,本项正确;
    C.这些数据的极差为5﹣(﹣3)=8,故本项正确;
    D.某种游戏活动的中奖率为40%,属于不确定事件,可能中奖,也可能不中奖,故本说法错误,
    故选D.
    考点:1.概率的意义;2.算术平均数;3.极差;4.随机事件
    11、D
    【解析】
    根据有理数加法的运算方法,求出算式的正确结果是多少即可.
    【详解】
    原式
    故选:D.
    【点睛】
    此题主要考查了有理数的加法的运算方法,要熟练掌握,解答此题的关键是要明确:
    ①同号相加,取相同符号,并把绝对值相加.②绝对值不等的异号加减,取绝对值较大的加
    数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得1.③一个数同
    1相加,仍得这个数.
    12、B
    【解析】
    由图可知,甲用4小时走完全程40km,可得速度为10km/h;
    乙比甲晚出发一小时,用1小时走完全程,可得速度为40km/h.
    故选B

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、4
    【解析】
    根据锐角的余弦值等于邻边比对边列式求解即可.
    【详解】
    ∵∠C=90°,AB=6,
    ∴,
    ∴BC=4.
    【点睛】
    本题考查了勾股定理和锐角三角函数的概念,熟练掌握锐角三角函数的定义是解答本题的关键.在Rt△ABC中, , ,.
    14、1+
    【解析】
    试题分析:连接AB,由圆周角定理知AB必过圆心M,Rt△ABO中,易知∠BAO=∠OCB=60°,已知了OA=,即可求得OB的长;
    过B作BD⊥OC,通过解直角三角形即可求得OD、BD、CD的长,进而由OC=OD+CD求出OC的长.
    解:连接AB,则AB为⊙M的直径.
    Rt△ABO中,∠BAO=∠OCB=60°,
    ∴OB=OA=×=.
    过B作BD⊥OC于D.
    Rt△OBD中,∠COB=45°,
    则OD=BD=OB=.
    Rt△BCD中,∠OCB=60°,
    则CD=BD=1.
    ∴OC=CD+OD=1+.
    故答案为1+.

    点评:此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键.
    15、36
    【解析】
    10=a+b=(m-i)+(n-j)=(m+n)-(i+j)
    所以:m+n=10+i+j
    当(m+n)取最小值时,(i+j)也必须最小,所以i和j都是2,这样才能(i+j)才能最小,因此:
    m+n=10+2=12
    也就是:当m+n=12时,m·n最大是多少?这就容易了:
    m·n

    相关试卷

    2022年河北省保定市乐凯中学中考数学最后冲刺浓缩精华卷含解析:

    这是一份2022年河北省保定市乐凯中学中考数学最后冲刺浓缩精华卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2022年河北省保定市乐凯中学中考猜题数学试卷含解析:

    这是一份2022年河北省保定市乐凯中学中考猜题数学试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,计算,下列代数运算正确的是等内容,欢迎下载使用。

    河北省保定市定州市达标名校2021-2022学年中考数学模拟预测试卷含解析:

    这是一份河北省保定市定州市达标名校2021-2022学年中考数学模拟预测试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,如图所示,在平面直角坐标系中A等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map