|试卷下载
搜索
    上传资料 赚现金
    2022届贵州省毕节市黔西县中考五模数学试题含解析
    立即下载
    加入资料篮
    2022届贵州省毕节市黔西县中考五模数学试题含解析01
    2022届贵州省毕节市黔西县中考五模数学试题含解析02
    2022届贵州省毕节市黔西县中考五模数学试题含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届贵州省毕节市黔西县中考五模数学试题含解析

    展开
    这是一份2022届贵州省毕节市黔西县中考五模数学试题含解析,共19页。试卷主要包含了下列命题是真命题的是,定义,下列命题是假命题的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.某工厂计划生产210个零件,由于采用新技术,实际每天生产零件的数量是原计划的1.5倍,因此提前5天完成任务.设原计划每天生产零件个,依题意列方程为( )
    A. B.
    C. D.
    2.一副直角三角板如图放置,其中,,,点F在CB的延长线上若,则等于( )

    A.35° B.25° C.30° D.15°
    3.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为( )

    A.2+ B.2+2 C.4 D.3
    4.如图,已知函数与的图象在第二象限交于点,点在的图象上,且点B在以O点为圆心,OA为半径的上,则k的值为  

    A. B. C. D.
    5.下列命题是真命题的是(  )
    A.一组对边平行,另一组对边相等的四边形是平行四边形
    B.两条对角线相等的四边形是平行四边形
    C.两组对边分别相等的四边形是平行四边形
    D.平行四边形既是中心对称图形,又是轴对称图形
    6.定义:一个自然数,右边的数字总比左边的数字小,我们称之为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为( )
    A. B. C. D.
    7.下列命题是假命题的是(  )
    A.有一个外角是120°的等腰三角形是等边三角形
    B.等边三角形有3条对称轴
    C.有两边和一角对应相等的两个三角形全等
    D.有一边对应相等的两个等边三角形全等
    8.在同一坐标系中,反比例函数y=与二次函数y=kx2+k(k≠0)的图象可能为(  )
    A. B.
    C. D.
    9.若代数式有意义,则实数x的取值范围是(  )
    A.x>0 B.x≥0 C.x≠0 D.任意实数
    10.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6,则S6的值为(  )
    A. B.2 C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为_______.

    12.如果抛物线y=ax2+5的顶点是它的最低点,那么a的取值范围是_____.
    13.把多项式a3-2a2+a分解因式的结果是
    14.二次函数y=(a-1)x2-x+a2-1 的图象经过原点,则a的值为______.
    15.若关于的一元二次方程有实数根,则的取值范围是________.
    16.江苏省的面积约为101 600km1,这个数据用科学记数法可表示为_______km1.
    三、解答题(共8题,共72分)
    17.(8分)在正方形 ABCD 中,M 是 BC 边上一点,且点 M 不与 B、C 重合,点 P 在射线 AM 上,将线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ,连接BP,DQ.

    (1)依题意补全图 1;
    (2)①连接 DP,若点 P,Q,D 恰好在同一条直线上,求证:DP2+DQ2=2AB2;
    ②若点 P,Q,C 恰好在同一条直线上,则 BP 与 AB 的数量关系为: .
    18.(8分)今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.
    (1)求温馨提示牌和垃圾箱的单价各是多少元?
    (2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?
    19.(8分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:当轿车刚到乙地时,此时货车距离乙地   千米;当轿车与货车相遇时,求此时x的值;在两车行驶过程中,当轿车与货车相距20千米时,求x的值.

    20.(8分)如图,在△ABC中,AB=AC=4,∠A=36°.在AC边上确定点D,使得△ABD与△BCD都是等腰三角形,并求BC的长(要求:尺规作图,保留作图痕迹,不写作法)

    21.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.求证:△ADE∽△ABC;若AD=3,AB=5,求的值.

    22.(10分)如图,一位测量人员,要测量池塘的宽度 的长,他过 两点画两条相交于点 的射线,在射线上取两点 ,使 ,若测得 米,他能求出 之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.

    23.(12分)在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.表示出所有可能出现的结果;小黄和小石做游戏,制定了两个游戏规则:
    规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.
    规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢.
    小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.
    24.如图,在平面直角坐标系xOy中,已知正比例函数与一次函数的图像交于点A,
    (1)求点A的坐标;
    (2)设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交和的图像于点B、C,连接OC,若BC=OA,求△OBC的面积.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    设原计划每天生产零件x个,则实际每天生产零件为1.5x个,根据提前5天完成任务,列方程即可.
    【详解】
    设原计划每天生产零件x个,则实际每天生产零件为1.5x个,
    由题意得,
    故选:A.
    【点睛】
    本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程即可.
    2、D
    【解析】
    直接利用三角板的特点,结合平行线的性质得出∠BDE=45°,进而得出答案.
    【详解】
    解:由题意可得:∠EDF=30°,∠ABC=45°,
    ∵DE∥CB,
    ∴∠BDE=∠ABC=45°,
    ∴∠BDF=45°-30°=15°.
    故选D.
    【点睛】
    此题主要考查了平行线的性质,根据平行线的性质得出∠BDE的度数是解题关键.
    3、B
    【解析】
    分析:根据线段垂直平分线的性质,把三角形的周长问题转化为线段和的问题解决即可.
    详解:∵DE垂直平分AB,
    ∴BE=AE,
    ∴AE+CE=BC=2,
    ∴△ACE的周长=AC+AE+CE=AC+BC=2+2,
    故选B.
    点睛:本题考查了等腰三角形性质和线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.
    4、A
    【解析】
    由题意,因为与反比例函数都是关于直线对称,推出A与B关于直线对称,推出,可得,求出m即可解决问题;
    【详解】
    函数与的图象在第二象限交于点,

    与反比例函数都是关于直线对称,
    与B关于直线对称,





    故选:A.
    【点睛】
    本题考查反比例函数与一次函数的交点问题,反比例函数的图像与性质,圆的对称性及轴对称的性质.解题的关键是灵活运用所学知识解决问题,本题的突破点是发现A,B关于直线对称.
    5、C
    【解析】
    根据平行四边形的五种判定定理(平行四边形的判定方法:①两组对边分别平行的四边形;②两组对角分别相等的四边形;③两组对边分别相等的四边形;④一组对边平行且相等的四边形;⑤对角线互相平分的四边形)和平行四边形的性质进行判断.
    【详解】
    A、一组对边平行,另一组对边相等的四边形不是平行四边形;故本选项错误;
    B、两条对角线互相平分的四边形是平行四边形.故本选项错误;
    C、两组对边分别相等的四边形是平行四边形.故本选项正确;
    D、平行四边形不是轴对称图形,是中心对称图形.故本选项错误;
    故选:C.
    【点睛】
    考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
    6、A
    【解析】
    分析:根据概率的求法,找准两点:①全部情况的总数:根据题意得知这样的两位数共有90个;
    ②符合条件的情况数目:从总数中找出符合条件的数共有45个;二者的比值就是其发生的概率.
    详解:两位数共有90个,下滑数有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45个,
    概率为.
    故选A.
    点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    7、C
    【解析】
    解:A. 外角为120°,则相邻的内角为60°,根据有一个角为60°的等腰三角形是等边三角形可以判断,故A选项正确;
    B. 等边三角形有3条对称轴,故B选项正确;
    C.当两个三角形中两边及一角对应相等时,其中如果角是这两边的夹角时,可用SAS来判定两个三角形全等,如果角是其中一边的对角时,则可不能判定这两个三角形全等,故此选项错误;
    D.利用SSS.可以判定三角形全等.故D选项正确;
    故选C.
    8、D
    【解析】
    根据k>0,k<0,结合两个函数的图象及其性质分类讨论.
    【详解】
    分两种情况讨论:
    ①当k<0时,反比例函数y=,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D符合;
    ②当k>0时,反比例函数y=,在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,都不符.
    分析可得:它们在同一直角坐标系中的图象大致是D.
    故选D.
    【点睛】
    本题主要考查二次函数、反比例函数的图象特点.
    9、C
    【解析】
    根据分式和二次根式有意义的条件进行解答.
    【详解】
    解:依题意得:x2≥1且x≠1.
    解得x≠1.
    故选C.
    【点睛】
    考查了分式有意义的条件和二次根式有意义的条件.解题时,注意分母不等于零且被开方数是非负数.
    10、C
    【解析】
    根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.
    【详解】
    如图所示,

    单位圆的半径为1,则其内接正六边形ABCDEF中,
    △AOB是边长为1的正三角形,
    所以正六边形ABCDEF的面积为
    S6=6××1×1×sin60°=.
    故选C.
    【点睛】
    本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    设⊙O半径为r,根据勾股定理列方程求出半径r,由勾股定理依次求BE和EC的长.
    【详解】
    连接BE,

    设⊙O半径为r,则OA=OD=r,OC=r-2,
    ∵OD⊥AB,
    ∴∠ACO=90°,
    AC=BC=AB=4,
    在Rt△ACO中,由勾股定理得:r2=42+(r-2)2,
    r=5,
    ∴AE=2r=10,
    ∵AE为⊙O的直径,
    ∴∠ABE=90°,
    由勾股定理得:BE=6,
    在Rt△ECB中,EC=.
    故答案是:.
    【点睛】
    考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.
    12、a>1 
    【解析】
    根据二次函数的图像,由抛物线y=ax2+5的顶点是它的最低点,知a>1,
    故答案为a>1.
    13、.
    【解析】
    要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,

    14、-1
    【解析】
    将(2,2)代入y=(a-1)x2-x+a2-1 即可得出a的值.
    【详解】
    解:∵二次函数y=(a-1)x2-x+a2-1 的图象经过原点,
    ∴a2-1=2,
    ∴a=±1,
    ∵a-1≠2,
    ∴a≠1,
    ∴a的值为-1.
    故答案为-1.
    【点睛】
    本题考查了二次函数图象上点的坐标特征,图象过原点,可得出x=2时,y=2.
    15、
    【解析】
    由题意可得,△=9-4m≥0,由此求得m的范围.
    【详解】
    ∵关于x的一元二次方程x2-3x+m=0有实数根,
    ∴△=9-4m≥0,
    求得 m≤.
    故答案为:
    【点睛】
    本题考核知识点:一元二次方程根判别式. 解题关键点:理解一元二次方程根判别式的意义.
    16、1.016×105
    【解析】
    科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂,
    【详解】
    解:101 600=1.016×105
    故答案为:1.016×105
    【点睛】
    本题考查科学计数法,掌握概念正确表示是本题的解题关键.

    三、解答题(共8题,共72分)
    17、(1)详见解析;(1)①详见解析;②BP=AB.
    【解析】
    (1)根据要求画出图形即可;
    (1)①连接BD,如图1,只要证明△ADQ≌△ABP,∠DPB=90°即可解决问题;
    ②结论:BP=AB,如图3中,连接AC,延长CD到N,使得DN=CD,连接AN,QN.由△ADQ≌△ABP,△ANQ≌△ACP,推出DQ=PB,∠AQN=∠APC=45°,由∠AQP=45°,推出∠NQC=90°,由CD=DN,可得DQ=CD=DN=AB;
    【详解】
    (1)解:补全图形如图 1:

    (1)①证明:连接 BD,如图 1,

    ∵线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ,
    ∴AQ=AP,∠QAP=90°,
    ∵四边形 ABCD 是正方形,
    ∴AD=AB,∠DAB=90°,
    ∴∠1=∠1.
    ∴△ADQ≌△ABP,
    ∴DQ=BP,∠Q=∠3,
    ∵在 Rt△QAP 中,∠Q+∠QPA=90°,
    ∴∠BPD=∠3+∠QPA=90°,
    ∵在 Rt△BPD 中,DP1+BP1=BD1, 又∵DQ=BP,BD1=1AB1,
    ∴DP1+DQ1=1AB1.
    ②解:结论:BP=AB.
    理由:如图 3 中,连接 AC,延长 CD 到 N,使得 DN=CD,连接 AN,QN.

    ∵△ADQ≌△ABP,△ANQ≌△ACP,
    ∴DQ=PB,∠AQN=∠APC=45°,
    ∵∠AQP=45°,
    ∴∠NQC=90°,
    ∵CD=DN,
    ∴DQ=CD=DN=AB,
    ∴PB=AB.
    【点睛】
    本题考查正方形的性质,旋转变换、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴
    18、(1)温馨提示牌和垃圾箱的单价各是50元和150元;(2)答案见解析
    【解析】
    (1)根据“购买2个温馨提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论;
    (2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论.
    【详解】
    (1)设温情提示牌的单价为x元,则垃圾箱的单价为3x元,
    根据题意得,2x+3×3x=550,
    ∴x=50,
    经检验,符合题意,
    ∴3x=150元,
    即:温馨提示牌和垃圾箱的单价各是50元和150元;
    (2)设购买温情提示牌y个(y为正整数),则垃圾箱为(100﹣y)个,
    根据题意得,意,

    ∵y为正整数,
    ∴y为50,51,52,共3中方案;
    有三种方案:①温馨提示牌50个,垃圾箱50个,
    ②温馨提示牌51个,垃圾箱49个,
    ③温馨提示牌52个,垃圾箱48个,
    设总费用为w元
    W=50y+150(100﹣y)=﹣100y+15000,
    ∵k=-100,∴w随y的增大而减小
    ∴当y=52时,所需资金最少,最少是9800元.
    【点睛】
    此题主要考查了一元一次不等式组,一元一次方程的应用,正确找出相等关系是解本题的关键.
    19、(1)30;(2)当x=3.9时,轿车与货车相遇;(3)在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时.
    【解析】
    (1)根据图象可知货车5小时行驶300千米,由此求出货车的速度为60千米/时,再根据图象得出货车出发后4.5小时轿车到达乙地,由此求出轿车到达乙地时,货车行驶的路程为270千米,而甲、乙两地相距300千米,则此时货车距乙地的路程为:300﹣270=30千米;
    (2)先求出线段CD对应的函数关系式,再根据两直线的交点即可解答;
    (3)分两种情形列出方程即可解决问题.
    【详解】
    解:(1)根据图象信息:货车的速度V货=,
    ∵轿车到达乙地的时间为货车出发后4.5小时,
    ∴轿车到达乙地时,货车行驶的路程为:4.5×60=270(千米),
    此时,货车距乙地的路程为:300﹣270=30(千米).
    所以轿车到达乙地后,货车距乙地30千米.
    故答案为30;
    (2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).
    ∵C(2.5,80),D(4.5,300)在其图象上,
    ,解得,
    ∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5);
    易得OA:y=60x,
    ,解得,
    ∴当x=3.9时,轿车与货车相遇;
    (3)当x=2.5时,y货=150,两车相距=150﹣80=70>20,
    由题意60x﹣(110x﹣195)=20或110x﹣195﹣60x=20,
    解得x=3.5或4.3小时.
    答:在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时.
    【点睛】
    本题考查了一次函数的应用,对一次函数图象的意义的理解,待定系数法求一次函数的解析式的运用,行程问题中路程=速度×时间的运用,本题有一定难度,其中求出货车与轿车的速度是解题的关键.
    20、
    【解析】
    作BD平分∠ABC交AC于D,则△ABD、△BCD、△ABC均为等腰三角形,依据相似三角形的性质即可得出BC的长.
    【详解】
    如图所示,作BD平分∠ABC交AC于D,则△ABD、△BCD、△ABC均为等腰三角形,

    ∵∠A=∠CBD=36°,∠C=∠C,
    ∴△ABC∽△BDC,
    ∴,
    设BC=BD=AD=x,则CD=4﹣x,
    ∵BC2=AC×CD,
    ∴x2=4×(4﹣x),
    解得x1=,x2=(舍去),
    ∴BC的长.
    【点睛】
    本题主要考查了复杂作图以及相似三角形的判定与性质,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
    21、(1)证明见解析;(2).
    【解析】
    (1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;
    (2)△ADE∽△ABC,,又易证△EAF∽△CAG,所以,从而可求解.
    【详解】
    (1)∵AG⊥BC,AF⊥DE,
    ∴∠AFE=∠AGC=90°,
    ∵∠EAF=∠GAC,
    ∴∠AED=∠ACB,
    ∵∠EAD=∠BAC,
    ∴△ADE∽△ABC,
    (2)由(1)可知:△ADE∽△ABC,

    由(1)可知:∠AFE=∠AGC=90°,
    ∴∠EAF=∠GAC,
    ∴△EAF∽△CAG,
    ∴,
    ∴=
    考点:相似三角形的判定
    22、可以求出A、B之间的距离为111.6米.
    【解析】
    根据,(对顶角相等),即可判定,根据相似三角形的性质得到,即可求解.
    【详解】
    解:∵,(对顶角相等),
    ∴,
    ∴,
    ∴,
    解得米.
    所以,可以求出、之间的距离为米
    【点睛】
    考查相似三角形的应用,掌握相似三角形的判定方法和性质是解题的关键.
    23、(1):,,,,,,,,共9种;(2)小黄要在游戏中获胜,小黄会选择规则1,理由见解析
    【解析】
    (1)利用列举法,列举所有的可能情况即可;
    (2)分别求出至少有一张是“6”和摸出的红心牌点数是黑桃牌点数的整数倍时的概率,进行选择即可.
    【详解】
    (1)所有可能出现的结果如下:,,,,,,,,共9种;
    (1)摸牌的所有可能结果总数为9,至少有一张是6的有5种可能,
    ∴在规划1中,(小黄赢);
    红心牌点数是黑桃牌点数的整倍数有4种可能,
    ∴在规划2中,(小黄赢).
    ∵,∴小黄要在游戏中获胜,小黄会选择规则1.
    【点睛】
    考查列举法以及概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.
    24、(1)A(4,3);(2)28.
    【解析】
    (1)点A是正比例函数与一次函数图像的交点坐标,把与联立组成方程组,方程组的解就是点A的横纵坐标;(2)过点A作x轴的垂线,在Rt△OAD中,由勾股定理求得OA的长,再由BC=OA求得OB的长,用点P的横坐标a表示出点B、C的坐标,利用BC的长求得a值,根据即可求得△OBC的面积.
    【详解】
    解:(1)由题意得: ,解得,
    ∴点A的坐标为(4,3).
    (2)过点A作x轴的垂线,垂足为D,

    在Rt△OAD中,由勾股定理得,

    ∴.
    ∵P(a,0),∴B(a,),C(a,-a+7),∴BC=,
    ∴,解得a=8.
    ∴.

    相关试卷

    2024年贵州省毕节市金沙县中考数学一模试卷(含解析): 这是一份2024年贵州省毕节市金沙县中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    2022-2023学年贵州省毕节市中考数学专项提升模拟试题(一模二模)含解析: 这是一份2022-2023学年贵州省毕节市中考数学专项提升模拟试题(一模二模)含解析,共40页。试卷主要包含了 π、中,在理数的个数是,3×103B, 下列运算正确的是, 下列说确的是, 已知一组数据等内容,欢迎下载使用。

    期贵州省毕节市重点中学2021-2022学年中考数学五模试卷含解析: 这是一份期贵州省毕节市重点中学2021-2022学年中考数学五模试卷含解析,共23页。试卷主要包含了答题时请按要求用笔,下列说法正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map