2022届海南省定安县市级名校中考适应性考试数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.如图,数轴上有A,B,C,D四个点,其中绝对值最小的数对应的点是 ( )
A.点A B.点B C.点C D.点D
2.已知A(,),B(2,)两点在双曲线上,且,则m的取
值范围是( )
A. B. C. D.
3.如图,将边长为8㎝的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是( )
A.3cm B.4cm C.5cm D.6cm
4.初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是( )
A.(6,3) B.(6,4) C.(7,4) D.(8,4)
5.如图,矩形ABCD中,E为DC的中点,AD:AB=:2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②=PB•EF;③PF•EF=2;④EF•EP=4AO•PO.其中正确的是( )
A.①②③ B.①②④ C.①③④ D.③④
6.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则( )
A.DE=EB B.DE=EB C.DE=DO D.DE=OB
7.计算﹣8+3的结果是( )
A.﹣11 B.﹣5 C.5 D.11
8.如图,菱形ABCD的对角线相交于点O,过点D作DE∥AC, 且DE=AC,连接CE、OE,连接AE,交OD于点F,若AB=2,∠ABC=60°,则AE的长为( )
A. B. C. D.
9.图为一根圆柱形的空心钢管,它的主视图是( )
A. B. C. D.
10.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为( )
A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=100
二、填空题(本大题共6个小题,每小题3分,共18分)
11.在平面直角坐标系中,智多星做走棋的游戏,其走法是:棋子从原点出发,第1步向上走1个单位,第2步向上走2个单位,第3步向右走1个单位,第4步向上走1个单位……依此类推,第n步的走法是:当n被3除,余数为2时,则向上走2个单位;当走完第2018步时,棋子所处位置的坐标是_____
12.将一个底面半径为2,高为4的圆柱形纸筒沿一条母线剪开,所得到的侧面展开图形面积为_____.
13.已知抛物线与直线在之间有且只有一个公共点,则的取值范围是__.
14.将一副三角板如图放置,若,则的大小为______.
15.如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_________米.
16.关于x的不等式组的整数解共有3个,则a的取值范围是_____.
三、解答题(共8题,共72分)
17.(8分)如图是某旅游景点的一处台阶,其中台阶坡面AB和BC的长均为6m,AB部分的坡角∠BAD为45°,BC部分的坡角∠CBE为30°,其中BD⊥AD,CE⊥BE,垂足为D,E.现在要将此台阶改造为直接从A至C的台阶,如果改造后每层台阶的高为22cm,那么改造后的台阶有多少层?(最后一个台阶的高超过15cm且不足22cm时,按一个台阶计算.可能用到的数据:≈1.414,≈1.732)
18.(8分)如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.
(1)求该抛物线的解析式;
(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;
(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).
19.(8分)在平面直角坐标系中,一次函数(a≠0)的图象与反比例函数的图象交于第二、第四象限内的A、B两点,与轴交于点C,过点A作AH⊥轴,垂足为点H,OH=3,tan∠AOH=,点B的坐标为(,-2).求该反比例函数和一次函数的解析式;求△AHO的周长.
20.(8分)如图,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M 称为碟顶.
(1)由定义知,取AB中点N,连结MN,MN与AB的关系是_____.
(2)抛物线y=对应的准蝶形必经过B(m,m),则m=_____,对应的碟宽AB是_____.
(3)抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x 轴上,且AB=1.
①求抛物线的解析式;
②在此抛物线的对称轴上是否有这样的点P(xp,yp),使得∠APB为锐角,若有,请求出yp的取值范围.若没有,请说明理由.
21.(8分)有4张正面分别标有数字﹣1,2,﹣3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从4张卡片中随机摸出一张不放回,将该卡片上的数字记为m,在随机抽取1张,将卡片的数字即为n.
(1)请用列表或树状图的方式把(m,n)所有的结果表示出来.
(2)求选出的(m,n)在二、四象限的概率.
22.(10分)如图,在中,以为直径的⊙交于点,过点作于点,且.
()判断与⊙的位置关系并说明理由;
()若,,求⊙的半径.
23.(12分)小丁每天从某报社以每份0.5元买进报纸200分,然后以每份1元卖给读者,报纸卖不完,当天可退回报社,但报社只按每份0.2元退给小丁,如果小丁平均每天卖出报纸x份,纯收入为y元.
(1)求y与x之间的函数关系式(要求写出自变量x的取值范围);
(2)如果每月以30天计算,小丁每天至少要买多少份报纸才能保证每月收入不低于2000元?
24.如图,矩形ABCD绕点C顺时针旋转90°后得到矩形CEFG,连接DG交EF于H,连接AF交DG于M;
(1)求证:AM=FM;
(2)若∠AMD=a.求证:=cosα.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
试题分析:在数轴上,离原点越近则说明这个点所表示的数的绝对值越小,根据数轴可知本题中点B所表示的数的绝对值最小.故选B.
2、D
【解析】
∵A(,),B(2,)两点在双曲线上,
∴根据点在曲线上,点的坐标满足方程的关系,得.
∵,∴,解得.故选D.
【详解】
请在此输入详解!
3、A
【解析】
分析:根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8﹣x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长.
详解:设CN=xcm,则DN=(8﹣x)cm,
由折叠的性质知EN=DN=(8﹣x)cm,
而EC=BC=4cm,
在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,
即(8﹣x)2=16+x2,
整理得16x=48,
所以x=1.
故选:A.
点睛:此题主要考查了折叠问题,明确折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.
4、C
【解析】
根据题意知小李所对应的坐标是(7,4).
故选C.
5、B
【解析】
由条件设AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函数值可以求出∠EBC的度数和∠CEP的度数,则∠CEP=∠BEP,运用勾股定理及三角函数值就可以求出就可以求出BF、EF的值,从而可以求出结论.
【详解】
解:设AD=x,AB=2x
∵四边形ABCD是矩形
∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB
∴BC=x,CD=2x
∵CP:BP=1:2
∴CP=x,BP=x
∵E为DC的中点,
∴CE=CD=x,
∴tan∠CEP==,tan∠EBC==
∴∠CEP=30°,∠EBC=30°
∴∠CEB=60°
∴∠PEB=30°
∴∠CEP=∠PEB
∴EP平分∠CEB,故①正确;
∵DC∥AB,
∴∠CEP=∠F=30°,
∴∠F=∠EBP=30°,∠F=∠BEF=30°,
∴△EBP∽△EFB,
∴
∴BE·BF=EF·BP
∵∠F=∠BEF,
∴BE=BF
∴=PB·EF,故②正确
∵∠F=30°,
∴PF=2PB=x,
过点E作EG⊥AF于G,
∴∠EGF=90°,
∴EF=2EG=2x
∴PF·EF=x·2x=8x2
2AD2=2×(x)2=6x2,
∴PF·EF≠2AD2,故③错误.
在Rt△ECP中,
∵∠CEP=30°,
∴EP=2PC=x
∵tan∠PAB==
∴∠PAB=30°
∴∠APB=60°
∴∠AOB=90°
在Rt△AOB和Rt△POB中,由勾股定理得,
AO=x,PO=x
∴4AO·PO=4×x·x=4x2
又EF·EP=2x·x=4x2
∴EF·EP=4AO·PO.故④正确.
故选,B
【点睛】
本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键.
6、D
【解析】
解:连接EO.
∴∠B=∠OEB,
∵∠OEB=∠D+∠DOE,∠AOB=3∠D,
∴∠B+∠D=3∠D,
∴∠D+∠DOE+∠D=3∠D,
∴∠DOE=∠D,
∴ED=EO=OB,
故选D.
7、B
【解析】
绝对值不等的异号加法,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得1.依此即可求解.
【详解】
解:−8+3=−2.
故选B.
【点睛】
考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有1.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.
8、C
【解析】
在菱形ABCD中,OC=AC,AC⊥BD,∴DE=OC,∵DE∥AC,∴四边形OCED是平行四边形,∵AC⊥BD,∴平行四边形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴△ABC为等边三角形,∴AD=AB=AC=2,OA=AC=1,
在矩形OCED中,由勾股定理得:CE=OD=,
在Rt△ACE中,由勾股定理得:AE=;故选C.
点睛:本题考查了菱形的性质,先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明四边形OCED是矩形,再根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.
9、B
【解析】
试题解析:从正面看是三个矩形,中间矩形的左右两边是虚线,
故选B.
10、A
【解析】
利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.
【详解】
由题意知,蔬菜产量的年平均增长率为x,
根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,
2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,
即: 80(1+x)2=100,
故选A.
【点睛】
本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、(672,2019)
【解析】分析:按照题目给定的规则,找到周期,由题意可得每三步是一个循环,所以只需要计算2018被3除,就可以得到棋子的位置.
详解:
解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右1个单位,向上3个单位,
∵2018÷3=672…2,
∴走完第2018步,为第673个循环组的第2步,
所处位置的横坐标为672,
纵坐标为672×3+3=2019,
∴棋子所处位置的坐标是(672,2019).
故答案为:(672,2019).
点睛:周期问题解决问题的核心是要找到最小正周期,然后把给定的数(一般是一个很大的数)除以最小正周期,余数是几,就是第几步,特别余数是1,就是第一步,余数是0,就是最后一步.
12、
【解析】
试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.
由题意得圆锥的母线长
则所得到的侧面展开图形面积.
考点:勾股定理,圆锥的侧面积公式
点评:解题的关键是熟记圆锥的侧面积公式:圆锥的侧面积底面半径母线.
13、或.
【解析】
联立方程可得,设,从而得出的图象在上与x轴只有一个交点,当△时,求出此时m的值;当△时,要使在之间有且只有一个公共点,则当x=-2时和x=2时y的值异号,从而求出m的取值范围;
【详解】
联立
可得:,
令,
抛物线与直线在之间有且只有一个公共点,
即的图象在上与x轴只有一个交点,
当△时,
即△
解得:,
当时,
当时,
,满足题意,
当△时,
令,,
令,,
,
令代入
解得:,
此方程的另外一个根为:,
故也满足题意,
故的取值范围为:或
故答案为: 或.
【点睛】
此题考查的是根据二次函数与一次函数的交点问题,求函数中参数的取值范围,掌握把函数的交点问题转化为一元二次方程解的问题是解决此题的关键.
14、160°
【解析】
试题分析:先求出∠COA和∠BOD的度数,代入∠BOC=∠COA+∠AOD+∠BOD求出即可.
解:∵∠AOD=20°,∠COD=∠AOB=90°,
∴∠COA=∠BOD=90°﹣20°=70°,
∴∠BOC=∠COA+∠AOD+∠BOD=70°+20°+70°=160°,
故答案为160°.
考点:余角和补角.
15、1
【解析】
根据题意,画出示意图,易得:Rt△EDC∽Rt△FDC,进而可得;即DC2=ED?FD,代入数据可得答案.
【详解】
根据题意,作△EFC,
树高为CD,且∠ECF=90°,ED=3,FD=12,
易得:Rt△EDC∽Rt△DCF,
有,即DC2=ED×FD,
代入数据可得DC2=31,
DC=1,
故答案为1.
16、
【解析】
首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.
【详解】
解:由不等式①得:x>a,由不等式②得:x<1,所以不等式组的解集是a<x<1.
∵关于x的不等式组的整数解共有3个,∴3个整数解为0,﹣1,﹣2,∴a的取值范围是﹣3≤a<﹣2.
故答案为:﹣3≤a<﹣2.
【点睛】
本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
三、解答题(共8题,共72分)
17、33层.
【解析】
根据含30度的直角三角形三边的关系和等腰直角三角形的性质得到BD和CE的长,二者的和乘以100后除以20即可确定台阶的数.
【详解】
解:在Rt△ABD中,BD=AB•sin45°=3m,
在Rt△BEC中,EC=BC=3m,
∴BD+CE=3+3,
∵改造后每层台阶的高为22cm,
∴改造后的台阶有(3+3)×100÷22≈33(个)
答:改造后的台阶有33个.
【点睛】
本题考查了坡度的概念:斜坡的坡度等于斜坡的铅直高度与对应的水平距离的比值,即斜坡的坡度等于斜坡的坡角的正弦.也考查了含30度的直角三角形三边的关系和等腰直角三角形的性质.
18、(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.
【解析】
试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;
(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;
(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.
试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,
∴B(3,0),C(0,3),
把B、C坐标代入抛物线解析式可得,解得,
∴抛物线解析式为y=x2﹣4x+3;
(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,
∴抛物线对称轴为x=2,P(2,﹣1),
设M(2,t),且C(0,3),
∴MC=,MP=|t+1|,PC=,
∵△CPM为等腰三角形,
∴有MC=MP、MC=PC和MP=PC三种情况,
①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);
②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);
③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);
综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);
(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,
设E(x,x2﹣4x+3),则F(x,﹣x+3),
∵0<x<3,
∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,
∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,
∴当x=时,△CBE的面积最大,此时E点坐标为(,),
即当E点坐标为(,)时,△CBE的面积最大.
考点:二次函数综合题.
19、(1)一次函数为,反比例函数为;(2)△AHO的周长为12
【解析】
分析:(1)根据正切函数可得AH=4,根据反比例函数的特点k=xy为定值,列出方程,求出k的值,便可求出反比例函数的解析式;根据k的值求出B两点的坐标,用待定系数法便可求出一次函数的解析式.
(2)由(1)知AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案.
详解:(1)∵tan∠AOH==
∴AH=OH=4
∴A(-4,3),代入,得
k=-4×3=-12
∴反比例函数为
∴
∴m=6
∴B(6,-2)
∴
∴=,b=1
∴一次函数为
(2)
△AHO的周长为:3+4+5=12
点睛:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式.
20、(1)MN与AB的关系是:MN⊥AB,MN=AB,(2)2,4;(2)①y=x2﹣2;②在此抛物线的对称轴上有这样的点P,使得∠APB 为锐角,yp的取值范围是yp<﹣2或yp>2.
【解析】
(1)直接利用等腰直角三角形的性质分析得出答案;
(2)利用已知点为B(m,m),代入抛物线解析式进而得出m的值,即可得出AB的值;
(2)①根据题意得出抛物线必过(2,0),进而代入求出答案;
②根据y=x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB 为直角,进而得出答案.
【详解】
(1)MN与AB的关系是:MN⊥AB,MN=AB,
如图1,∵△AMB是等腰直角三角形,且N为AB的中点,
∴MN⊥AB,MN=AB,
故答案为MN⊥AB,MN=AB;
(2)∵抛物线y=对应的准蝶形必经过B(m,m),
∴m=m2,
解得:m=2或m=0(不合题意舍去),
当m=2则,2=x2,
解得:x=±2,
则AB=2+2=4;
故答案为2,4;
(2)①由已知,抛物线对称轴为:y轴,
∵抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x 轴上,且AB=1.
∴抛物线必过(2,0),代入y=ax2﹣4a﹣(a>0),
得,9a﹣4a﹣=0,
解得:a=,
∴抛物线的解析式是:y=x2﹣2;
②由①知,如图2,y=x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB 为直角,
∴在此抛物线的对称轴上有这样的点P,使得∠APB 为锐角,yp的取值范围是yp<﹣2或yp>2.
【点睛】
此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键.
21、(1)详见解析;(2)P=.
【解析】
试题分析:(1)树状图列举所有结果.(2)用在第二四象限的点数除以所有结果.
试题解析:
(1)画树状图得:
则(m,n)共有12种等可能的结果:(2,-1),(2,﹣3),(2, 4),(-1,2),(-1,﹣3),(1, 4),(﹣3,2),(﹣3,-1),(﹣3, 4),(﹣4,2),(4,-1),(4,﹣3).
(2)(m,n)在二、四象限的(2,-1),(2,﹣3),(-1,2),(﹣3,2),(﹣3, 4),(﹣4,2),(4,-1),(4,﹣3),
∴所选出的m,n在第二、三四象限的概率为:P==
点睛:(1)利用频率估算法:大量重复试验中,事件A发生的频率会稳定在某个常数p附近,那么这个常数P就叫做事件A的概率(有些时候用计算出A发生的所有频率的平均值作为其概率).
(2)定义法:如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,考察事件A包含其中的m中结果,那么事件A发生的概率为P.
(3)列表法:当一次试验要设计两个因素,可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标.
(4)树状图法:当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.
22、(1)DE与⊙O相切,详见解析;(2)5
【解析】
(1) 根据直径所对的圆心角是直角,再结合所给条件∠BDE=∠A,可以推导出∠ODE = 90°,说明相切的位置关系。
(2)根据直径所对的圆心角是直角,并且在△BDE中,由DE⊥BC,有∠BDE+∠DBE = 90°可以推导出∠DAB=∠C, 可判定△ABC是等腰三角形,再根据BD⊥AC可知D是AC的中点,从而得出AD的长度,再在Rt△ADB中计算出直径AB的长,从而算出半径。
【详解】
(1)连接OD,在⊙O中,因为AB是直径,所以∠ADB=90°,即∠ODA+∠ODB=90°,由OA=OD,故∠A=∠ODA,又因为∠BDE=∠A,所以∠ODA=∠BDE,故∠ODA+∠ODB=∠BDE+∠ODB=∠ODE=90°,即OD⊥DE,OD过圆心,D是圆上一点,故DE是⊙O切线上的一段,因此位置关系是直线DE与⊙O相切;
(2)由(1)可知,∠ADB=90°,故∠A+∠ABD=90°,故BD⊥AC,由∠BDE=∠A,则∠BDE+∠ABD=90°,因为DE⊥BC,所以∠DEB=90°,故在△BDE中,有∠BDE+∠DBE=90°,则∠ABD=∠DBE,又因为BD⊥AC,即∠ADB=∠CDB=90°,所以∠DAB=∠C,故△ABC是等腰三角形,BD是等腰△ABC底边BC上的高,则D是AC的中点,故AD=AC=×16=8,在Rt△ABD中,tanA===,可解得BD=6,由勾股定理可得AB===10,AB为直径,所以⊙O的半径是5.
【点睛】
本题主要考查圆中的计算问题和与圆有关的位置关系,解本题的要点在于求出AD的长,从而求出AB的长.
23、(1)y=0.8x﹣60(0≤x≤200)(2)159份
【解析】
解:(1)y=(1﹣0.5)x﹣(0.5﹣0.2)(200﹣x)=0.8x﹣60(0≤x≤200).
(2)根据题意得:30(0.8x﹣60)≥2000,解得x≥.
∴小丁每天至少要买159份报纸才能保证每月收入不低于2000元.
(1)因为小丁每天从某市报社以每份0.5元买出报纸200份,然后以每份1元卖给读者,报纸卖不完,当天可退回报社,但报社只按每份0.2元退给小丁,所以如果小丁平均每天卖出报纸x份,纯收入为y元,则y=(1﹣0.5)x﹣(0.5﹣0.2)(200﹣x)即y=0.8x﹣60,其中0≤x≤200且x为整数.
(2)因为每月以30天计,根据题意可得30(0.8x﹣60)≥2000,解之求解即可.
24、(1)见解析;(2)见解析.
【解析】
(1)由旋转性质可知:AD=FG,DC=CG,可得∠CGD=45°,可求∠FGH=∠FHG=45°,则HF=FG=AD,所以可证△ADM≌△MHF,结论可得.
(2)作FN⊥DG垂足为N,且MF=FG,可得HN=GN,且DM=MH,可证2MN=DG,由第一问可得2MF=AF,由cosα=cos∠FMG=,代入可证结论成立
【详解】
(1)由旋转性质可知:
CD=CG且∠DCG=90°,
∴∠DGC=45°从而∠DGF=45°,
∵∠EFG=90°,
∴HF=FG=AD
又由旋转可知,AD∥EF,
∴∠DAM=∠HFM,
又∵∠DMA=∠HMF,
∴△ADM≌△FHM
∴AM=FM
(2)作FN⊥DG垂足为N
∵△ADM≌△MFH
∴DM=MH,AM=MF=AF
∵FH=FG,FN⊥HG
∴HN=NG
∵DG=DM+HM+HN+NG=2(MH+HN)
∴MN=DG
∵cos∠FMG=
∴cos∠AMD=
∴=cosα
【点睛】
本题考查旋转的性质,矩形的性质,全等三角形的判定,三角函数,关键是构造直角三角形.
孝感市市级名校2021-2022学年中考适应性考试数学试题含解析: 这是一份孝感市市级名校2021-2022学年中考适应性考试数学试题含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,下列代数运算正确的是,下列命题是真命题的是等内容,欢迎下载使用。
2022届浙江省Q21联盟市级名校中考适应性考试数学试题含解析: 这是一份2022届浙江省Q21联盟市级名校中考适应性考试数学试题含解析,共22页。试卷主要包含了老师在微信群发了这样一个图,的绝对值是,剪纸是我国传统的民间艺术等内容,欢迎下载使用。
2022届广东省肇庆市怀集县市级名校中考适应性考试数学试题含解析: 这是一份2022届广东省肇庆市怀集县市级名校中考适应性考试数学试题含解析,共19页。试卷主要包含了如图,在中,,,,则等于等内容,欢迎下载使用。