04方程与不等式解答题-2022年江苏省各地区中考数学真题分类汇编
展开这是一份04方程与不等式解答题-2022年江苏省各地区中考数学真题分类汇编,共11页。试卷主要包含了解答题等内容,欢迎下载使用。
04方程与不等式解答题
一、解答题
1.(2022·江苏常州·中考真题)解不等式组,并把解集在数轴上表示出来.
2.(2022·江苏泰州·中考真题)如图,在长为50 m,宽为38 m的矩形地面内的四周修筑同样宽的道路,余下的铺上草坪.要使草坪的面积为1260 m2,道路的宽应为多少?
3.(2022·江苏无锡·中考真题)某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10m),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为xm(如图).
(1)若矩形养殖场的总面积为36,求此时x的值;
(2)当x为多少时,矩形养殖场的总面积最大?最大值为多少?
4.(2022·江苏无锡·中考真题)(1)解方程;
(2)解不等式组:.
5.(2022·江苏宿迁·中考真题)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动,该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.
(1)若该单位需要购买30件这种文化用品,则在甲超市的购物金额为 元;乙超市的购物金额为 元;
(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?
6.(2022·江苏苏州·中考真题)某水果店经销甲、乙两种水果,两次购进水果的情况如下表所示:
进货批次 | 甲种水果质量(单位:千克) | 乙种水果质量(单位:千克) | 总费用(单位:元) |
第一次 | 60 | 40 | 1520 |
第二次 | 30 | 50 | 1360 |
(1)求甲、乙两种水果的进价;
(2)销售完前两次购进的水果后,该水果店决定回馈顾客,开展促销活动.第三次购进甲、乙两种水果共200千克,且投入的资金不超过3360元.将其中的m千克甲种水果和3m千克乙种水果按进价销售,剩余的甲种水果以每千克17元、乙种水果以每千克30元的价格销售.若第三次购进的200千克水果全部售出后,获得的最大利润不低于800元,求正整数m的最大值.
7.(2022·江苏苏州·中考真题)解方程:.
8.(2022·江苏扬州·中考真题)某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名?
9.(2022·江苏扬州·中考真题)解不等式组 ,并求出它的所有整数解的和.
10.(2022·江苏连云港·中考真题)我国古代数学名著《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:今有几个人共同出钱购买一件物品.每人出8钱,剩余3钱;每人出7钱,还缺4钱.问人数、物品价格各是多少?请你求出以上问题中的人数和物品价格.
11.(2022·江苏宿迁·中考真题)解方程:.
12.(2022·江苏连云港·中考真题)解不等式2x﹣1>,并把它的解集在数轴上表示出来.
参考答案:
1.;解集表示见解析
【解析】
【分析】
先求出每个不等式的解集,然后求出不等式组的解集,并在数轴上表示出来即可.
【详解】
解:原不等式组为,
解不等式①,得;
解不等式②,得.
∴原不等式组的解集为 ,
将不等式组的解集表示在数轴上如下:
【点睛】
本题主要考查解一元一次不等式组,掌握解一元一次不等式组的方法是解题的关键.
2.4
【解析】
【分析】
根据题意设道路的宽应为x米,则种草坪部分的长为(50−2x)m,宽为(38−2x)m,再根据题目中的等量关系建立方程即可得解.
【详解】
解:设道路的宽应为x米,由题意得
(50-2x)×(38-2x)=1260
解得:x1=4,x2=40(不符合题意,舍去)
答:道路的宽应为4米.
【点睛】
此题考查了一元二次方程的实际应用,解题的关键是能根据题目中的等量关系建立方程.
3.(1)x的值为2m;
(2)当x=4时,S有最大值,最大值为48.
【解析】
【分析】
(1)由BC=x,求得BD=3x,AB=8-x,利用矩形养殖场的总面积为36,列一元二次方程,解方程即可求解;
(2)设矩形养殖场的总面积为S,列出矩形的面积公式可得S关于x的函数关系式,再根据二次函数的性质求解即可.
(1)
解:∵BC=x,矩形CDEF的面积是矩形BCFA面积的2倍,
∴CD=2x,
∴BD=3x,AB=CF=DE=(24-BD)=8-x,
依题意得:3x(8-x)=36,
解得:x1=2,x2=6(不合题意,舍去),
此时x的值为2m;
;
(2)
解:设矩形养殖场的总面积为S,
由(1)得:S=3x(8-x)=-3(x-4)2+48,
∵-3<0,
∴当x=4m时,S有最大值,最大值为48,
【点睛】
本题考查了一元二次方程和二次函数在几何图形问题中的应用,数形结合并熟练掌握二次函数的性质是解题的关键.
4.(1)x1=1+,x2=1-;(2)不等式组的解集为1<x≤.
【解析】
【分析】
(1)方程利用配方法求出解即可;
(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.
【详解】
解:(1)方程移项得:x2-2x=5,
配方得:x2-2x+1=6,即(x-1)2=6,
开方得:x-1=±,
解得:x1=1+,x2=1-;
(2).
由①得:x>1,
由②得:x≤,
则不等式组的解集为1<x≤.
【点睛】
此题考查了解一元二次方程-配方法,以及解一元一次不等式组,熟练掌握方程及不等式组的解法是解本题的关键.
5.(1)300,240
(2)当时,选择乙超市更优惠,当时,两家超市的优惠一样,当时,选择乙超市更优惠,当时,选择甲超市更优惠.
【解析】
【分析】
(1)根据甲、乙两家超市的优惠方案分别进行计算即可;
(2)设单位购买x件这种文化用品,所花费用为y元, 可得当时, 显然此时选择乙超市更优惠,当时 再分三种情况讨论即可.
(1)
解: 甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;
∴该单位需要购买30件这种文化用品,则在甲超市的购物金额为(元),
∵乙超市全部按标价的8折售卖,
∴该单位需要购买30件这种文化用品,则在甲超市的购物金额为(元),
故答案为:
(2)
设单位购买x件这种文化用品,所花费用为y元,又当10x=400时,可得
当时,
显然此时选择乙超市更优惠,
当时,
当时,则 解得:
∴当时,两家超市的优惠一样,
当时,则 解得:
∴当时,选择乙超市更优惠,
当时,则 解得:
∴当时,选择甲超市更优惠.
【点睛】
本题考查的是列代数式,一次函数的实际应用,一元一次不等式的实际应用,清晰的分类讨论是解本题的关键.
6.(1)甲种水果的进价为每千克12元,乙种水果的进价为每千克20元
(2)正整数m的最大值为22
【解析】
【分析】
(1)设甲种水果的进价为每千克a元,乙种水果的进价为每千克b元,根据总费用列方程组即可;
(2)设水果店第三次购进x千克甲种水果,根据题意先求出x的取值范围,再表示出总利润w与x的关系式,根据一次函数的性质判断即可.
(1)
设甲种水果的进价为每千克a元,乙种水果的进价为每千克b元.
根据题意,得
解方程组,得
答:甲种水果的进价为每千克12元,乙种水果的进价为每千克20元.
(2)
设水果店第三次购进x千克甲种水果,则购进千克乙种水果,
根据题意,得.
解这个不等式,得.
设获得的利润为w元,
根据题意,得
.
∵,
∴w随x的增大而减小.
∴当时,w的最大值为.
根据题意,得.
解这个不等式,得.
∴正整数m的最大值为22.
【点睛】
本题考查一次函数的应用、二元一次方程组的应用、解一元一次不等式,解答本题的关键是明确题意,找出等量关系,列出相应的二元一次方程,写出相应的函数解析式,利用一次函数的性质求最值.
7.
【解析】
【分析】
根据解分式方程的步骤求出解,再检验即可.
【详解】
方程两边同乘以,得.
解方程,得.
经检验,是原方程的解.
【点睛】
本题主要考查了解分式方程,掌握解分式方程的步骤是解题的关键.即去分母,去括号,移项,合并同类项,系数化为1,检验.
8.每个小组有学生10名.
【解析】
【分析】
设每个小组有学生x名,根据题意列出方程,求出方程的解即可得到结果.
【详解】
解:设每个小组有学生x名,
根据题意,得,
解这个方程,得x=10,
经检验,x=10是原方程的根,
∴每个小组有学生10名.
【点睛】
此题考查了分式方程的应用,弄清题意是解本题的关键.
9.3
【解析】
【分析】
先解每个不等式,求得不等式组的解集,然后找出所有整数解求和即可.
【详解】
解:
解不等式①,得,
解不等式②,得,
∴不等式组的解集为,
∴不等式组的所有整数解为: , , , , ,
∴所有整数解的和为:.
【点睛】
本题考查了求不等式组的解集,正确地解每一个不等式是解题的关键.
10.有7人,物品价格是53钱
【解析】
【分析】
设人数为人,根据“物品价格=8×人数-多余钱数=7×人数+缺少的钱数”可得方程,求解方程即可.
【详解】
解:设人数为人,由题意得
,
解得.
所以物品价格是.
答:有7人,物品价格是53钱.
【点睛】
本题主要考查由实际问题抽象出一元一次方程,由实际问题列方程组是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.
11.x=﹣1
【解析】
【分析】
根据解分式方程的步骤,先去分母化为整式方程,再求出方程的解,最后进行检验即可.
【详解】
解:,
2x=x﹣2+1,
x=﹣1,
经检验x=﹣1是原方程的解,
则原方程的解是x=﹣1.
【点睛】
本题考查解分式方程,得出方程的解之后一定要验根.
12.不等式的解集为x>1,在数轴上表示见解析.
【解析】
【详解】
试题分析:根据不等式的基本性质去分母、去括号、移项可得不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.
试题解析:
去分母,得:4x﹣2>3x﹣1,
移项,得:4x﹣3x>2﹣1,
合并同类项,得:x>1,
将不等式解集表示在数轴上如图:
相关试卷
这是一份广西省各地区2022年中考数学真题按题型难易度分类汇编-04解答题基础题,共27页。试卷主要包含了×0+5,0﹣tan45°,计算,÷x,其中x=1,y=,,其中a=3,0﹣17等内容,欢迎下载使用。
这是一份08图形的性质解答题-2022年江苏省各地区中考数学真题分类汇编,共48页。试卷主要包含了解答题等内容,欢迎下载使用。
这是一份10图形的变化解答题-2022年江苏省各地区中考数学真题分类汇编,共52页。试卷主要包含了解答题等内容,欢迎下载使用。