山东省威海市三年(2018-2022)年中考数学模拟题汇编:04解答题中档题、提升题知识点分类
展开
这是一份山东省威海市三年(2018-2022)年中考数学模拟题汇编:04解答题中档题、提升题知识点分类,共27页。试卷主要包含了探索发现,回顾,发现规律等内容,欢迎下载使用。
山东省威海市三年(2018-2022)年中考数学模拟题汇编:04解答题中档题、提升题知识点分类
一.二次函数图象与系数的关系(共1小题)
1.(2021•威海)在平面直角坐标系中,抛物线y=x2+2mx+2m2﹣m的顶点为A.
(1)求顶点A的坐标(用含有字母m的代数式表示);
(2)若点B(2,yB),C(5,yC)在抛物线上,且yB>yC,则m的取值范围是 ;(直接写出结果即可)
(3)当1≤x≤3时,函数y的最小值等于6,求m的值.
二.二次函数的应用(共1小题)
2.(2022•威海)某农场要建一个矩形养鸡场,鸡场的一边靠墙,另外三边用木栅栏围成.已知墙长25m,木栅栏长47m,在与墙垂直的一边留出1m宽的出入口(另选材料建出入门).求鸡场面积的最大值.
三.二次函数综合题(共1小题)
3.(2022•威海)探索发现
(1)在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(﹣3,0),B(1,0),与y轴交于点C,顶点为点D,连接AD.
①如图1,直线DC交直线x=1于点E,连接OE.求证:AD∥OE;
②如图2,点P(2,﹣5)为抛物线y=ax2+bx+3(a≠0)上一点,过点P作PG⊥x轴,垂足为点G.直线DP交直线x=1于点H,连接HG.求证:AD∥HG;
归纳概括
(2)通过上述两种特殊情况的证明,你是否有所发现?请仿照(1)写出你的猜想,并在图3上画出草图.
在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(﹣3,0),B(1,0),顶点为点D.点M为该抛物线上一动点(不与点A,B,D重合), .
四.全等三角形的判定与性质(共1小题)
4.(2021•威海)(1)已知△ABC,△ADE如图①摆放,点B,C,D在同一条直线上,∠BAC=∠DAE=90°,∠ABC=∠ADE=45°.连接BE,过点A作AF⊥BD,垂足为点F,直线AF交BE于点G.求证:BG=EG.
(2)已知△ABC,△ADE如图②摆放,∠BAC=∠DAE=90°,∠ACB=∠ADE=30°.连接BE,CD,过点A作AF⊥BE,垂足为点F,直线AF交CD于点G.求的值.
五.三角形综合题(共1小题)
5.(2022•威海)回顾:用数学的思维思考
(1)如图1,在△ABC中,AB=AC.
①BD,CE是△ABC的角平分线.求证:BD=CE.
②点D,E分别是边AC,AB的中点,连接BD,CE.求证:BD=CE.
(从①②两题中选择一题加以证明)
猜想:用数学的眼光观察
经过做题反思,小明同学认为:在△ABC中,AB=AC,D为边AC上一动点(不与点A,C重合).对于点D在边AC上的任意位置,在另一边AB上总能找到一个与其对应的点E,使得BD=CE.进而提出问题:若点D,E分别运动到边AC,AB的延长线上,BD与CE还相等吗?请解决下面的问题:
(2)如图2,在△ABC中,AB=AC,点D,E分别在边AC,AB的延长线上,请添加一个条件(不再添加新的字母),使得BD=CE,并证明.
探究:用数学的语言表达
(3)如图3,在△ABC中,AB=AC=2,∠A=36°,E为边AB上任意一点(不与点A,B重合),F为边AC延长线上一点.判断BF与CE能否相等.若能,求CF的取值范围;若不能,说明理由.
六.矩形的性质(共1小题)
6.(2022•威海)(1)将两张长为8,宽为4的矩形纸片如图1叠放.
①判断四边形AGCH的形状,并说明理由;
②求四边形AGCH的面积.
(2)如图2,在矩形ABCD和矩形AFCE中,AB=2,BC=7,CF=,求四边形AGCH的面积.
七.切线的判定(共1小题)
7.(2020•威海)如图,△ABC的外角∠BAM的平分线与它的外接圆相交于点E,连接BE,CE,过点E作EF∥BC,交CM于点D.
求证:(1)BE=CE;
(2)EF为⊙O的切线.
八.切线的判定与性质(共1小题)
8.(2021•威海)如图,AB是⊙O直径,弦CD⊥AB,垂足为点E.弦BF交CD于点G,点P在CD延长线上,且PF=PG.
(1)求证:PF为⊙O切线;
(2)若OB=10,BF=16,BE=8,求PF的长.
九.几何变换综合题(共1小题)
9.(2020•威海)发现规律
(1)如图①,△ABC与△ADE都是等边三角形,直线BD,CE交于点F.直线BD,AC交于点H.求∠BFC的度数.
(2)已知:△ABC与△ADE的位置如图②所示,直线BD,CE交于点F.直线BD,AC交于点H.若∠ABC=∠ADE=α,∠ACB=∠AED=β,求∠BFC的度数.
应用结论
(3)如图③,在平面直角坐标系中,点O的坐标为(0,0),点M的坐标为(3,0),N为y轴上一动点,连接MN.将线段MN绕点M逆时针旋转60°得到线段MK,连接NK,OK.求线段OK长度的最小值.
一十.解直角三角形的应用(共1小题)
10.(2022•威海)小军同学想利用所学的“锐角三角函数”知识测量一段两岸平行的河流宽度.他先在河岸设立A,B两个观测点,然后选定对岸河边的一棵树记为点M.测得AB=50m,∠MAB=22°,∠MBA=67°.请你依据所测数据求出这段河流的宽度(结果精确到0.1m).
参考数据:sin22°≈,cos22°≈,tan22°≈,sin67°≈,cos67°≈,tan67°≈.
一十一.解直角三角形的应用-仰角俯角问题(共1小题)
11.(2020•威海)居家学习期间,小晴同学运用所学知识在自家阳台测对面大楼的高度.如图,她利用自制的测角仪测得该大楼顶部的仰角为45°,底部的俯角为38°;又用绳子测得测角仪距地面的高度AB为31.6m.求该大楼的高度(结果精确到0.1m).
(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78)
参考答案与试题解析
一.二次函数图象与系数的关系(共1小题)
1.(2021•威海)在平面直角坐标系中,抛物线y=x2+2mx+2m2﹣m的顶点为A.
(1)求顶点A的坐标(用含有字母m的代数式表示);
(2)若点B(2,yB),C(5,yC)在抛物线上,且yB>yC,则m的取值范围是 m<﹣3.5 ;(直接写出结果即可)
(3)当1≤x≤3时,函数y的最小值等于6,求m的值.
【解答】解:(1)解法一:
y=x2+2mx+2m2﹣m
=(x+m)2﹣m2+2m2﹣m
=(x+m)2+m2﹣m,
∴顶点A(﹣m,m2﹣m),
解法二:
∵抛物线的对称轴为直线x=,
∴代入关系式得,y=(﹣m)2+2m(﹣m)+2m2﹣m=m2﹣m,
∴顶点A(﹣m,m2﹣m),
(2)解法一:
∵,a=1开口向上,如图,
∴当对称轴大于3.5时满足题意,
∴﹣m>3.5,
∴m<﹣3.5,
解法二:
∵点B(2,yB),C(5,yC)在抛物线y=x2+2mx+2m2﹣m上,
∴yB=4+4m+2m2﹣m,yC=25+10m+2m2﹣m,
又∵yB>yC,
∴yB﹣yC=(4+4m)﹣(25+10m)>0,
解得,m<﹣3.5,
故答案为:m<﹣3.5;
(3)分三种情况讨论:
①当对称轴x=﹣m≤1即m≥﹣1时,如图,
当x=1时,y=6,
∴6=1+2m+2m2﹣m,
整理得,2m2+m﹣5=0,
解得,,(舍去),
∴,
②当1<﹣m≤3即﹣3≤m<﹣1时,如图,
当x=﹣m,y=6,
∴6=m2﹣m,
整理得,m2﹣m﹣6=0,
解得,m1=﹣2,m2=3(舍),
∴m=﹣2,
③当﹣m>3即m<﹣3时,如图,
当x=3时,y=6,
∴6=9+6m+2m2﹣m,
整理得,2m2+5m+3=0,
解得,(两个都舍去),
综上所述:m=﹣2或m=.
二.二次函数的应用(共1小题)
2.(2022•威海)某农场要建一个矩形养鸡场,鸡场的一边靠墙,另外三边用木栅栏围成.已知墙长25m,木栅栏长47m,在与墙垂直的一边留出1m宽的出入口(另选材料建出入门).求鸡场面积的最大值.
【解答】解:设矩形鸡场与墙垂直的一边长为xm,则与墙平行的一边长为(47﹣2x+1)m,由题意可得:
y=x(47﹣2x+1),
即y=﹣2(x﹣12)2+288,
∵﹣2<0,
∴当x=12时,y有最大值为288,
当x=12时,47﹣x﹣(x﹣1)=24<25(符合题意),
∴鸡场的最大面积为288m2.
三.二次函数综合题(共1小题)
3.(2022•威海)探索发现
(1)在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(﹣3,0),B(1,0),与y轴交于点C,顶点为点D,连接AD.
①如图1,直线DC交直线x=1于点E,连接OE.求证:AD∥OE;
②如图2,点P(2,﹣5)为抛物线y=ax2+bx+3(a≠0)上一点,过点P作PG⊥x轴,垂足为点G.直线DP交直线x=1于点H,连接HG.求证:AD∥HG;
归纳概括
(2)通过上述两种特殊情况的证明,你是否有所发现?请仿照(1)写出你的猜想,并在图3上画出草图.
在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(﹣3,0),B(1,0),顶点为点D.点M为该抛物线上一动点(不与点A,B,D重合), 作MN⊥x轴于N,直线DM交直线x=1于Q,则QN∥AD .
【解答】解:(1)①由题意得,
,
∴,
∴y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴D(﹣1,4),C(0,3),
设直线CD的解析式为:y=mx+n,
∴,
∴,
∴y=﹣x+3,
∴当x=1时,y=﹣1+3=2,
∴E(1,2),
∴直线OE的解析式为:y=2x,
设直线AD的解析式为y=cx+d,
∴,
∴,
∴y=2x+6,
∴OE∥AD;
②设直线PD的解析式为:y=ex+f,
∴,
∴,
∴y=﹣3x+1,
∴当x=1时,y=﹣3×1+1=﹣2,
∴H(1,﹣2),
设直线GH的解析式为:y=gx+h,
∴,
∴,
∴y=2x﹣4,
∴AD∥HG;
(2)作MN⊥x轴于N,直线DM交直线x=1于Q,则QN∥AD,理由如下:
设M(m,﹣m2﹣2m+3),
设直线DM的解析式为y=px+q,
∴,
∴,
∴y=﹣(m+1)x+(﹣m+3),
∴当x=1时,y=﹣m﹣1﹣m+3=﹣2m+2,
∴Q(1,﹣2m+2),
设直线NQ的解析式为:y=ix+j,
∴,
∴,
∴y=2x﹣2m,
∴QN∥AD.
四.全等三角形的判定与性质(共1小题)
4.(2021•威海)(1)已知△ABC,△ADE如图①摆放,点B,C,D在同一条直线上,∠BAC=∠DAE=90°,∠ABC=∠ADE=45°.连接BE,过点A作AF⊥BD,垂足为点F,直线AF交BE于点G.求证:BG=EG.
(2)已知△ABC,△ADE如图②摆放,∠BAC=∠DAE=90°,∠ACB=∠ADE=30°.连接BE,CD,过点A作AF⊥BE,垂足为点F,直线AF交CD于点G.求的值.
【解答】(1)证明:如图,
连接EC,
∵∠BAC=∠DAE=90°,∠ABC=∠ADE=45°,
∴△ABC和△ADE为等腰直角三角形,
∴AB=AC,AD=AE,∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,
在△BAD与△CAE中,
,
∴△BAD≌△CAE(SAS),
∴∠ABD=∠ACE=45°,
∴∠ACB+∠ACE=90°,则CE⊥BD,
∵AF⊥BD,
∴AF∥CE,BF=FC,
∴==1,
∴BG=EG.
(2)解:如图,
过点D作DM⊥AG,垂足为点M,过点C作CN⊥AG,交AG的延长线于点N,
在△ABC和△AED中,∠BAC=∠DAE=90°,∠ACB=∠ADE=30°,
设AE=a,AB=b,则AD=a,AC=b,
∵∠1+∠EAF=90°,∠2+∠EAF=90°,
∴∠1=∠2,
∴sin∠1=sin∠2,
∴=,即===,
同理可证∠3=∠4,==,
∴=,
∴DM=CN,
在△DGM和△CGN中,有:
,
∴△DGM≌△CGN(AAS),
∴DG=CG,
∴=1.
五.三角形综合题(共1小题)
5.(2022•威海)回顾:用数学的思维思考
(1)如图1,在△ABC中,AB=AC.
①BD,CE是△ABC的角平分线.求证:BD=CE.
②点D,E分别是边AC,AB的中点,连接BD,CE.求证:BD=CE.
(从①②两题中选择一题加以证明)
猜想:用数学的眼光观察
经过做题反思,小明同学认为:在△ABC中,AB=AC,D为边AC上一动点(不与点A,C重合).对于点D在边AC上的任意位置,在另一边AB上总能找到一个与其对应的点E,使得BD=CE.进而提出问题:若点D,E分别运动到边AC,AB的延长线上,BD与CE还相等吗?请解决下面的问题:
(2)如图2,在△ABC中,AB=AC,点D,E分别在边AC,AB的延长线上,请添加一个条件(不再添加新的字母),使得BD=CE,并证明.
探究:用数学的语言表达
(3)如图3,在△ABC中,AB=AC=2,∠A=36°,E为边AB上任意一点(不与点A,B重合),F为边AC延长线上一点.判断BF与CE能否相等.若能,求CF的取值范围;若不能,说明理由.
【解答】(1)证明:①∵AB=AC,
∴∠ABC=∠ACB,
∵BD是△ABC的角平分线,
∴∠DBC=∠ABC,
同理∠ECB=∠ACB,
∴∠DBC=∠ECB,
在△BCD和△CBE中,
,
∴△BCD≌△CBE(ASA),
∴BD=CE;
②∵AB=AC,
∴∠ABC=∠ACB,
∵D是AC的中点,
∴CD=AC,
同理BE=AB,
∴BE=CD,
在△BCD和△CBE中,
,
∴△BCD≌△CBE(SAS),
∴BD=CE;
(2)解:添加条件:BE=CD(答案不唯一).
理由:∵AB=AC,
∴∠ABC=∠ACB,
∵∠ABC+∠EBC=∠ACB+∠BCD=180°,
∴∠CBE=∠BCD,
在△BCD和△CBE中,
,
∴△BCD≌△CBE(SAS),
∴BD=CE;
(3)能.
理由:如图3中,值AC上取一点D,使得BD=CE
若BF=CE,则BF=BD,反之也成立.
∵BD<AB,
∴BF<AB,
显然BD越大,BF就越大,CF也越大,
假设BF=AB,
∵∠A=36°,
∴∠BFA=∠A=36°,
∴∠ABF=180°﹣2×36°=108°,
∵AB=AC,
∴∠ABC=∠ACB=72°,
∴∠BCF=180°﹣72°=108°,
∴∠BCF=∠ABF,
∵∠BCF=∠ABF,∠BFC=∠AFB,
∴△BFC∽△AFB,
∴=,
设CF=x,
∵AB=AC=2,
∴BF=2,AF=2+x,
∴=,
解得x=﹣1或﹣﹣1,
经检验x=﹣1是分式方程的解,且符合题意,
∴CF=﹣1,
∵E与A不重合,
∴0<CF<﹣1.
六.矩形的性质(共1小题)
6.(2022•威海)(1)将两张长为8,宽为4的矩形纸片如图1叠放.
①判断四边形AGCH的形状,并说明理由;
②求四边形AGCH的面积.
(2)如图2,在矩形ABCD和矩形AFCE中,AB=2,BC=7,CF=,求四边形AGCH的面积.
【解答】解:(1)①四边形AGCH是菱形,理由如下:
∵四边形ABCD和四边形AFCE是矩形,
∴∠B=∠F=90°,AD∥BC,AF∥CE,
∴四边形AGCH是平行四边形,
∵S平行四边形AGCH=GC•AB=AG•CF,AB=CF,
∴GC=AG,
∴平行四边形AGCH是菱形;
②由①可知,GC=AG,
设GC=AG=x,则BG=8﹣x,
在Rt△ABG中,AB=4,
由勾股定理得:42+(8﹣x)2=x2,
解得:x=5,
∴GC=5,
∴S菱形AGCH=GC•AB=5×4=20;
(2)设GC=a,则BG=7﹣a,
∵四边形ABCD和四边形AFCE是矩形,
∴∠B=∠F=90°,AD∥BC,AF∥CE,
∴四边形AGCH是平行四边形,
∵∠AGB=∠CGF,∠B=∠F,
∴△ABG∽△CFG,
∴=,
即=,
解得:AG=2a,
在Rt△ABG中,由勾股定理得:(2)2+(7﹣a)2=(2a)2,
解得:a=3或a=﹣(不合题意舍去),
∴CG=3,
∴S平行四边形AGCH=CG•AB=3×2=6.
设GC=a,则BG=7﹣a,
∵四边形ABCD和四边形AFCE是矩形,
∴∠B=∠F=90°,AD∥BC,AF∥CE,
∴四边形AGCH是平行四边形,
∵∠AGB=∠CGF,∠B=∠F,
∴△ABG∽△CFG,
∴=,
即=,
解得:AG=2a,
在Rt△ABG中,由勾股定理得:(2)2+(7﹣a)2=(2a)2,
解得:a=3或a=﹣(不合题意舍去),
∴CG=3,
∴S平行四边形AGCH=CG•AB=3×2=6.
七.切线的判定(共1小题)
7.(2020•威海)如图,△ABC的外角∠BAM的平分线与它的外接圆相交于点E,连接BE,CE,过点E作EF∥BC,交CM于点D.
求证:(1)BE=CE;
(2)EF为⊙O的切线.
【解答】证明:(1)∵四边形ACBE是圆内接四边形,
∴∠EAM=∠EBC,
∵AE平分∠BAM,
∴∠BAE=∠EAM,
∵∠BAE=∠BCE,
∴∠BCE=∠EAM,
∴∠BCE=∠EBC,
∴BE=CE;
(2)如图,连接EO并延长交BC于H,连接OB,OC,
∵OB=OC,EB=EC,
∴直线EO垂直平分BC,
∴EH⊥BC,
∴EH⊥EF,
∵OE是⊙O的半径,
∴EF为⊙O的切线.
八.切线的判定与性质(共1小题)
8.(2021•威海)如图,AB是⊙O直径,弦CD⊥AB,垂足为点E.弦BF交CD于点G,点P在CD延长线上,且PF=PG.
(1)求证:PF为⊙O切线;
(2)若OB=10,BF=16,BE=8,求PF的长.
【解答】(1)证明:连接OF,如图,
∵PF=PG,
∴∠PFG=∠PGF,
∵∠BGE=∠PGF,
∴∠PFG=∠BGE,
∵OF=OB,
∴∠OFB=∠OBF,
∵CD⊥AB,
∴∠BGE+∠OBF=90°,
∴∠PFG+∠OFB=90°,
∴∠PFO=90°,
∵OF是⊙O半径,
∴PF为⊙O切线;
(2)解:连接AF,过点P作PM⊥FG,垂足为M,如图,
∵AB是⊙O直径,
∴∠AFB=90°,
∴AB2=AF2+BF2,
∵OB=10,
∴AB=20,
∵BF=16,
∴AF=12,
在Rt△ABF中,tanB=,cosB=,
在Rt△BEG中,,,
∴GE=6,GB=10,
∵BF=16,
∴FG=6,
∵PM⊥FG,PF=PG,
∴MG=FG=3,
∵∠BGE=∠PFM,∠PMF=∠BEG=90°,
∴△PFM∽△BGE,
∴,即,
解得:PF=5,
∴PF的长为5.
九.几何变换综合题(共1小题)
9.(2020•威海)发现规律
(1)如图①,△ABC与△ADE都是等边三角形,直线BD,CE交于点F.直线BD,AC交于点H.求∠BFC的度数.
(2)已知:△ABC与△ADE的位置如图②所示,直线BD,CE交于点F.直线BD,AC交于点H.若∠ABC=∠ADE=α,∠ACB=∠AED=β,求∠BFC的度数.
应用结论
(3)如图③,在平面直角坐标系中,点O的坐标为(0,0),点M的坐标为(3,0),N为y轴上一动点,连接MN.将线段MN绕点M逆时针旋转60°得到线段MK,连接NK,OK.求线段OK长度的最小值.
【解答】解:(1)如图①,
∵△ABC,△ADE是等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=60°=∠ABC=∠ACB,
∴∠BAD=∠CAE,
∴△BAD≌△CAE(SAS),
∴∠ABD=∠ACE,
∵∠ABD+∠FBC=∠ABC=60°,
∴∠ACE+∠FBC=60°,
∴∠BFC=180°﹣∠FBC﹣∠ACE﹣∠ACB=60°;
(2)如图②,
∵∠ABC=∠ADE=α,∠ACB=∠AED=β,
∴△ABC∽△ADE,
∴∠BAC=∠DAE,,
∴∠BAD=∠CAE,,
∴△ABD∽△ACE,
∴∠ABD=∠ACE,
∵∠BHC=∠ABD+∠BAC=∠BFC+∠ACE,
∴∠BFC=∠BAC,
∵∠BAC+∠ABC+∠ACB=180°,
∴∠BFC+α+β=180°,
∴∠BFC=180°﹣α﹣β;
(3)∵将线段MN绕点M逆时针旋转60°得到线段MK,
∴MN=MK,∠NMK=60°,
∴△MNK是等边三角形,
∴MK=MN=NK,∠NMK=∠NKM=∠KNM=60°,
如图③,将△MOK绕点M顺时针旋转60°,得到△MQN,连接OQ,
∴△MOK≌△MQN,∠OMQ=60°,
∴OK=NQ,MO=MQ,
∴△MOQ是等边三角形,
∴∠QOM=60°,
∴∠NOQ=30°,
∵OK=NQ,
∴当NQ为最小值时,OK有最小值,
由垂线段最短可得:当QN⊥y轴时,NQ有最小值,
此时,QN⊥y轴,∠NOQ=30°,
∴NQ=OQ=,
∴线段OK长度的最小值为.
一十.解直角三角形的应用(共1小题)
10.(2022•威海)小军同学想利用所学的“锐角三角函数”知识测量一段两岸平行的河流宽度.他先在河岸设立A,B两个观测点,然后选定对岸河边的一棵树记为点M.测得AB=50m,∠MAB=22°,∠MBA=67°.请你依据所测数据求出这段河流的宽度(结果精确到0.1m).
参考数据:sin22°≈,cos22°≈,tan22°≈,sin67°≈,cos67°≈,tan67°≈.
【解答】解:过点M作MN⊥AB,垂足为N,
设MN=x米,
在Rt△ANM中,∠MAB=22°,
∴AN=≈=x(米),
在Rt△MNB中,∠MBN=67°,
∴BN=≈=x(米),
∵AB=50米,
∴AN+BN=50,
∴x+x=50,
∴x≈17.1,
∴这段河流的宽度约为17.1米.
一十一.解直角三角形的应用-仰角俯角问题(共1小题)
11.(2020•威海)居家学习期间,小晴同学运用所学知识在自家阳台测对面大楼的高度.如图,她利用自制的测角仪测得该大楼顶部的仰角为45°,底部的俯角为38°;又用绳子测得测角仪距地面的高度AB为31.6m.求该大楼的高度(结果精确到0.1m).
(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78)
【解答】解:过点A作AH⊥CD于H,如图:
则四边形ABDH是矩形,
∴HD=AB=31.6m,
在Rt△ADH中,∠HAD=38°,tan∠HAD=,
∴AH===≈40.51(m),
在Rt△ACH中,∠CAH=45°,
∴CH=AH=40.51m,
∴CD=CH+HD=40.51+31.6=72.11≈72.1(m),
答:该大楼的高度约为72.1m.
相关试卷
这是一份广东省深圳市三年(2020-2022)中考数学真题分类汇编-04解答题中档题、提升题知识点分类,共24页。试卷主要包含了探究,,与y轴交于点C,顶点为D,发现,,发现BE=DG且BE⊥DG,,绘制成扇形统计图等内容,欢迎下载使用。
这是一份山东省威海市三年(2018-2022)年中考数学模拟题汇编:03解答题基础题知识点分类,共13页。
这是一份山东省泰安市三年(2018-2022)年中考数学模拟题汇编:04解答题中档题、提升题知识点分类,共25页。试卷主要包含了问题探究,,A组等内容,欢迎下载使用。