年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    08图形的性质解答题-2022年江苏省各地区中考数学真题分类汇编

    08图形的性质解答题-2022年江苏省各地区中考数学真题分类汇编第1页
    08图形的性质解答题-2022年江苏省各地区中考数学真题分类汇编第2页
    08图形的性质解答题-2022年江苏省各地区中考数学真题分类汇编第3页
    还剩45页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    08图形的性质解答题-2022年江苏省各地区中考数学真题分类汇编

    展开

    这是一份08图形的性质解答题-2022年江苏省各地区中考数学真题分类汇编,共48页。试卷主要包含了解答题等内容,欢迎下载使用。
    08 图形的性质 解答题:
    一、解答题
    1.(2022·江苏宿迁·中考真题)如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点、、、、均为格点.
    【操作探究】在数学活动课上,佳佳同学在如图①的网格中,用无刻度的直尺画了两条互相垂直的线段、,相交于点并给出部分说理过程,请你补充完整:
    解:在网格中取格点,构建两个直角三角形,分别是△ABC和△CDE.
    在Rt△ABC中,
    在Rt△CDE中, ,
    所以.
    所以∠=∠.
    因为∠ ∠ =∠ =90°,
    所以∠ +∠ =90°,
    所以∠ =90°,
    即⊥.


    (1)【拓展应用】如图②是以格点为圆心,为直径的圆,请你只用无刻度的直尺,在上找出一点P,使=,写出作法,并给出证明:
    (2)【拓展应用】如图③是以格点为圆心的圆,请你只用无刻度的直尺,在弦上找出一点P.使=·,写出作法,不用证明.
    2.(2022·江苏常州·中考真题)(现有若干张相同的半圆形纸片,点是圆心,直径的长是,是半圆弧上的一点(点与点、不重合),连接、.


    (1)沿、剪下,则是______三角形(填“锐角”、“直角”或“钝角”);
    (2)分别取半圆弧上的点、和直径上的点、.已知剪下的由这四个点顺次连接构成的四边形是一个边长为的菱形.请用直尺和圆规在图中作出一个符合条件的菱形(保留作图痕迹,不要求写作法);
    (3)经过数次探索,小明猜想,对于半圆弧上的任意一点,一定存在线段上的点、线段上的点和直径上的点、,使得由这四个点顺次连接构成的四边形是一个边长为的菱形.小明的猜想是否正确?请说明理由.
    3.(2022·江苏常州·中考真题)如图,点在射线上,.如果绕点按逆时针方向旋转到,那么点的位置可以用表示.

    (1)按上述表示方法,若,,则点的位置可以表示为______;
    (2)在(1)的条件下,已知点的位置用表示,连接、.求证:.
    4.(2022·江苏常州·中考真题)在四边形中,是边上的一点.若,则点叫做该四边形的“等形点”.

    (1)正方形_______“等形点”(填“存在”或“不存在”);
    (2)如图,在四边形中,边上的点是四边形的“等形点”.已知,,,连接,求的长;
    (3)在四边形中,EH//FG.若边上的点是四边形的“等形点”,求的值.
    5.(2022·江苏宿迁·中考真题)如图,在平行四边形中,点,分别是边,的中点.求证:.

    6.(2022·江苏泰州·中考真题)如图,线段DE与AF分别为△ABC的中位线与中线.


    (1)求证:AF与DE互相平分;
    (2)当线段AF与BC满足怎样的数量关系时,四边形ADFE为矩形?请说明理由.
    7.(2022·江苏泰州·中考真题)已知:△ABC中,D 为BC边上的一点.


    (1)如图①,过点D作DE∥AB交AC边于点E,若AB=5,BD=9,DC=6,求DE的长;
    (2)在图②,用无刻度的直尺和圆规在AC边上做点F,使∠DFA=∠A;(保留作图痕迹,不要求写作法)
    (3)如图③,点F在AC边上,连接BF、DF,若∠DFA=∠A,△FBC的面积等于,以FD为半径作⊙F,试判断直线BC与⊙F的位置关系,并说明理由.
    8.(2022·江苏泰州·中考真题)如图①,矩形ABCD与以EF为直径的半圆O在直线l的上方,线段AB与点E、F都在直线l上,且AB=7,EF=10,BC>5. 点B以1个单位/秒的速度从点E处出发,沿射线EF方向运动矩形ABCD随之运动,运动时间为t秒

    (1)如图2,当t=2.5时,求半圆O在矩形ABCD内的弧的长度;
    (2)在点B运动的过程中,当 AD、BC都与半圆O相交,设这两个交点为G、H连接OG,OH.若∠GOH为直角,求此时t的值.
    9.(2022·江苏无锡·中考真题)如图,△ABC为锐角三角形.


    (1)请在图1中用无刻度的直尺和圆规作图:在AC右上方确定点D,使∠DAC=∠ACB,且;(不写作法,保留作图痕迹)
    (2)在(1)的条件下,若,,,则四边形ABCD的面积为 .(如需画草图,请使用试卷中的图2)
    10.(2022·江苏无锡·中考真题)如图,已知四边形ABCD为矩形,,点E在BC上,,将△ABC沿AC翻折到△AFC,连接EF.


    (1)求EF的长;
    (2)求sin∠CEF的值.
    11.(2022·江苏无锡·中考真题)如图,边长为6的等边三角形ABC内接于⊙O,点D为AC上的动点(点A、C除外),BD的延长线交⊙O于点E,连接CE.

    (1)求证;
    (2)当时,求CE的长.
    12.(2022·江苏无锡·中考真题)如图,在▱ABCD中,点O为对角线BD的中点,EF过点O且分别交AB、DC于点E、F,连接DE、BF.

    求证:
    (1)△DOF≌△BOE;
    (2)DE=BF.
    13.(2022·江苏扬州·中考真题)如图1,在中,,点在边上由点向点运动(不与点重合),过点作,交射线于点.


    (1)分别探索以下两种特殊情形时线段与的数量关系,并说明理由;
    ①点在线段的延长线上且;
    ②点在线段上且.
    (2)若.
    ①当时,求的长;
    ②直接写出运动过程中线段长度的最小值.
    14.(2022·江苏扬州·中考真题)如图,为的弦,交于点,交过点的直线于点,且.


    (1)试判断直线与的位置关系,并说明理由;
    (2)若,求的长.
    15.(2022·江苏宿迁·中考真题)如图,某学习小组在教学楼的顶部观测信号塔底部的俯角为30°,信号塔顶部的仰角为45°.已知教学楼的高度为20m,求信号塔的高度(计算结果保冒根号).

    16.(2022·江苏扬州·中考真题)如图,在中,分别平分,交于点.

    (1)求证:;
    (2)过点作,垂足为.若的周长为56,,求的面积.
    17.(2022·江苏苏州·中考真题)如图,AB是的直径,AC是弦,D是的中点,CD与AB交于点E.F是AB延长线上的一点,且.

    (1)求证:为的切线;
    (2)连接BD,取BD的中点G,连接AG.若,,求AG的长.
    18.(2022·江苏苏州·中考真题)如图,将矩形ABCD沿对角线AC折叠,点B的对应点为E,AE与CD交于点F.


    (1)求证:;
    (2)若,求的度数.
    19.(2022·江苏宿迁·中考真题)如图,在中,∠ =45°,,以为直径的⊙与边交于点.

    (1)判断直线与⊙的位置关系,并说明理由;
    (2)若,求图中阴影部分的面积.
    20.(2022·江苏扬州·中考真题)【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?
    【初步尝试】如图1,已知扇形,请你用圆规和无刻度的直尺过圆心作一条直线,使扇形的面积被这条直线平分;
    【问题联想】如图2,已知线段,请你用圆规和无刻度的直尺作一个以为斜边的等腰直角三角形;
    【问题再解】如图3,已知扇形,请你用圆规和无刻度的直尺作一条以点为圆心的圆弧,使扇形的面积被这条圆弧平分.
    (友情提醒:以上作图均不写作法,但需保留作图痕迹)

    21.(2022·江苏连云港·中考真题)【问题情境】在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图1所示的方式摆放.其中,,.
    【问题探究】小昕同学将三角板绕点B按顺时针方向旋转.




    (1)如图2,当点落在边上时,延长交于点,求的长.
    (2)若点、、在同一条直线上,求点到直线的距离.
    (3)连接,取的中点,三角板由初始位置(图1),旋转到点、、首次在同一条直线上(如图3),求点所经过的路径长.
    (4)如图4,为的中点,则在旋转过程中,点到直线的距离的最大值是_____.
    22.(2022·江苏连云港·中考真题)如图,四边形为平行四边形,延长到点,使,且.

    (1)求证:四边形为菱形;
    (2)若是边长为2的等边三角形,点、、分别在线段、、上运动,求的最小值.

    参考答案:
    1.(1);见解析
    (2)见解析
    【解析】
    【分析】
    (1)取格点,作射线交于点P,则根据垂径定理可知,点P即为所求作;
    (2)取格点I,连接MI交AB于点P,点P即为所求作.利用正切函数证得∠FMI=∠MNA,利用圆周角定理证得∠B=∠MNA,再推出△PAM∽△MAB,即可证明结论.
    (1)
    解:【操作探究】在网格中取格点,构建两个直角三角形,分别是△ABC和△CDE.
    在Rt△ABC中,
    在Rt△CDE中,,
    所以.
    所以∠=∠.
    因为∠ ∠ =∠ =90°,
    所以∠ +∠ =90°,
    所以∠ =90°,
    即⊥.
    故答案为:;
    取格点,作射线交于点P,点P即为所求作;







    (2)
    解:取格点I,连接MI交AB于点P,点P即为所求作;
    证明:作直径AN,连接BM、MN,
    在Rt△FMI中,,
    在Rt△MNA中,,
    所以.
    ∴∠FMI=∠MNA,
    ∵∠B=∠MNA,
    ∴∠AMP=∠B,
    ∵∠PAM=∠MAB,
    ∴△PAM∽△MAB,
    ∴,
    ∴=·.

    【点睛】
    本题考查作图-应用与设计,相似三角形的判定和性质,圆周角定理,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
    2.(1)直角
    (2)见详解
    (3)小明的猜想错误,理由见详解
    【解析】
    【分析】
    (1)AB是圆的直径,根据圆周角定理可知∠ACB=90°,即可作答;
    (2)以A为圆心,AO为半径画弧交⊙O于点E,再以E为圆心,EO为半径画弧交于⊙O点F连接EF、FO、EA,G、H点分别与A、O点重合,即可;
    (3)过C点作,交AB于点G,连接CO,根据,可得,即有,则可求得,依据,NQ=4,可得GC=OC=6,即可判断.
    (1)
    如图,


    ∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∴∠ACB是直角,
    即△ABC是直角三角形,
    故答案为:直角,
    (2)
    以A为圆心,AO为半径画弧交⊙O于点E,再以E为圆心,EO为半径画弧交于⊙O点F连接EF、FO、EA,G、H点分别与A、O点重合,即可,
    作图如下:


    由作图可知AE=EF=FH=HG=OA=AB=6,
    即四边形EFHG是边长为6cm的菱形;
    (3)
    小明的猜想错误,理由如下:
    如图,菱形MNQP的边长为4,过C点作,交AB于点G,连接CO,


    在菱形MNQP中MN=QN=4,,
    ∵,
    ∴,
    ∴,
    ∵AB=12,MN=4,
    ∴,
    ∵BN=BC-CN,
    ∴,
    ∵,NQ=4,


    ∴,
    ∴GC=6,
    ∵AB=12,
    ∴OC=6,
    ∴OC=GC,
    显然若C点靠近A点时,要满足GC=OC=6,此时的G点必在BA的延长线上,
    ∵P点在线段AB上,   
    ∴直线GC必与直线PM相交,这与相矛盾,
    故小明的猜想错误.
    【点睛】
    本题考查了圆周角定理、尺规作图、菱形的性质、平行的性质等知识,掌握菱形的性质以及平行的性质求得GC=OC是解答本题的关键.
    3.(1)(3,37°)
    (2)见解析
    【解析】
    【分析】
    (1)根据点的位置定义,即可得出答案;
    (2)画出图形,证明△AOA′≌△BOA′(SAS),即可由全等三角形的性质,得出结论.
    (1)
    解:由题意,得A′(a,n°),
    ∵a=3,n=37,
    ∴A′(3,37°),
    故答案为:(3,37°);
    (2)
    证明:如图,

    ∵,B(3,74°),
    ∴∠AOA′=37°,∠AOB=74°,OA= OB=3,
    ∴∠A′OB=∠AOB-∠AOA′=74°-37°=37°,
    ∵OA′=OA′,
    ∴△AOA′≌△BOA′(SAS),
    ∴A′A=A′B.
    【点睛】
    本题考查全等三角形的判定与性质,新定义,旋转的性质,熟练掌握全等三角形的判定与性质是解题的关键.
    4.(1)不存在,理由见详解
    (2)
    (3)1
    【解析】
    【分析】
    (1)根据“等形点”的概念,采用反证法即可判断;
    (2)过A点作AM⊥BC于点M,根据“等形点”的性质可得AB=CD=,OA=OC=5,OB=7=OD,设MO=a,则BM=BO-MO=7-a,在Rt△ABM和Rt△AOM中,利用勾股定理即可求出AM,则在Rt△AMC中利用勾股定理即可求出AC;
    (3)根据“等形点”的性质可得OF=OH,OE=OG,∠EOF=∠GOH,再根据,可得∠EOF=∠OEH,∠GOH=∠EHO,即有∠OEH=∠OHE,进而有OE=OH,可得OF=OG,则问题得解.
    (1)
    不存在,
    理由如下:
    假设正方形ABCD存在“等形点”点O,即存在△OAB≌△OCD,
    ∵在正方形ABCD中,点O在边BC上,
    ∴∠ABO=90°,
    ∵△OAB≌△OCD,
    ∴∠ABO=∠CDO=90°,
    ∴CD⊥DO,
    ∵CD⊥BC,
    ∴,
    ∵O点在BC上,
    ∴DO与BC交于点O,
    ∴假设不成立,
    故正方形不存在“等形点”;
    (2)
    如图,过A点作AM⊥BC于点M,如图,

    ∵O点是四边形ABCD的“等形点”,
    ∴△OAB≌△OCD,
    ∴AB=CD,OA=OC,OB=OD,∠AOB=∠COD,
    ∵,OA=5,BC=12,
    ∴AB=CD=,OA=OC=5,
    ∴OB=BC-OC=12-5=7=OD,
    ∵AM⊥BC,
    ∴∠AMO=90°=∠AMB,
    ∴设MO=a,则BM=BO-MO=7-a,
    ∴在Rt△ABM和Rt△AOM中,,
    ∴,即,
    解得:,即,
    ∴MC=MO+OC=,
    ∴在Rt△AMC中,,
    即AC的长为;
    (3)
    如图,

    ∵O点是四边形EFGH的“等形点”,
    ∴△OEF≌△OGH,
    ∴OF=OH,OE=OG,∠EOF=∠GOH,
    ∵,
    ∴∠EOF=∠OEH,∠GOH=∠EHO,
    ∴根据∠EOF=∠GOH有∠OEH=∠OHE,
    ∴OE=OH,
    ∵OF=OH,OE=OG,
    ∴OF=OG,
    ∴.
    【点睛】
    本题考查了全等三角形的性质、勾股定理、正方形的性质、平行的性质等知识,充分利用全等三角形的性质是解答本题的关键.
    5.证明见解析
    【解析】
    【分析】
    利用是平行四边形,得到,,再证明,即可证明是平行四边形,利用平行四边形的性质即可得到.
    【详解】
    证明:∵是平行四边形,
    ∴,,
    ∵点,分别是边,的中点,
    ∴,
    ∵,
    ∴是平行四边形,
    ∴.
    【点睛】
    本题考查平行四边形的判定及性质,解题的关键是证明是平行四边形.
    6.(1)见解析
    (2)AF=BC,理由见解析
    【解析】
    【分析】
    (1)易知点D,E,F分别是AB,AC,BC的中点,所以线段DF与EF也为△ABC的中位线,由中位线定理证得四边形ADFE是平行四边形,因为平行四边形的对角线相互平分,此题可证;
    (2)根据对角线相等的平行四边形是矩形,结合已知条件可知,当AF=BC时,平行四边形ADFE为矩形.
    (1)
    证明:∵线段DE与AF分别为△ABC的中位线与中线,
    ∴D,E,F分别是AB,AC,BC的中点,
    ∴线段DF与EF也为△ABC的中位线,
    ∴DFAC,EFAB,
    ∴四边形ADFE是平行四边形,
    ∴AF与DE互相平分.
    (2)
    解:当AF=BC时,四边形ADFE为矩形,理由如下:
    ∵线段DE为△ABC的中位线,
    ∴DE=BC,
    由(1)知四边形ADFE为平行四边形,若ADFE为矩形,则AF=DE,
    ∴当AF=BC时,四边形ADFE为矩形.
    【点睛】
    此题考查了中位线定理,平行四边形的判定和性质,矩形的判定和性质;解题的关键是数形结合,熟练运用上述知识.
    7.(1)2
    (2)图见详解
    (3)直线BC与⊙F相切,理由见详解
    【解析】
    【分析】
    (1)由题意易得,则有,然后根据相似三角形的性质与判定可进行求解;
    (2)作DT∥AC交AB于点T,作∠TDF=∠ATD,射线DF交AC于点F,则点F即为所求;
    (3)作BR∥CF交FD的延长线于点R,连接CR,证明四边形ABRF是等腰梯形,推出AB=FR,由CF∥BR,推出,推出CD⊥DF,然后问题可求解.
    (1)
    解:∵DE∥AB,
    ∴,
    ∴,
    ∵AB=5,BD=9,DC=6,
    ∴,
    ∴;
    (2)
    解:作DT∥AC交AB于点T,作∠TDF=∠ATD,射线DF交AC于点F,则点F即为所求;
    如图所示:点F即为所求,


    (3)
    解:直线BC与⊙F相切,理由如下:
    作BR∥CF交FD的延长线于点R,连接CR,如图,


    ∵∠DFA=∠A,
    ∴四边形ABRF是等腰梯形,
    ∴,
    ∵△FBC的面积等于,
    ∴,
    ∴CD⊥DF,
    ∵FD是⊙F的半径,
    ∴直线BC与⊙F相切.
    【点睛】
    本题主要考查相似三角形的性质与判定、平行线的性质与判定及切线的判定,熟练掌握相似三角形的性质与判定、平行线的性质与判定及切线的判定是解题的关键.
    8.(1)
    (2)8或9秒
    【解析】
    【分析】
    (1)通过计算当t=2.5时EB=BO,进而得到△MBE≌△MBO,判断出△MEO为等边三角形得到∠EOM=60°,然后根据弧长公式求解;
    (2)通过判定△GAO≌△HBO,然后利用全等三角形的性质分析求解.
    (1)
    解:设BC与⊙O交于点M,如下图所示:

    当t=2.5时,BE=2.5,
    ∵EF=10,
    ∴OE=EF=5,
    ∴OB=2.5,
    ∴EB=OB,
    在正方形ABCD中,∠EBM=∠OBM=90°,且MB=MB,
    ∴△MBE≌△MBO(SAS),
    ∴ME=MO,
    ∴ME=EO=MO,
    ∴△MOE是等边三角形,
    ∴∠EOM=60°,
    ∴.
    (2)
    解:连接GO和HO,如下图所示:

    ∵∠GOH=90°,
    ∴∠AOG+∠BOH=90°,
    ∵∠AOG+∠AGO=90°,
    ∴∠AGO=∠BOH,
    在△AGO和△OBH中,,
    ∴△AGO≌△BOH(AAS),
    ∴AG=OB=BE-EO=t-5,
    ∵AB=7,
    ∴AE=BE-AB=t-7,
    ∴AO=EO-AE=5-(t-7)=12-t,
    在Rt△AGO中,AG2+AO2=OG2,
    ∴(t-5)2+(12-t)2=52,
    解得:t1=8,t2=9,
    即t的值为8或9秒.
    【点睛】
    本题考查全等三角形的判定和性质,弧长公式的计算,勾股定理的应用,掌握全等三角形的判定(一线三垂直模型),结合勾股定理列方程是解题关键.
    9.(1)见解析
    (2)
    【解析】
    【分析】
    (1)先作∠DAC=∠ACB,再利用垂直平分线的性质作,即可找出点D;
    (2)由题意可知四边形ABCD是梯形,利用直角三角形的性质求出AE、BE、CE、AD的长,求出梯形的面积即可.
    (1)
    解:如图,


    ∴点D为所求点.
    (2)
    解:过点A作AE垂直于BC,垂足为E,




    ∵,,
    ∴,
    ∵,
    ∴,,
    ∴,
    ∵∠DAC=∠ACB,
    ∴,四边形ABCD是梯形,
    ∴,
    ∴四边形AECD是矩形,
    ∴,
    ∴四边形ABCD的面积为,
    故答案为:.
    【点睛】
    本题考查作图,作相等的角,根据垂直平分线的性质做垂线,根据直角三角形的性质及勾股定理求线段的长,正确作出图形是解答本题的关键.
    10.(1)
    (2)
    【解析】
    【分析】
    (1)先由可求得的长度,再由角度关系可得,即可求得的长;
    (2)过F作于,利用勾股定理列方程,即可求出的长度,同时求出的长度,得出答案.
    (1)
    设,则,
    ∴,
    在中,,
    ∴,
    ∴,
    ∴,,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴,
    由折叠可知,
    ∴,,
    ∴,
    ∴,
    在中,.


    (2)
    过F作FM⊥BC于M,
    ∴∠FME=∠FMC=90°,
    设EM=a,则EC=3-a,
    在中, ,
    在中,,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴ .




    【点睛】
    此题考查了锐角三角函数,勾股定理,矩形的性质,通过添加辅助线构建直角三角形是解题的关键.
    11.(1)见解析
    (2)
    【解析】
    【分析】
    (1)根据同弧所对圆周角相等可得,再由对顶角相等得,故可证明绪论;
    (2)根据可得由可得出连接AE,可证明,得出 代入相关数据可求出,从而可求出绪论.
    (1)
    ∵所对的圆周角是,
    ∴,
    又,
    ∴;
    (2)
    ∵△是等边三角形,

    ∵,



    ∴,


    连接如图,



    ∴∠
    又∠,
    ∴△
    ∴,

    ∴,
    ∴(负值舍去)
    ∴,
    解得,
    【点睛】
    本题主要考查了圆周角定理,相似三角形和判定与性质,正确作出辅助线是解答本题的关键.
    12.(1)见解析
    (2)见解析
    【解析】
    【分析】
    (1)根据平行四边形ABCD的性质,利用ASA即可证明△DOF≌△BOE;
    (2)证明四边形BEDF的对角线互相平分,进而得出结论.
    (1)
    证明:∵四边形ABCD是平行四边形,O是BD的中点,
    ∴AB∥DC,OB=OD,
    ∴∠OBE=∠ODF.
    在△BOE和△DOF中,,
    ∴△BOE≌△DOF(ASA);
    (2)
    证明:∵△BOE≌△DOF,
    ∴EO=FO,
    ∵OB=OD,
    ∴四边形BEDF是平行四边形.
    ∴DE=BF.
    【点睛】
    本题主要考查了平行四边形的判定和性质,全等三角形的判定与性质,熟练掌握平行四边形的判定和性质,证明三角形全等是解决问的关键.
    13.(1)①②
    (2)①②4
    【解析】
    【分析】
    (1)①算出各个内角,发现其是等腰三角形即可推出;
    ②算出各内角发现其是30°的直角三角形即可推出;
    (2)①分别过点A,E作BC的垂线,得到一线三垂直的相似,即,设,,利用30°直角三角形的三边关系,分别表示出,,,,列式求解a即可;
    ②分别过点A,E作BC的垂线,相交于点G,H,证明可得,然后利用完全平方公式变形得出,求出AE的取值范围即可.
    (1)
    ①如图:

    ∵在中,,


    ∴,
    在中,


    ∴;
    ②如图:


    ∴,
    ∴在中,

    ∴;
    (2)
    ①分别过点A,E作BC的垂线,相交于点H,G,则∠EGD=∠DHA=90°,

    ∴∠GED+∠GDE=90°,
    ∵∠HDA+∠GDE=90°,
    ∴∠GED=∠HDA,
    ∴,
    设,,则,,
    在中,,AB=6
    则,
    在中,,

    在中,,


    由得,

    解得:,(舍)
    故;
    ②分别过点A,E作BC的垂线,相交于点G,H,则∠EHD=∠AGD=90°,

    ∵∠ADE=90°,
    ∴∠EDH=90°-∠ADG=∠DAG,
    ∵∠EHD=∠AGD=90°,
    ∴,
    ∴,
    ∴,
    ∵∠BAC=90°,∠C=60°,
    ∴∠B=30°,
    ∴,
    ∴,
    ∴=,

    ∴,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴,
    故AE的最小值为4.
    【点睛】
    本题考查了直角三角形的性质,三角形相似的判定和性质,等腰三角形的性质,一线三垂直相似模型,垂线段最短,熟练掌握直角三角形的性质,一线三垂直模型,垂线段最短原理是解题的关键.
    14.(1)相切,证明见详解
    (2)6
    【解析】
    【分析】
    (1)连接OB,根据等腰三角形的性质得出,,从而求出,再根据切线的判定得出结论;
    (2)分别作交AB于点M,交AB于N,根据求出OP,AP的长,利用垂径定理求出AB的长,进而求出BP的长,然后在等腰三角形CPB中求解CB即可.
    (1)
    证明:连接OB,如图所示:



    ,,


    ,即,


    为半径,经过点O,
    直线与的位置关系是相切.
    (2)
    分别作交AB于点M,交AB于N,如图所示:




    ,,

    ,,






    【点睛】
    本题考查了切线的证明,垂径定理的性质,等腰三角形,勾股定理,三角函数等知识点,熟练掌握相关知识并灵活应用是解决此题的关键,抓住直角三角形边的关系求解线段长度是解题的主线思路.
    15.(20+20)m.
    【解析】
    【分析】
    过点A作AE⊥CD于点E,则四边形ABDE是矩形,DE=AB=20m,在Rt△ADE中,求出AE的长,在Rt△ACE中,∠AEC=90°,求出CE的长,即可得到CD的长,得到信号塔的高度.
    【详解】
    解:过点A作AE⊥CD于点E,
    由题意可知,∠B=∠BDE=∠AED=90°,
    ∴四边形ABDE是矩形,
    ∴DE=AB=20m,
    在Rt△ADE中,∠AED=90°,∠DAE=30°,DE=20m,
    ∵tan∠DAE=,
    ∴m,
    在Rt△ACE中,∠AEC=90°,∠CAE=45°,
    ∴△ACE是等腰直角三角形,
    ∴ m,
    ∴CD=CE+DE=(20+20)m,
    ∴信号塔的高度为(20+20)m.

    【点睛】
    此题考查了解直角三角形的应用仰角俯角问题、矩形的判定和性质、等腰直角三角形的判定和性质、特殊角的锐角三角函数等知识,借助仰角俯角构造直角三角形与矩形是解题的关键.
    16.(1)见详解
    (2)84
    【解析】
    【分析】
    (1)由平行四边形的性质证即可求证;
    (2)作,由即可求解;
    (1)
    证明:在中,
    ∵,
    ∴,
    ∵分别平分,,
    ∴,
    在和中,

    ∴,
    ∴,
    ∴.
    (2)
    如图,作,

    ∵的周长为56,
    ∴,
    ∵平分,
    ∴,
    ∴.
    【点睛】
    本题主要考查平行四边形的性质、三角形的全等、角平分线的性质,掌握相关知识并灵活应用是解题的关键.
    17.(1)见解析
    (2)
    【解析】
    【分析】
    (1)方法一:如图1,连接OC,OD.由,,可得,由是的直径,D是的中点,,进而可得,即可证明CF为的切线;
    方法二:如图2,连接OC,BC.设.同方法一证明,即可证明CF为的切线;
    (2)方法一:如图3,过G作,垂足为H.设的半径为r,则.在Rt△OCF中,勾股定理求得,证明,得出,根据,求得,进而求得,根据勾股定理即可求得;
    方法二:如图4,连接AD.由方法一,得.,D是的中点,可得,根据勾股定理即可求得.
    (1)
    (1)方法一:如图1,连接OC,OD.
    ∵,
    ∴.
    ∵,
    ∴.   
    ∵,
    ∴.
    ∵是的直径,D是的中点,
    ∴.
    ∴.
    ∴,即.
    ∴.
    ∴CF为的切线.

    方法二:如图2,连接OC,BC.设.
    ∵AB是的直径,D是的中点,
    ∴.
    ∴.
    ∵,
    ∴.   
    ∴.
    ∵,
    ∴.
    ∴.
    ∵AB是的直径,
    ∴.
    ∴.
    ∴,即.
    ∴.
    ∴CF为的切线.

    (2)
    解:方法一:如图3,过G作,垂足为H.
    设的半径为r,则.
    在Rt△OCF中,,
    解之得.
    ∵,
    ∴.   
    ∵,
    ∴.
    ∴.

    ∴.
    ∵G为BD中点,
    ∴.
    ∴,.
    ∴.
    ∴.

    方法二:如图4,连接AD.由方法一,得.
    ∵AB是的直径,
    ∴.
    ∵,D是的中点,
    ∴.
    ∵G为BD中点,
    ∴.
    ∴.

    【点睛】
    本题考查了切线的判定,勾股定理,相似三角形的性质与判定,综合运用以上知识是解题的关键.
    18.(1)见解析
    (2)
    【解析】
    【分析】
    (1)由矩形与折叠的性质可得,,从而可得结论;
    (2)先证明,再求解, 结合对折的性质可得答案.
    (1)
    证明:将矩形ABCD沿对角线AC折叠,
    则,.
    在△DAF和△ECF中,

    ∴.
    (2)
    解:∵,
    ∴.
    ∵四边形ABCD是矩形,
    ∴.
    ∴,
    ∵,
    ∴.
    【点睛】
    本题考查的是全等三角形的判定与性质,轴对称的性质,矩形的性质,熟练的运用轴对称的性质证明边与角的相等是解本题的关键.
    19.(1)证明见解析
    (2)
    【解析】
    【分析】
    (1)利用等腰三角形的性质与三角形的内角和定理证明 从而可得结论;
    (2)如图,记BC与的交点为M,连接OM,先证明 再利用阴影部分的面积等于三角形ABC的面积减去三角形BOM的面积,减去扇形AOM的面积即可.
    (1)
    证明: ∠ =45°,,


    在上,
    为的切线.
    (2)
    如图,记BC与的交点为M,连接OM,




    ,,



    【点睛】
    本题考查的是等腰三角形的性质,切线的判定,扇形面积的计算,掌握“切线的判定方法与割补法求解不规则图形面积的方法”是解本题的关键.
    20.见解析
    【解析】
    【分析】
    【初步尝试】如图1,作∠AOB的角平分线所在直线即为所求;
    【问题联想】如图2,先作MN的线段垂直平分线交MN于点O,再以O为圆心MO为半径作圆,与垂直平分线的交点即为等腰直角三角形的顶点;
    【问题再解】如图3先作OB的线段垂直平分线交OB于点N,再以N为圆心NO为半径作圆, 与垂直平分线的交点为M,然后以O为圆心,OM为半径作圆与扇形所交的圆弧即为所求.
    【详解】
    【初步尝试】如图所示,作∠AOB的角平分线所在直线OP即为所求;


    【问题联想】如图,先作MN的线段垂直平分线交MN于点O,再以O为圆心MO为半径作圆,与垂直平分线的交点即为等腰直角三角形的顶点;


    【问题再解】如图,先作OB的线段垂直平分线交OB于点N,再以N为圆心NO为半径作圆, 与垂直平分线的交点为M,然后以O为圆心,OM为半径作圆与扇形所交的圆弧CD即为所求.


    【点睛】
    本题考查了尺规作图,角平分线的性质,线段垂直平分线的性质,扇形的面积等知识,解决此类题目的关键是熟悉基本几何图形的性质,掌握基本作图方法.
    21.(1)
    (2)
    (3)
    (4)
    【解析】
    【分析】
    (1)在Rt△BEF中,根据余弦的定义求解即可;
    (2)分点在上方和下方两种情况讨论求解即可;
    (3)取的中点,连接,从而求出OG=,得出点在以为圆心,为半径的圆上,然后根据弧长公式即可求解;
    (4)由(3)知,点在以为圆心,为半径的圆上,过O作OH⊥AB于H,当G在OH的反向延长线上时,GH最大,即点到直线的距离的最大,在Rt△BOH中求出OH,进而可求GH.
    (1)
    解:由题意得,,
    ∵在中,,,.
    ∴.
    (2)
    ①当点在上方时,
    如图一,过点作,垂足为,


    ∵在中,,,,
    ∴,
    ∴.
    ∵在中,,,
    ,,
    ∴.
    ∵点、、在同一直线上,且,
    ∴.
    又∵在中,,,,
    ∴,
    ∴.
    ∵在中,,
    ∴.
    ②当点在下方时,
    如图二,


    在中,∵,,,
    ∴.
    ∴.
    过点作,垂足为.
    在中,,
    ∴.
    综上,点到直线的距离为.
    (3)
    解:如图三,取的中点,连接,则.


    ∴点在以为圆心,为半径的圆上.
    当三角板绕点B顺时针由初始位置旋转到点、B、首次在同一条直线上时,点所经过的轨迹为所对的圆弧,圆弧长为.
    ∴点所经过的路径长为.
    (4)
    解:由(3)知,点在以为圆心,为半径的圆上,
    如图四,过O作OH⊥AB于H,


    当G在OH的反向延长线上时,GH最大,即点到直线的距离的最大,
    在Rt△BOH中,∠BHO=90°,∠OBH=30°,,
    ∴,
    ∴,
    即点到直线的距离的最大值为.
    【点睛】
    本题考查了勾股定理,旋转的性质,弧长公式,解直角三角形等知识,分点在上方和下方是解第(2)的关键,确定点G的运动轨迹是解第(3)(4)的关键.
    22.(1)证明见解析
    (2)
    【解析】
    【分析】
    (1)先根据四边形为平行四边形的性质和证明四边形为平行四边形,再根据,即可得证;
    (2)先根据菱形对称性得,得到,进一步说明的最小值即为菱形的高,再利用三角函数即可求解.
    (1)
    证明:∵四边形是平行四边形,
    ∴,,
    ∵,
    ∴,
    又∵点在的延长线上,
    ∴,
    ∴四边形为平行四边形,
    又∵,
    ∴四边形为菱形.
    (2)
    解:如图,由菱形对称性得,点关于的对称点在上,
    ∴,
    当、、共线时,

    过点作,垂足为,
    ∵,
    ∴的最小值即为平行线间的距离的长,
    ∵是边长为2的等边三角形,
    ∴在中,,,,
    ∴,
    ∴的最小值为.

    【点睛】
    本题考查了最值问题,考查了菱形的判定和性质,平行四边形的判定和性质,三角函数等知识,运用了转化的思想方法.将最值问题转化为求菱形的高是解答本题的关键.

    相关试卷

    山东省2022年各地区中考数学真题按题型分层分类汇编-08解答题提升题:

    这是一份山东省2022年各地区中考数学真题按题型分层分类汇编-08解答题提升题,共63页。试卷主要包含了,与y轴交于点B,,连接AC、BC,x﹣1与x轴有公共点等内容,欢迎下载使用。

    四川省2022年各地区中考数学真题按题型分层分类汇编-08解答题(提升题):

    这是一份四川省2022年各地区中考数学真题按题型分层分类汇编-08解答题(提升题),共46页。试卷主要包含了,B两点,分别连接OA,OB,,B两点,,与y轴交于点C等内容,欢迎下载使用。

    10图形的变化解答题-2022年江苏省各地区中考数学真题分类汇编:

    这是一份10图形的变化解答题-2022年江苏省各地区中考数学真题分类汇编,共52页。试卷主要包含了解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map