2021-2022学年江苏省盐城市东台市第五联盟十校联考最后数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,CH┴AF与点H,那么CH的长是( )
A. B. C. D.
2.济南市某天的气温:-5~8℃,则当天最高与最低的温差为( )
A.13 B.3 C.-13 D.-3
3.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为( )
A.8.23×10﹣6 B.8.23×10﹣7 C.8.23×106 D.8.23×107
4.已知关于x的一元二次方程有实数根,则m的取值范围是( )
A. B. C. D.
5.如图是一个几何体的主视图和俯视图,则这个几何体是( )
A.三棱柱 B.正方体 C.三棱锥 D.长方体
6.如果,则a的取值范围是( )
A.a>0 B.a≥0 C.a≤0 D.a<0
7.如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC的距离为( )
A.1或2 B.2或3 C.3或4 D.4或5
8.在平面直角坐标系中,点A的坐标是(﹣1,0),点B的坐标是(3,0),在y轴的正半轴上取一点C,使A、B、C三点确定一个圆,且使AB为圆的直径,则点C的坐标是( )
A.(0,) B.(,0) C.(0,2) D.(2,0)
9.在中,,,下列结论中,正确的是( )
A. B.
C. D.
10.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )
A.9人 B.10人 C.11人 D.12人
11.分式的值为0,则x的取值为( )
A.x=-3 B.x=3 C.x=-3或x=1 D.x=3或x=-1
12.如图,在▱ABCD中,AB=2,BC=1.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是( )
A. B.1 C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为____________________.
14.如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知DE⊥EA,斜坡CD的长度为30m,DE的长为15m,则树AB的高度是_____m.
15.据统计,今年无锡鼋头渚“樱花节”活动期间入园赏樱人数约803万人次,用科学记数法可表示为_____人次.
16.今年“五一”节日期间,我市四个旅游景区共接待游客约303000多人次,这个数据用科学记数法可记为_____.
17.阅读理解:引入新数i,新数i满足分配律、结合律、交换律,已知i2=﹣1,那么(1+i)•(1﹣i)的平方根是_____.
18.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是___________(写出一个即可).
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图1,在平行四边形ABCD中,对角线AC与BD相交于点O,经过点O的直线与边AB相交于点E,与边CD相交于点F.
(1)求证:OE=OF;
(2)如图2,连接DE,BF,当DE⊥AB时,在不添加其他辅助线的情况下,直接写出腰长等于BD的所有的等腰三角形.
20.(6分)阅读下面材料,并解答问题.
材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.
解:由分母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)
∵对应任意x,上述等式均成立,∴,∴a=2,b=1
∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.
解答:将分式 拆分成一个整式与一个分式(分子为整数)的和的形式.试说明的最小值为1.
21.(6分)某数学兴趣小组为测量如图(①所示的一段古城墙的高度,设计用平面镜测量的示意图如图②所示,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处.
已知AB⊥BD、CD⊥BD,且测得AB=1.2m,BP=1.8m.PD=12m,求该城墙的高度(平面镜的原度忽略不计): 请你设计一个测量这段古城墙高度的方案.
要求:①面出示意图(不要求写画法);②写出方案,给出简要的计算过程:③给出的方案不能用到图②的方法.
22.(8分)如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.
(1)求证:DE是⊙O的切线;
(2)若tanA=,探究线段AB和BE之间的数量关系,并证明;
(3)在(2)的条件下,若OF=1,求圆O的半径.
23.(8分)如图,海中有一个小岛 A,该岛四周 11 海里范围内有暗礁.有一货轮在海面上由西向正东方向航行,到达B处时它在小岛南偏西60°的方向上,再往正东方向行驶10海里后恰好到达小岛南偏西45°方向上的点C处.问:如果货轮继续向正东方向航行,是否会有触礁的危险?(参考数据:≈1.41,≈1.73)
24.(10分)今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.
评估成绩n(分)
评定等级
频数
90≤n≤100
A
2
80≤n<90
B
70≤n<80
C
15
n<70
D
6
根据以上信息解答下列问题:
(1)求m的值;
(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)
(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.
25.(10分)某文教店老板到批发市场选购A、B两种品牌的绘图工具套装,每套A品牌套装进价比B品牌每套套装进价多2.5元,已知用200元购进A种套装的数量是用75元购进B种套装数量的2倍.求A、B两种品牌套装每套进价分别为多少元?若A品牌套装每套售价为13元,B品牌套装每套售价为9.5元,店老板决定,购进B品牌的数量比购进A品牌的数量的2倍还多4套,两种工具套装全部售出后,要使总的获利超过120元,则最少购进A品牌工具套装多少套?
26.(12分)为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:
求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.
27.(12分)(1)计算:﹣22+|﹣4|+()-1+2tan60°
(2) 求 不 等 式 组的 解 集 .
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,最后由直角三角形面积的两种表示法即可求得CH的长.
【详解】
如图,连接AC、CF,
∵正方形ABCD和正方形CEFG中,BC=1,CE=3,
∴AC= ,CF=3,
∠ACD=∠GCF=45°,
∴∠ACF=90°,
由勾股定理得,AF=,
∵CH⊥AF,
∴,
即,
∴CH=.
故选D.
【点睛】
本题考查了正方形的性质、勾股定理及直角三角形的面积,熟记各性质并作辅助线构造出直角三角形是解题的关键.
2、A
【解析】
由题意可知,当天最高温与最低温的温差为8-(-5)=13℃,故选A.
3、B
【解析】
分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
详解:0.000000823=8.23×10-1.
故选B.
点睛:本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
4、C
【解析】
解:∵关于x的一元二次方程有实数根,
∴△==,
解得m≥1,
故选C.
【点睛】
本题考查一元二次方程根的判别式.
5、A
【解析】
【分析】根据三视图的知识使用排除法即可求得答案.
【详解】如图,由主视图为三角形,排除了B、D,
由俯视图为长方形,可排除C,
故选A.
【点睛】本题考查了由三视图判断几何体的知识,做此类题时可利用排除法解答.
6、C
【解析】
根据绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,1的绝对值是1.若|-a|=-a,则可求得a的取值范围.注意1的相反数是1.
【详解】
因为|-a|≥1,
所以-a≥1,
那么a的取值范围是a≤1.
故选C.
【点睛】
绝对值规律总结:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,1的绝对值是1.
7、A
【解析】
连接B′D,过点B′作B′M⊥AD于M.设DM=B′M=x,则AM=7-x,根据等腰直角三角形的性质和折叠的性质得到:(7-x)2=25-x2,通过解方程求得x的值,易得点B′到BC的距离.
【详解】
解:如图,连接B′D,过点B′作B′M⊥AD于M,
∵点B的对应点B′落在∠ADC的角平分线上,
∴设DM=B′M=x,则AM=7﹣x,
又由折叠的性质知AB=AB′=5,
∴在直角△AMB′中,由勾股定理得到:,
即,
解得x=3或x=4,
则点B′到BC的距离为2或1.
故选A.
【点睛】
本题考查的是翻折变换的性质,掌握翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.
8、A
【解析】
直接根据△AOC∽△COB得出OC2=OA•OB,即可求出OC的长,即可得出C点坐标.
【详解】
如图,连结AC,CB.
依△AOC∽△COB的结论可得:OC2=OA×OB,
即OC2=1×3=3,
解得:OC=或− (负数舍去),
故C点的坐标为(0, ).
故答案选:A.
【点睛】
本题考查了坐标与图形性质,解题的关键是熟练的掌握坐标与图形的性质.
9、C
【解析】
直接利用锐角三角函数关系分别计算得出答案.
【详解】
∵,,
∴,
∴,
故选项A,B错误,
∵,
∴,
故选项C正确;选项D错误.
故选C.
【点睛】
此题主要考查了锐角三角函数关系,熟练掌握锐角三角函数关系是解题关键.
10、C
【解析】
设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.
【详解】
设参加酒会的人数为x人,依题可得:
x(x-1)=55,
化简得:x2-x-110=0,
解得:x1=11,x2=-10(舍去),
故答案为C.
【点睛】
考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程.
11、A
【解析】
分式的值为2的条件是:(2)分子等于2;(2)分母不为2.两个条件需同时具备,缺一不可.据此可以解答本题.
【详解】
∵原式的值为2,
∴,
∴(x-2)(x+3)=2,即x=2或x=-3;
又∵|x|-2≠2,即x≠±2.
∴x=-3.
故选:A.
【点睛】
此题考查的是对分式的值为2的条件的理解,该类型的题易忽略分母不为2这个条件.
12、B
【解析】
分析:只要证明BE=BC即可解决问题;
详解:∵由题意可知CF是∠BCD的平分线,
∴∠BCE=∠DCE.
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠DCE=∠E,∠BCE=∠AEC,
∴BE=BC=1,
∵AB=2,
∴AE=BE-AB=1,
故选B.
点睛:本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、(6053,2).
【解析】
根据前四次的坐标变化总结规律,从而得解.
【详解】
第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,1),第五次P5(17,2),…
发现点P的位置4次一个循环,
∵2017÷4=504余1,
P2017的纵坐标与P1相同为2,横坐标为5+3×2016=6053,
∴P2017(6053,2),
故答案为(6053,2).
考点:坐标与图形变化﹣旋转;规律型:点的坐标.
14、1
【解析】
先根据CD=20米,DE=10m得出∠DCE=30°,故可得出∠DCB=90°,再由∠BDF=30°可知∠DBE=60°,由DF∥AE可得出∠BGF=∠BCA=60°,故∠GBF=30°,所以∠DBC=30°,再由锐角三角函数的定义即可得出结论.
【详解】
解:作DF⊥AB于F,交BC于G.则四边形DEAF是矩形,
∴DE=AF=15m,
∵DF∥AE,
∴∠BGF=∠BCA=60°,
∵∠BGF=∠GDB+∠GBD=60°,∠GDB=30°,
∴∠GDB=∠GBD=30°,
∴GD=GB,
在Rt△DCE中,∵CD=2DE,
∴∠DCE=30°,
∴∠DCB=90°,
∵∠DGC=∠BGF,∠DCG=∠BFG=90°
∴△DGC≌△BGF,
∴BF=DC=30m,
∴AB=30+15=1(m),
故答案为1.
【点睛】
本题考查的是解直角三角形的应用-仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.
15、8.03×106
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.803万=.
16、3.03×101
【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于303000有6位整数,所以可以确定n=6-1=1.
详解:303000=3.03×101,
故答案为:3.03×101.
点睛:此题考查科学记数法表示较大的数的方法,准确确定a与n的值是解题的关键.
17、2
【解析】
根据平方根的定义进行计算即可.
【详解】
.解:∵i2=﹣1,
∴(1+i)•(1﹣i)=1﹣i2=2,
∴(1+i)•(1﹣i)的平方根是±,
故答案为±.
【点睛】
本题考查平方根以及实数的运算,解题关键掌握平方根的定义.
18、AB=AD(答案不唯一).
【解析】
已知OA=OC,OB=OD,可得四边形ABCD是平行四边形,再根据菱形的判定定理添加邻边相等或对角线垂直即可判定该四边形是菱形.所以添加条件AB=AD或BC=CD或AC⊥BD,本题答案不唯一,符合条件即可.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)证明见解析;(2)△DOF,△FOB,△EOB,△DOE.
【解析】
(1)由四边形ABCD是平行四边形,可得OA=OC,AB∥CD,则可证得△AOE≌△COF(ASA),继而证得OE=OF;
(2)证明四边形DEBF是矩形,由矩形的性质和等腰三角形的性质即可得出结论.
【详解】
(1)∵四边形ABCD是平行四边形,
∴OA=OC,AB∥CD,OB=OD,
∴∠OAE=∠OCF,
在△OAE和△OCF中,
,
∴△AOE≌△COF(ASA),
∴OE=OF;
(2)∵OE=OF,OB=OD,
∴四边形DEBF是平行四边形,
∵DE⊥AB,
∴∠DEB=90°,
∴四边形DEBF是矩形,
∴BD=EF,
∴OD=OB=OE=OF=BD,
∴腰长等于BD的所有的等腰三角形为△DOF,△FOB,△EOB,△DOE.
【点睛】
本题考查了等腰三角形的性质与平行四边形的性质,解题的关键是熟练的掌握等腰三角形的性质与平行四边形的性质.
20、 (1) =x2+7+ (2) 见解析
【解析】
(1)根据阅读材料中的方法将分式拆分成一个整式与一个分式(分子为整数)的和的形式即可;
(2)原式分子变形后,利用不等式的性质求出最小值即可.
【详解】
(1)设﹣x4﹣6x+1=(﹣x2+1)(x2+a)+b=﹣x4+(1﹣a)x2+a+b,
可得 ,
解得:a=7,b=1,
则原式=x2+7+;
(2)由(1)可知,=x2+7+ .
∵x2≥0,∴x2+7≥7;
当x=0时,取得最小值0,
∴当x=0时,x2+7+最小值为1,
即原式的最小值为1.
21、(1)8m;(2)答案不唯一
【解析】
(1)根据入射角等于反射角可得 ∠APB=∠CPD ,由 AB⊥BD、CD⊥BD 可得到 ∠ABP=∠CDP=90°,从而可证得三角形相似,根据相似三角形的性质列出比例式,即可求出CD的长.
(2)设计成视角问题求古城墙的高度.
【详解】
(1)解:由题意,得∠APB=∠CPD,∠ABP=∠CDP=90°,
∴Rt△ABP∽Rt△CDP,
∴ ,
∴CD==8.
答:该古城墙的高度为8m
(2)解:答案不唯一,如:如图,
在距这段古城墙底部am的E处,用高h(m)的测角仪DE测得这段古城墙顶端A的仰角为α.即可测量这段古城墙AB的高度,
过点D作DCAB于点C.在Rt△ACD中,∠ACD=90°,tanα=,
∴AC=α tanα,
∴AB=AC+BC=αtanα+h
【点睛】
本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.
22、(1)答案见解析;(2)AB=1BE;(1)1.
【解析】
试题分析:(1)先判断出∠OCF+∠CFO=90°,再判断出∠OCF=∠ODF,即可得出结论;
(2)先判断出∠BDE=∠A,进而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出结论;
(1)设BE=x,则DE=EF=2x,AB=1x,半径OD=x,进而得出OE=1+2x,最后用勾股定理即可得出结论.
试题解析:(1)证明:连结OD,如图.∵EF=ED,∴∠EFD=∠EDF.∵∠EFD=∠CFO,∴∠CFO=∠EDF.∵OC⊥OF,∴∠OCF+∠CFO=90°.∵OC=OD,∴∠OCF=∠ODF,∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;
(2)线段AB、BE之间的数量关系为:AB=1BE.证明如下:
∵AB为⊙O直径,∴∠ADB=90°,∴∠ADO=∠BDE.∵OA=OD,∴∠ADO=∠A,∴∠BDE=∠A,而∠BED=∠DEA,∴△EBD∽△EDA,∴.∵Rt△ABD中,tanA==,∴=,
∴AE=2DE,DE=2BE,∴AE=4BE,∴AB=1BE;
(1)设BE=x,则DE=EF=2x,AB=1x,半径OD=x.∵OF=1,∴OE=1+2x.
在Rt△ODE中,由勾股定理可得:(x)2+(2x)2=(1+2x)2,∴x=﹣(舍)或x=2,∴圆O的半径为1.
点睛:本题是圆的综合题,主要考查了切线的判定和性质,等腰三角形的性质,锐角三角函数,相似三角形的判定和性质,勾股定理,判断出△EBD∽△EDA是解答本题的关键.
23、不会有触礁的危险,理由见解析.
【解析】
分析:作AH⊥BC,由∠CAH=45°,可设AH=CH=x,根据可得关于x的方程,解之可得.
详解:过点A作AH⊥BC,垂足为点H.
由题意,得∠BAH=60°,∠CAH=45°,BC=1.
设AH=x,则CH=x.
在Rt△ABH中,∵,
解得:.
∵13.65>11,∴货轮继续向正东方向航行,不会有触礁的危险.
点睛:本题考查了解直角三角形的应用﹣方向角问题,解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
24、(1)25;(2)8°48′;(3).
【解析】
试题分析:(1)由C等级频数为15除以C等级所占的百分比60%,即可求得m的值;(2)首先求得B等级的频数,继而求得B等级所在扇形的圆心角的大小;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中至少有一家是A等级的情况,再利用概率公式求解即可求得答案.
试题解析:(1)∵C等级频数为15,占60%,
∴m=15÷60%=25;
(2)∵B等级频数为:25﹣2﹣15﹣6=2,
∴B等级所在扇形的圆心角的大小为:×360°=28.8°=28°48′;
(3)评估成绩不少于80分的连锁店中,有两家等级为A,有两家等级为B,画树状图得:
∵共有12种等可能的结果,其中至少有一家是A等级的有10种情况,
∴其中至少有一家是A等级的概率为:=.
考点:频数(率)分布表;扇形统计图;列表法与树状图法.
25、(1)A种品牌套装每套进价为1元,B种品牌套装每套进价为7.5元;(2)最少购进A品牌工具套装2套.
【解析】
试题分析:(1)利用两种套装的套数作为等量关系列方程求解.(2)利用总获利大于等于120,解不等式.
试题解析:
(1)解:设B种品牌套装每套进价为x元,则A种品牌套装每套进价为(x+2.5)元.
根据题意得:=2×,
解得:x=7.5,
经检验,x=7.5为分式方程的解,
∴x+2.5=1.
答:A种品牌套装每套进价为1元,B种品牌套装每套进价为7.5元.
(2)解:设购进A品牌工具套装a套,则购进B品牌工具套装(2a+4)套,
根据题意得:(13﹣1)a+(9.5﹣7.5)(2a+4)>120,
解得:a>16,
∵a为正整数,
∴a取最小值2.
答:最少购进A品牌工具套装2套.
点睛:分式方程应用题:一设,一般题里有两个有关联的未知量,先设出一个未知量,并找出两个未知量的联系;二列,找等量关系,列方程,这个时候应该注意的是和差分倍关系:三解,正确解分式方程;四验,应用题要双检验;五答,应用题要写答.
26、解:(1)该校班级个数为4÷20%=20(个),
只有2名留守儿童的班级个数为:20﹣(2+3+4+5+4)=2(个),
该校平均每班留守儿童的人数为:
=4(名),
补图如下:
(2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,
有树状图可知,共有12中等可能的情况,其中来自一个班的共有4种情况,
则所选两名留守儿童来自同一个班级的概率为:=.
【解析】
(1)首先求出班级数,然后根据条形统计图求出只有2名留守儿童的班级数,再求出总的留守儿童数,最后求出每班平均留守儿童数;
(2)利用树状图确定可能种数和来自同一班的种数,然后就能算出来自同一个班级的概率.
27、(1)1;(2)-1≤x<1.
【解析】
试题分析:(1)、首先根据绝对值、幂、三角函数的计算法则得出各式的值,然后进行求和得出答案;(2)、分半求出每个不等式的解,然后得出不等式组的解.
试题解析:解:(1)、
(2)、 由得:x<1,由得:x≥-1,∴不等式的解集:-1≤x<1.
江苏省盐城市东台重点名校2021-2022学年十校联考最后数学试题含解析: 这是一份江苏省盐城市东台重点名校2021-2022学年十校联考最后数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
江苏省盐城市大丰市创新英达校2022年十校联考最后数学试题含解析: 这是一份江苏省盐城市大丰市创新英达校2022年十校联考最后数学试题含解析,共19页。
江苏省江都区六校2021-2022学年十校联考最后数学试题含解析: 这是一份江苏省江都区六校2021-2022学年十校联考最后数学试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,一、单选题,tan60°的值是等内容,欢迎下载使用。